Projections for Higgs self-coupling measurements via Di-Higgs production with ILD at multiple COM energies

3rd ECFA Workshop on e⁺e⁻ Higgs/EW/Top Factories | 2024/10/10 | Paris

Mikael Berggren¹, <u>Bryan Bliewert^{1,2}</u>, Jenny List¹, Dimitris Ntounis³, Junping Tian⁴, Julie Munch Torndal^{1,2}, Caterina Vernieri³

- ¹ DESY Hamburg
- ² Universität Hamburg
- ³ SLAC
- ⁴ University of Tokyo

Introduction

Physical fundamentals and methods for direct measurements of the Higgs self-coupling at future Higgs factories

The Higgs self-coupling λ in the SM

- v vacuum expectation value (vev) of Higgs field h m_H mass of Higgs boson
- > SM: λ_{SM} fixed since m_H is known [At/Cm12]
 - deviation from $\lambda = \lambda_{SM}$ hints at BSM physics
 - beyond the SM, many values are possible strong-case for model-independent measurements
 - most projections assume $\lambda = \lambda_{SM}$

UH

DER FORSCHUNG

Projected sensitivity at 68% probability for k_3 . From [Db20]

niversität Hamburg

Measuring the Higgs self-coupling at e+e- colliders

> Direct access to λ through double-Higgs production

- Di-Higgs strahlung (**ZHH**; dominant < 1 TeV)
- vector boson fusion ($v\bar{v}HH$; dominant > 1 TeV)

UH

iversität Hamburg

> Degredation of sensitivity in ZHH by diagrams without λ

The ZHH Analysis

- > Extensive projections at ILD @ ILC500
 - Based on ILD detector concept (<u>DBD2013</u>, <u>IDR2020</u>) and *fully simulated* event samples
 - Last projections from 2016 (DESY-Thesis-16-027)
 - 17 background and 3 signal channels
 - Multivariate (MVA) tools for multiple steps
 e.g. lepton and flavor tagging, background rejection etc.
- > Precision reach after running $4ab^{-1}$ at 500 GeV (HH → $b\overline{b}b\overline{b}$ + HH → $b\overline{b}W^{\pm}W^{\mp}$)

 $\Delta \sigma_{\rm ZHH} / \sigma_{\rm ZHH} = 16.8\%$

 $\Delta \lambda_{\rm SM} = 26.6\%$ (10% with additional upgrade to 1 TeV)

Lepton, neutrino and hadron channel of the signal process ZHH. From [Du16]

Improving on the last Analysis

> All signal channels evolve around $HH \rightarrow b\overline{b}b\overline{b}$

- Large¹ gains possible from new tagging algorithms analysis depends on ϵ_b by $o(x^4)$
- Even more important for background suppression in hadronic channel
- Lepton channel

¹ Talks by Taikan Suehara

and Sarah Aumiller

² Talk by Ulrich Einhaus

- Profits² from lepton ID improvements by $o(x^2)$
- Tagging of tau events possible in the future

UH

Branching Ratios of Z decays

uū

Bottlenecks in the ZHH analysis

- > jet pairing and jet misclustering: "perfect" jet clustering → 40% improvement improve di-jet mass resolution
- removal of γγ overlay: 15% improvement expected important to tackle initial state radiation (ISR)
- > flavor tagging: 11% improvement expected from 5% eff. increase with newer LCFIPlus important as $H \rightarrow b\bar{b}$ is the dominant Higgs decay channel
- > adding $Z \rightarrow \tau \tau$ channel: 8% improvement expected include a yet unaccounted decay channel

would directly improve the sensitivity on λ (lower sensitivity factor)

Separation of ZHH diagrams with/without the self-coupling

> more modern ML architectures for signal/background selection improvement expected when transitioning from BDTs to (e.g.) transformer-based models etc.

Higgs self-coupling measurement at ILD via the ZHH Process at multiple COM energies | 3rd ECFA Workshop on e+e-Higgs/EW/Top Factories | 2024/10/10 | Paris | Bryan Bliewert

All improvements are relative

Expected improvements from DESY-Thesis-16-027

Status of the Analysis

Progress on ZHH

Framework for analysis with fully-simulated samples now running using law [*]

- covering SM backgrounds for 2f, 4f, 6f, 8f and incorporating weighting for $P(e^+, e^-) = (+0.3, -0.8)$
- > Optimization of cuts in progress (next slides)

550 GeV sample production ongoing with colleagues from SLAC and U Tokyo

- Motivated by 550 GeV COM studies; have shown over proportional improvement over 500 GeV meas.
- Investigation of early 2f/4f samples with fast simulation (SGV) in progress
- Production of 6f/8f background samples ongoing

Number of events considered.

