Probing New Physics at future e+e- colliders with two-particle angular correlations

Redamy Pérez-Ramos^{1,2}

In collaboration with E. Musumeci, A. Irles, V. Mitsou, I. Corredoira, E. Sarkisyan-Grinbaum & M. A. Sanchis-Lozano. arXiv:2312.06526 [hep-ph]

> ¹Institut Polytechnique des Sciences Avancées (IPSA) Ivry-sur-Seine, France
> ²LPTHE, UMR 7589 CNRS & Sorbonne Université, Paris, France

> > October 9, 2024

(IPSA & LPTHE)

3rd ECFA workshop

1/18

Outline

- Definiton of pertinent variables and two-particle correlation function
- Motivation for using two-particle correlations on the search of NP BSM
- Pythia8 implementation of HV scenarios within its PYSHOW algorithm
- Analysis at particle level including selection cuts and detector effects (ILD)
- Main results and estimation of uncertainties
- Conclusions

Two-particle correlations $(\Delta y, \Delta \phi)$

Definitions

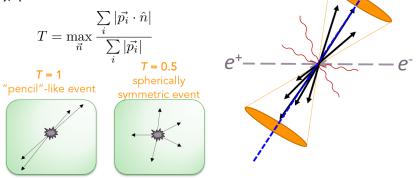
• Rapidity difference:

$$\Delta y = y_1 - y_2,$$

or pseudo-rapidity difference:

$$\Delta \eta = \eta_1 - \eta_2,$$

• Angular difference:

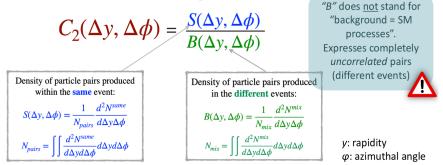

$$\Delta \phi = \phi_1 - \phi_2$$

(IPSA & LPTHE)

Two-particle correlations $(\Delta y, \Delta \phi)$

Correlation-related variables

- Angular correlations → event shape
- y, φ coordinates defined w.r.t. thrust axis

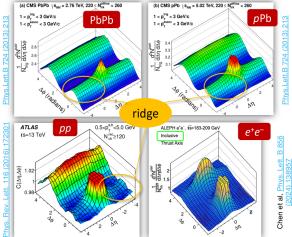


3/18

Thrust axis \hat{n}

Angular correlations

- · Powerful method to study the underlying mechanisms of particle production
- · Uncover possible collective effects resulting from high particle densities
- Two-particle correlation function C₂

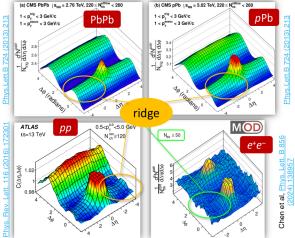

イロト イヨト イヨト ・

Two-particle angular correlations

Two-particle angular correlations in collisions

- Interesting features depending on colliding particles and track multiplicities
- Heavy-ion collisions: ridge structure associated with fluctuating ion initial state

Sanchis-Lozano, Int.J.Mod.Phys.A 24, 4529 (2009) Sanchis-Lozano & Sarkisyan-Grinbaum, Phys.Lett.B 781,505 (2018) Pérez-Ramos, Sanchis-Lozano, Sarkisyan-Grinbaum, Phys.Rev.D 105, 053001 (2022)



Two-particle angular correlations

Two-particle angular correlations in collisions

- Interesting features depending on colliding particles and track multiplicities
- Heavy-ion collisions: ridge structure associated with fluctuating ion initial state

Sanchis-Lozano, Int.J.Mod.Phys.A 24, 4529 (2009) Sanchis-Lozano & Sarkisyan-Grinbaum, Phys.Lett.B 781,505 (2018) Pérez-Ramos, Sanchis-Lozano, Sarkisyan-Grinbaum, Phys.Rev.D 105, 053001 (2022)

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Why HV? How to probe them?

• Why Hidden Valley scenarios?

- extra sectors common in string theory, SUSY breaking, extra dimensions, etc.
- incredibly exciting if found: new particles, forces, dynamics
- can drastically change phenomenology of SUSY/extra dims/etc
- implications for dark matter, early universe cosmology, astrophysics,...

Experimental probes

- relatively weak experimental constraints!
- vast array of possibilities
- phenomenology challenging for hadron colliders.

