Solution Solution Solution

Jason Aebischer, Valeriia Lukashenko, Ben Kilminster, <u>Anson Kwok</u>, Zach Polonshy 10/10/24 3rd ECFA Workshop

WARNING

This presentation contains preliminary results. Do NOT take it super seriously, some numerical values may be updated in later stage.

Once upon a time.....

Once upon a time.....

Cosmological measurement shows: (n_{baryon}-n_{anti-baryon})/n_{photon} ~ 10-9 [Matter >> Anti-matter]

Sakharov Condition (within Baryogenesis):

- Baryon number violation
- Interactions out of thermal equilibrium
- <u>C, CP violation</u>

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5)$$

We have CPV in SM! But not enough [Mostly CPV in non-leptonic decay]

Just an example, there are more diagrams

It is FCNC!!! Loop suppressed: BR~8x10⁻⁷ (BR measurement done by LHCb in 2021 [arXiv:2105.14007]) [Leptonic CPV is not yet fully explored]

BSM could introduce CPV in FCNC operators: time-dependent measurements are sensitive to $Im[C_{7,9,10}]$

Just an example, there are more diagrams

Why FCC-ee

FCC-ee at Z-pole

<i>b</i> -hadron	Belle II	LHCb	FCC-ee
$B^0, ar{B}^0$	$5.3 imes 10^{10}$	6×10^{13}	$7.2 imes 10^{11}$
B^{\pm}	$5.6 imes10^{10}$	$6 imes 10^{13}$	$7.2 imes 10^{11}$
B^0_s, \bar{B}^0_s	$5.7 imes 10^8$	2×10^{13}	1.9×10^{11}
B_c^{\pm}		4×10^{11}	1.1×10^9
$\Lambda_b^0,ar{\Lambda}_b^0$		$2 imes 10^{13}$	1.5×10^{11}

In general (you all know better than I do):

Clean

. . .

- Good Flavor Tagging (vs LHCb)
- - Good Vertexing (vs Belle II)

(vs LHCb) Large Stat. (vs Belle II)

Cartoon Diagram of Signal.....

We use Pythia + Delphes (IDEA) for simulating signal & backgrounds

Some Physics of Signal.....

Vertex Fit

Some Physics of Signal....

Resonances

Kinematics

Some Physics of Signal....

Inv. Mass (Dikaon + Dimuon)

Cut Flow.

Cut Flow.

Cut Flow.

_				
_	Channel	$B_s^0 \to \phi \mu^+ \mu^-$	$Z \to b \bar{b}$	$Z \to c \bar{c}$
	Events at FCC-ee	1.25×10^{5}	9.07×10^{11}	7.22×10^{11}
	$N_{ m FS}$	$1.16 imes 10^5$	4.34×10^9	2.82×10^8
	N_{χ^2}	1.15×10^5	2.15×10^8	7.25×10^7
	$N_{ \vec{p} }$	$7.35 imes 10^4$	$5.98 imes 10^7$	2.25×10^6
	$N_{m_{\phi}}$	$7.32 imes 10^4$	$3.21 imes 10^7$	$3.64 imes 10^5$
	N_{q^2}	6.33×10^4	1.24×10^7	3.13×10^6
	$N_{m_{B_s^0}}$	6.27×10^{4}	1.39×10^{3}	2.13×10^{2}

Precision: ~0.4% (vs LHCb: ~2.6%)

Fact Sheet: "Tagging"

Tell they're from B or anti-B

Tag eff.: How often we can tell something Tag Rate: How often we get it right

Uncert. ~ 1/sqrt{Tag Power}

	LEP	Belle II	BaBar	LHCb
$P_{\rm tag}$	25-30%	30%	30%	6%

Fact Sheet: "Timing"

agg

Time resolution effect: dilution factor (~0.995)

Bs

Function of: PV, SV, Boost [Dominated by SV resolution]

Untagged

Tagged

Time-independent

Time-dependent

10

10

Conclusion (Analysis Part):

Now (we think) we know what we can measure.....