[*] luigi analysis workflows

Analysis Flow

DESY.

Analysis Flow

DESY.

12

Preselection: Leptonic Channel – ZHH $\rightarrow l\bar{l}b\bar{b}b\bar{b}$

13

Preselection: Leptonic Channel – ZHH $\rightarrow l\bar{l}b\bar{b}b\bar{b}$

Preselection: Leptonic Channel – ZHH $\rightarrow l\bar{l}b\bar{b}b\bar{b}$

Preselection: Leptonic Channel – ZHH $\rightarrow l\bar{l}b\bar{b}b\bar{b}$

Higgs self-coupling measurement at ILD via the ZHH Process at multiple COM energies | 3rd ECFA Workshop on e+e-Higgs/EW/Top Factories | 2024/10/10 | Paris | Bryan Bliewert

Preselection: Comparison of Efficiencies

- > already now, preselection efficiencies match last analysis at similar background rejection
- 5-10% further increase in efficiency expected by optimizing cuts
- Improvements through modern jettagging, PID etc. stil to be included

Outlook and Summary

17

- > Automated framework for a new ZHH analysis is set up
- > Preselection efficiencies for all channels line up with last study at similar rejection
 - ~10% improvement expected by optimizing cuts

Effort on 550 GeV sample production ongoing

- > Next steps:
 - Large improvements expected from upgrading to state-of-the-art analysis tools
 - Integrate modern jet tagging and particle ID
 - Implement final event selection using current ML techniques and extract limits on λ_{ZHH}

> Better than 20% sensitivity on λ in reach

through demonstrated reconstruction improvements

Thank you for listening!

Higgs self-coupling measurement at ILD via the ZHH Process at multiple COM energies | 3rd ECFA Workshop on e+e-Higgs/EW/Top Factories | 2024/10/10 | Paris | Bryan Bliewert

Backup

Faster Progress through Data Pipelines

DESY.

- Problem: highly heterogenous data requires reliable bookkeeping and job submission
- Solution: based analysis on <u>luigi+law</u>* to
 - organizes flow of data more transparent,
 - manages job submissions, resubmission etc.
 - makes the central book-keeping easier
- Status: Working/Done.

21

Preselection: Neutrino Channel – ZHH $\rightarrow v\overline{v}b\overline{b}b\overline{b}$

22

Preselection: Neutrino Channel – ZHH $\rightarrow v\overline{v}b\overline{b}b\overline{b}$

Preselection: Neutrino Channel – ZHH $\rightarrow v \overline{v} b \overline{b} b \overline{b}$

Preselection: Neutrino Channel – ZHH $\rightarrow v\overline{v}b\overline{b}b\overline{b}$

Preselection: Hadron Channel – ZHH $\rightarrow v\overline{v}b\overline{b}b\overline{b}$

Efficiency of preselection cuts (vvbbbb)

Preselection: Hadron Channel – ZHH $\rightarrow q\overline{q}b\overline{b}b\overline{b}$

Preselection: Hadron Channel – ZHH $\rightarrow q\overline{q}b\overline{b}b\overline{b}$

27

UН

Universität Hamburg

Preselection: Hadron Channel – ZHH $\rightarrow q\overline{q}b\overline{b}b\overline{b}$

Preselection: Hadron Channel – ZHH $\rightarrow q\overline{q}bbbb$

Efficiency of preselection cuts (qqbbbb)

The International Large Detector (ILD)

- > well charatecterized, highly granular detector concept [IDR]
- > designed around particle flow concept
 - allows reconstruction of individual physics objects (Particle Flow Objects, PFOs)
- Full Geant4-based simulation available
 - including links between truth/reconstructed particles
- > in the following: assuming ILD @ ILC500

Rendering of the ILD detector. From [Ba19]

The International Linear Collider (ILC)

> linear collider concept with multiple energy stages
$$\left(\frac{\sqrt{s}}{\text{GeV}} = 250, 500, 1000\right)$$

- 500 GeV stage allows direct measurements of λ through di-Higgs production
- > mature concept (TDR), technologies available (superconducting RF-cavities etc.)