PYSHOW algorithm

Based in the PYSHOW algorithm of transverse momentum i.e., p_{\perp} -ordered cascades in Pythia8, but for one detail: the normal time-like showering formalism was expanded with a third kind of radiation (HV), in addition to the QCD and QED ones.

$$\frac{d\mathcal{P}}{dp_{\perp}} = \left(\frac{d\mathcal{P}_{\rm QCD}}{dp_{\perp}} + \frac{d\mathcal{P}_{\rm QED}}{dp_{\perp}} + \frac{d\mathcal{P}_{\rm HV}}{dp_{\perp}}\right) \exp\left[-\int\left(\ldots + \frac{d\mathcal{P}_{\rm HV}}{dp_{\perp}}\right)dp_{\perp}'\right]$$

Monte Carlo Tools in Pythia 8

Production Process

The HV particles have to be pair-produced:

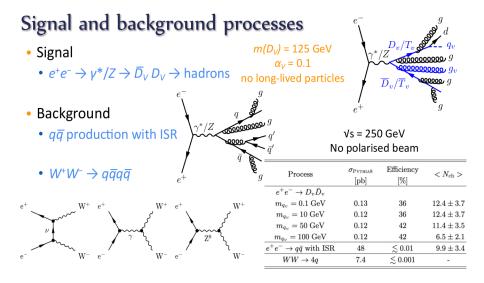
- **(** QCD-like in $pp(\bar{p})$ collisions, $gg \to Q_v \bar{Q}_v$ and $q\bar{q} \to Q_v \bar{Q}_v$
- **②** EW-like in e^+e^- -annihilation, $f\bar{f} \to \gamma^*/Z^0 \to F_v \overline{F}_v$ for all states

• Further decays: $F_v \to f \ q_v \to$ hadrons (i.e. $E_v \to e \ q_v$, $Q_v \to q \ q_v$)

name	partner	code	name	partner	code
D_v	d	4900001	E_v	e	4900011
U_v	u	4900002	ν_{Ev}	ν_e	4900012
S_v	s	4900003	MU_v	μ	4900013
C_v	<i>c</i>	4900004	ν_{MUv}	$ u_{\mu}$	4900014
B_v	b	4900005	TAU_v	τ	4900015
T_v	t	4900006	ν_{TAUv}	$\nu_{ au}$	4900016
g_v		4900021			
γ_v		4900022			
q_v		4900101			

Monte Carlo Tools in Pythia 8

Production Process


The HV particles have to be pair-produced:

- **(** QCD-like in $pp(\bar{p})$ collisions, $gg \to Q_v \bar{Q}_v$ and $q\bar{q} \to Q_v \bar{Q}_v$
- 2 EW-like in e^+e^- -annihilation, $f\bar{f} \to \gamma^*/Z^0 \to F_v \overline{F}_v$ for all states

• Further decays: $F_v \to f \ q_v \to$ hadrons (i.e. $E_v \to e \ q_v$, $Q_v \to q \ q_v$)

name	partner	code	name	partner	code
D_v	d	4900001	E_v	e	4900011
U_v	u	4900002	ν_{Ev}	ν_e	4900012
S_v	s	4900003	MU_v	μ	4900013
C_v	<i>c</i>	4900004	ν_{MUv}	$ u_{\mu}$	4900014
B_v	b	4900005	TAU_v	τ	4900015
T_v	t	4900006	ν_{TAUv}	$\nu_{ au}$	4900016
g_v		4900021			
γ_v		4900022			
q_v		4900101			

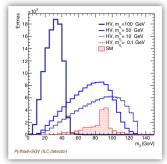
Analysis with detector effects

< (T) >

10/18

Analysis with detector effects

√s = 250 GeV


 $f = 2 \text{ ab}^{-1}$

Analysis with detector effects

Event selection

- no secondary vertices
- neutral PFOs* \leq 22 and charged PFOs \leq 15
- reconstructed ISR photons
 - $|\cos \vartheta_{\text{YISR}}| < 0.5$
 - $E_{\text{vISR}} < 40 \text{ GeV}$
- Di-jet invariant mass: $m_{ii} < 130 \text{ GeV}$
- Leading jet invariant mass: E_{jet} < 80 GeV