Here's

Theory

Interpretation In A Nutshell.....

Model-independent Way (EFT).....

$$\mathcal{H}^{\text{eff}} \supset -\frac{4G_F V_{tb} V_{ts}^*}{\sqrt{2}} \left(\sum_{i=1}^8 \left(\mathcal{C}_i \mathcal{O}_i + \mathcal{C}'_i \mathcal{O}_i' \right) + \sum_{i=9}^{10} \left(\mathcal{C}_i \mathcal{O}_i^{\mu} + \mathcal{C}'_i \mathcal{O}_i^{\mu'} \right) \right) + \text{h.c.}$$

Want to see how Wilson Coefficients (C_i) deviate from SM value

Connecting EXP-TH (An Example).....

$$\begin{split} C_{\phi\mu\mu} &= \frac{\tau_{B_s}}{2} \frac{\int dq^2 \sum_i \kappa_i \left(J_i(q^2) - \tilde{J}_i(q^2) \right)}{\langle \mathcal{B}_{\phi\mu\mu} \rangle}, \quad S_{\phi\mu\mu} = -\frac{\tau_{B_s}}{2} \frac{\int dq^2 \sum_i \kappa_i s_i}{\langle \mathcal{B}_{\phi\mu\mu} \rangle}, \\ D_{\phi\mu\mu} &= -\frac{\tau_{B_s}}{2} \frac{\int dq^2 \sum_i \kappa_i h_i}{\langle \mathcal{B}_{\phi\mu\mu} \rangle}. \end{split}$$

$$\begin{aligned} &J_{1s} = \frac{(2+\beta_{\mu}^{2})}{4} \left(|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right) + \frac{4m_{\mu}^{2}}{q^{2}} \Re \left(A_{\perp}^{L} A_{\perp}^{R*} + A_{\parallel}^{L} A_{\parallel}^{R} \right) \\ &J_{1c} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\mu}^{2}}{q^{2}} \left[|A_{l}|^{2} + 2\Re \left(A_{0}^{L} A_{0}^{R*} \right) \right] , \\ &J_{2s} = \frac{\beta_{\mu}^{2}}{4} \left(|A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right) , \\ &J_{2c} = -\beta_{\mu}^{2} \left(|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} \right) , \\ &h_{1s} = \frac{2 + \beta_{\mu}^{2}}{2} \Re \left(\widetilde{A}_{\perp}^{L} A_{\perp}^{L*} + \widetilde{A}_{\parallel}^{L} A_{\parallel}^{L*} + \widetilde{A}_{\perp}^{L} A_{\perp}^{R*} + \widetilde{A}_{\parallel}^{R} A_{\parallel}^{R*} \right) \\ &+ \frac{4m_{\mu}^{2}}{q^{2}} \Re \left(\widetilde{A}_{\perp}^{L} A_{\perp}^{L*} + \widetilde{A}_{\parallel}^{L} A_{\parallel}^{R*} + A_{\perp}^{L} \widetilde{A}_{\perp}^{R*} + A_{\parallel}^{L} \widetilde{A}_{\parallel}^{R*} \right) \\ &h_{1c} = 2\Re \left(\widetilde{A}_{0}^{L} A_{0}^{L*} + \widetilde{A}_{0}^{R} A_{0}^{R*} \right) + \frac{8m_{\mu}^{2}}{q^{2}} \Re \left(\widetilde{A}_{t} A_{t}^{*} + \widetilde{A}_{0}^{L} A_{0}^{R*} + A_{0}^{L} \widetilde{A}_{0}^{R*} \right) \\ &h_{2s} = \frac{\beta_{\mu}^{2}}{2} \Re \left(\widetilde{A}_{\perp}^{L} A_{\perp}^{L*} + \widetilde{A}_{\parallel}^{L} A_{\parallel}^{L*} + \widetilde{A}_{\perp}^{R} A_{\perp}^{R*} + \widetilde{A}_{\parallel}^{R} A_{\parallel}^{R*} \right) \\ &h_{2c} = -2\beta_{\mu}^{2} \Re \left(\widetilde{A}_{0}^{L} A_{0}^{L*} + \widetilde{A}_{0}^{R} A_{0}^{R*} \right) \end{aligned}$$