Future Higgs Factories

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

- goal: high production of Higgs bosons
 e⁺e⁻ colliders for precision measurements
- > different concepts proposed:
 - linear (ILC, CLIC, C^3):
 - maximum energy constrained by length
 - *direct* measurements of λ possible
 - measurements with polarized beams possible
 - circular (FCC-ee, CEPC):
 - maximum energy limited by synchrotron radiation
 - higher luminosities through beam reuse

Collider	\sqrt{s}	$\mathcal{P}(e^-/e^+)$ [%]	N_{det}	$\mathcal{L}[\mathrm{abarn}^{-1}\mathrm{s}^{-1}]$
ILC	$250{ m GeV}$	$\pm 80/\pm 30$	1	2.0
	$500{ m GeV}$	$\pm 80/\pm 30$	1	4.0
	$1000{ m GeV}$	$\pm 80/\pm 30$	1	8.0
CLIC	$380{ m GeV}$	$\pm 80/0$	1	1.0
	$1.5{ m TeV}$	$\pm 80/0$	1	2.5
	$3.0{ m TeV}$	$\pm 80/0$	1	5.0
C^3	$250{ m GeV}$	$\pm x/0$?	1.3
	$550{ m GeV}$	$\pm x/0$?	2.4
FCC-ee	M_Z	0/0	2	150
	$2M_W$	0/0	2	10
	$240{ m GeV}$	0/0	2	5
	$2m_{top}$	0/0	2	1.5
CEPC	M_Z	0/0	2	16
	$2M_W$	0/0	2	2.6
	$240{ m GeV}$	0/0	2	5.6
HALHF	$250{ m GeV}$	0/0	1	≈ 2

Comparison of selected physics programs at the proposed accelerators ILC, CLIC, FCCee, CEPC, C^3 and HALHF. From [Db20]

Software

- iLCSoft software stack
- Marlin for reconstruction; important in existing ZHH-analysis:
 - TrueJet: jet-clustering of PFOs using truth information
 - isolated lepton tagging: decision trees for tagging leptons

Event flow in the iLCSoft stack. From [TODO]

Flavor tagging with LCFIPlus

- improved b-tagging efficiency in current ILD standard <u>LCFIPlus</u> since SOTA projections from 2016
 - 5% relative improvement in ϵ_{b-tag} at same purity
 - 11% expected improvement in $\Delta \sigma_{ZHH} / \sigma_{ZHH}$

UH

Flavor tagging with ML (ParticleNet)

- improved b-tagging efficiency since state-of-the-art projections from 2016
- ML models (<u>DeepJet</u>, <u>ParticleNet</u>, <u>ParT</u>) show highly improved rejection compared to LCFIPlus
- status: ready for use (in <u>MarlinML</u>)

UH

Flavor tagging performance of LCFIPlus vs. ParticleNet using ILD full simulation. <u>M. Meyer [2023]</u>

Flavor tagging with ML (ParT)

- improved b-tagging efficiency since state-of-the-art projections from 2016
- ML models (<u>DeepJet</u>, <u>ParticleNet</u>, <u>ParT</u>) show highly improved rejection compared to LCFIPlus
- status: ready for use (in <u>MarlinML</u>)

Neutrino correction with kinematic fitting

- > for semileptonic decay (SLD) processes
 - already in ZH $\rightarrow b\bar{b}/c\bar{c}$, 66% of events include at least one SLD
- > procedure:
 - identify/tag heavy quark jet
 - identify lepton in jet
 - calculate neutrino four momentum from kinematics with kinematic fitting, the best solution is selected
- status: in production (in MarlinReco)

Recovering the neutrino kinematics. Y. Radkhorrami [2022]

Comprehensive Particle Identification (CPID)

- > modular and highly configurable PID toolkit
 - "plug-and-play" of multiple data sources
 e.g. at ILD: dE/dx, TOF, cluster shape
 - extension through custom inference modules
 e.g. MVA/ML models etc.
- includes default weights for BDT model
- status: in production (in MarlinReco)

Confusion matrix for single charged partilces at ILD. U. Einhaus (2023)

Motivation: Misclustering in the ZHH analysis

- > misclustering of PFOs to jets deteriorates the sensitivity to λ by ≈ 2 [Du16]
- > quantification: purity vs efficiency of energy in reconstructed di-jets
- > classify di-jets into 4 regions (A, B, C, D) based on threshold: > 95% on both axes

Supervised Jet Clustering

Di-jet mass reconstruction using Durham algorithm and TrueJet

Higgs self-coupling measurement at ILD via the ZHH Process at multiple COM energies | 3rd ECFA Workshop on e+e-Higgs/EW/Top Factories | 2024/10/10 | Paris | Bryan Bliewert

Architecture: Supervised Jet Clustering with GNNs

- > here: implemented as hybrid model (GNNSC)
 - training a GNN in supervised manner to calculate edge scores here: using TransformerConv layer (implements message-passing and graph attention)
 - spectral clustering (SC) to build "jets"

TransformerConv operator from the paper Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification [Sh20].