Process	$\sigma_{ m Pythia8} \ [pb]$	Efficiency [%]	$< N_{\rm ch} >$
$e^+e^- ightarrow D_v \bar{D}_v$			
$m_{q_v} = 0.1 \text{ GeV}$	0.13	36	12.4 ± 3.7
$m_{q_v} = 10 { m ~GeV}$	0.12	36	12.4 ± 3.7
$m_{q_v} = 50 { m ~GeV}$	0.12	42	11.4 ± 3.5
$m_{q_v} = 100 \; { m GeV}$	0.12	42	6.5 ± 2.1
$e^+e^- \to q\bar{q}$ with ISR	48	$\lesssim 0.01$	9.9 ± 3.4
$WW \rightarrow 4q$	7.4	$\lesssim 0.001$	-

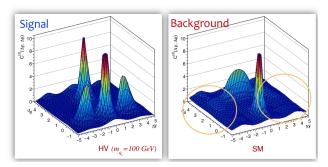
Simulation tools

- Monte Carlo event generator: Pythia8
- Fast detector simulation

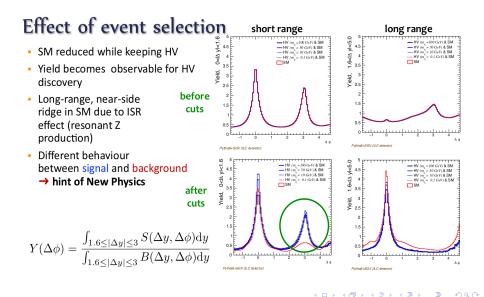
< □ > < □ > < □ > < □ > < □ > < □ >

- SGV 3.0 with ILD geometry
- Analysis: ILCSoft

*PFOs: Particle Flow Objects. Detector level particle candidates in ILD


Main conclusion:

The selection cut efficiency shows a drastic reduction of the SM background while the HV signal is affected to a lesser extent!

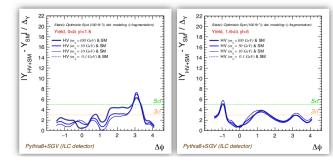

Remark: For the computation of B, only a thrust value larger than 0.96 was imposed, keeping the same requirements on PFO multiplicities as for S!

Angular correlations

- Decay $D_v \rightarrow d q_v$ initiates a partonic (visible + invisible) shower
- Near-side peak at ($\Delta y \simeq 0$, $\Delta \varphi \simeq 0$) mainly from track pairs within same jet
- Near-side ridge with two pronounced bumps at 1.6 < $|\Delta y|$ < 3, $\Delta \varphi \simeq$ 0, in HV scenario
 - absent in background
- Away-side correlation ridge around Δφ ≃ π
 → back-to-back momentum balance

Analysis with detector effects: main results

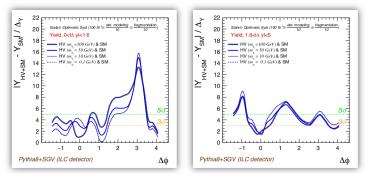
Main result


At short range after cuts, a sizable peak at $\Delta \phi \simeq \pi$ characterizes the HV scenario, unlike the pure SM case.

This difference would potentially serve as a valuable signature of a hidden sector, complementary to more conventional BSM searches!

Analysis with detector effects: main results

Uncertainties and sensitivity


- Uncertainties
 - statistical from luminosity: 100 fb⁻¹ (first year)
 - parton shower, fragmentation and hadronisation: HERWIG7.3 vs PYTHIA8
 - detector modelling: partially or totally cancelled in two-particle correlation
 - conservative uncertainty added: particle- versus detector-level
- Sensitivity
 - > 5σ in far peak

< □ > < □ > < □ > < □ >

Sensitivity improvements

- Conservative uncertainty estimation → room for improvement
- Assuming that systematic uncertainties improve by an order of magnitude, much better prospects
- Different hidden-quark (q_v) masses affects the sensitivity

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- Two-particle angular correlations in e+e- factories can become a useful toot to discover NP (e.g. Hidden Valley scenarios)
- Such searches are complementary to more conventional searches, thus increasing the discovry potential
- Sensitivity $> 5\sigma$ with convervative systematic uncertainties.
- Future work: longitudinally polarised beams and FCC-specific detector!