Observable as function of C's

$$\begin{split} A_{\perp}^{L,R} &= N\sqrt{2\lambda} \left\{ \left(C_{9} \mp C_{10} \right) \frac{V(q^{2})}{m_{B_{s}^{0}} + m_{\phi}} + \frac{2m_{b}}{q^{2}} C_{7} T_{1}(q^{2}) \right\} , \\ A_{\parallel}^{L,R} &= -N\sqrt{2} \left(m_{B_{s}^{0}}^{2} - m_{\phi}^{2} \right) \left\{ \left(C_{9} \mp C_{10} \right) \frac{A_{1}(q^{2})}{m_{B_{s}^{0}} - m_{\phi}} + \frac{2m_{b}}{q^{2}} C_{7} T_{2}(q^{2}) \right\} , \\ A_{0}^{L,R} &= -\frac{N}{2m_{\phi}\sqrt{q^{2}}} \left\{ 2m_{b}C_{7} \cdot \left[\left(m_{B_{s}^{0}}^{2} + 3m_{\phi}^{2} - q^{2} \right) T_{2}(q^{2}) - \frac{\lambda T_{3}(q^{2})}{m_{B_{s}^{0}}^{2} - m_{\phi}^{2}} \right] \right. \\ &+ \left(C_{9} \mp C_{10} \right) \cdot \left[\left(m_{B_{s}^{0}}^{2} - m_{\phi}^{2} - q^{2} \right) \left(m_{B_{s}^{0}}^{2} + m_{\phi} \right) A_{1}(q^{2}) - \frac{\lambda A_{2}(q^{2})}{m_{B_{s}^{0}}^{2} + m_{\phi}} \right] \right\} \\ A_{t} &= 2N \frac{\sqrt{\lambda}}{\sqrt{q^{2}}} C_{10} A_{0}(q^{2}) , \end{split}$$

J's, h's, s's functions of Amplitudes

Our projection is pushing theory limit

Time-Dependent Precision Measurement of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ Decay at FCC-*ee*

Should also apply to SM prediction

Long-distance Effects.....

$$C_7^{\text{eff}} = C_7 - \frac{1}{3}C_3 - \frac{4}{9}C_4 - \frac{20}{3}C_5 - \frac{80}{9}C_6, \quad C_9^{\text{eff}} = C_9 + \frac{Y(q^2)}{Y(q^2)},$$

$$\begin{split} Y(q^2) = & \frac{4}{3}C_3 + \frac{64}{9} + \frac{64}{27}C_6 - \frac{1}{2}h(q^2, 0)\left(C_3 + \frac{4}{3}C_4 + 16C_5 + \frac{64}{3}C_6\right) \\ & + h(q^2, m_c)\left(\frac{4}{3}C_1 + C_2 + 6C_3 + 60C_5\right) \\ & - \frac{1}{2}h(q^2, m_b)\left(7C_3 + \frac{4}{3}C_4 + 76C_5 + \frac{64}{3}C_6\right), \\ & h\left(q^2, \frac{q^2x}{4}\right) = -\frac{4}{9}\left(\log\left(\frac{m^2}{\mu^2}\right) - \frac{2}{3} - x\right) \\ & - \frac{4}{9}\left(2 + x\right) \times \begin{cases} \sqrt{x - 1}\arctan\frac{1}{\sqrt{x - 1}} & , x > 1 \\ \sqrt{1 - x}\left(\log\frac{1 + \sqrt{1 - x}}{\sqrt{x}} - \frac{i\pi}{2}\right) & , x \le 1 \end{cases}. \end{split}$$

16

Then we can write, e.g.:

Expanding into 2nd order

$$\begin{split} \frac{\mathrm{Br}(B^0_s \to \phi \mu^+ \mu^-)}{\mathrm{Br}(B^0_s \to \phi \mu^+ \mu^-)_{\mathrm{SM}}} &= 1 + \sum_k b_k^{\mathrm{Full}} \delta C_k + \sum_{k\ell} B_{k\ell}^{\mathrm{Full}} \delta C_k \delta C_\ell \,, \\ \tilde{C}^I_{\phi\mu\mu} &= \sum_k \gamma_k^I \, \delta C_k + \sum_{k\ell} \Gamma_{k\ell}^I \, \delta C_k \delta C_\ell \,, \\ \tilde{S}^I_{\phi\mu\mu} &= \sum_k \sigma_k^I \, \delta C_k + \sum_{k\ell} \Sigma_{k\ell}^I \, \delta C_k \delta C_\ell \,, \\ \tilde{D}^I_{\phi\mu\mu} &= \tilde{D}^I_{\phi\mu\mu,\mathrm{SM}} + \sum_k \, \delta_k^I \, \delta C_k + \sum_{k\ell} \Delta_{k\ell}^I \, \delta C_k \delta C_\ell \,, \end{split}$$

~10% theoretical uncertainty!!!

$b_k^{ m Full} =$	(0.37(7))	0.04(2) (0.23(3) 0.0	2(1) -0.25	(3) 0 $\Big)$,		
	(0.80(11)	0	0.091(11)	0	0	0)	
		0.80(11)	0	0.091(11)	0	0	
PFull_			0.030(4)	0	0	0	
$D_{k\ell} =$				0.030(4)	0	0	
					0.030(4)	0	
						0.030(4)	

Money Plot (In Construction).....

With Th. Uncert.: Th. Uncert. >> Exp. Uncert.

Can learn NP up to O(10 TeV) [Stat. only]

Complementary: Re and Im parts

Conclusion		
Big Question	Why matter >> antimatter?	
Exact Problem	Do we have CPV from NP	
	(in leptonic rare, FCNC, decay)?	
vhere do we test it	FCC- <i>ee</i> : Ideal to test rare process!	
	[Clean, Good Vertexing,]	
low to Interpret it	EFT: Tell how (NP) complex phase	
	affects experimental measurements	
What can we learn	Can probe NP up to O(10 TeV)	
	[If th. uncert. suppressed to similar	
	order of magnitude]	
	We should push th. calculation	

Conclusion

Big QuestionWhy matter >> antimatter?Exact ProblemDo we have CPV from NP

There is only one way to find out if it oscillates! MEASURE IT!

[If th. uncert. suppressed to similar order of magnitude] We should push th. calculation

Crew --- alphabetical ---

Theoretical Part Jason Aebischer Experimental Part (Boss) Ben Kilminster Experimental Part Anson Kwok Experimental Part Valeriia Lukashenko Theoretical Part Zach Polonsky

Special Thank Useful Discussions and Feedbacks Gino Isidori Armin Ilg Franco Grancagnolo Margherita Primavera Lingfeng Li

We are not supported by these companies

In Selected Theatres

THIS PICTURE MADE UNDER THE JURISDICTION OF

AFFILIATED WITH A.F.L.-C.I.O.-C.L.C. COLOR BY

But supported by

Universität Zürich^{uzH}

What background types do we have?

Z>bb Cascade

- ККµµ don't form a vertex - m(ККµµ) != m(B_s)

Z>bb Comb.

- m(KK) != m(φ)

Signal

Why doing a fit in $m(B_s)$? Leak of simulation samples

Why D_f, C_f measurement is not included?

Not so sensitive compared to S_f

Extra argument vs LHCb: They can measure D_f but not much physics can be told from D_f along.

Binned measurements