UH

m jets Encoder Decoder **Filter tagged Dot product &** Affinity Event Jet Node Spectral GNN Jets **PFOs PFOs** constituents embeddings Sigmoid matrix Clustering Inference

Training with BCE loss

> advantages:

- permutation invariant by construction
- straightforward implementation

- > disadvantages:
 - not fully differentiable
 - no inherent IRC-safety

Supervised Jet Clustering

- proof-of-concept ML model (GNNSC) shows performance on par with Durham
 - status: proof-of-concept (Marlin processor available)
 - in the future: investigate more powerful architectures

Higgs self-coupling measurement at ILD via the ZHH Process at multiple COM energies | 3rd ECFA Workshop on e+e-Higgs/EW/Top Factories | 2024/10/10 | Paris | Bryan Bliewert

ErrorFlow

43

> assume full parameterization of errors for individual jets

$$\sigma_{E_{jet}} = \sigma_{Det} \oplus \sigma_{Conf} \oplus \sigma_{\nu} \oplus \sigma_{Clus} \oplus \sigma_{Had} \oplus \sigma_{\gamma\gamma}$$

- σ_{Det} : detector resolution

Y. Radkhorrami [2022]

- σ_{Conf} : particle confusion in particle flow algorithm
- σ_{v} : neutrino correction
- > status: in production (in <u>MarlinReco</u>)

The Matrix Element Method (MEM)

- > method for calculating event-likelihoods, i.e. $p(\text{event } \boldsymbol{x} | \text{channel i}) = p_i(\boldsymbol{x})$
 - example use case: separate ZHH vs. ZZH $\rightarrow \mu^{-}\mu^{+}b\bar{b}b\bar{b}$ using likelihood ratio lr

- binary classification by cutting on lr
- \succ for each event y and process *i* (ZHH, ZZH), solve integral

$$p_i(\mathbf{y}) = \frac{1}{\sigma_i \cdot A_i} \int |M_i(\mathbf{x})|^2 W_i(\mathbf{y} \mid \mathbf{x}) \epsilon_i(\mathbf{x}) d\Phi_n(\mathbf{x})$$

- $M_i(x)$ LO matrix element
- $W_i(y|x)$ transfer function (TF): PDF for measuring y given x; fit from ILD fullsimulation samples

versität Hamburg

 A_i : acceptance of channel $i \\ \epsilon_i(\mathbf{x})$: detector efficiency

MEM Introduction with Examples

Higgs self-coupling measurement at ILD via the ZHH Process at multiple COM energies | 3rd ECFA Workshop on e+e-Higgs/EW/Top Factories | 2024/10/10 | Paris | Bryan Bliewert

MEM Results

- > obtained using VEGAS algorithm
- by including integration over transfer functions, some separation power is regained; AUROC = 0.73

References

- At12 ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC in Physics Letters B, Vol. 716. Is. 1 (2012). DOI: 10.1016/j.physletb.2012.08.020
- Cm12 CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC in Physics Letters B, Vol. 716, Is. 1 (2012). DOI: 10.1016/j.physletb.2012.08.021
- Ba19 Philip Bambade et al. The International Linear Collider: A Global Project (2019). DOI: 10.48550/arXiv.1903.01629
- Na20 Ju, Xiangyang and Nachman, Benjamin. Supervised jet clustering with graph neural networks for Lorentz boosted bosons in Phys. Rev. D., Vol. 102, Is. 7, American Physical Society (2020). DOI: <u>10.1103/PhysRevD.102.075014</u>
- **Sh20** Yunsheng Shi and Zhengjie Huang and Shikun Feng and Hui Zhong and Wenjin Wang and Yu Sun. *Masked Label Prediction: Unified Message Passing Model for Semi-*Supervised Classification in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (2021). DOI: <u>10.24963/ijcai.2021/214</u>
- **To24b** J. Torndal, J. List. *Higgs self-coupling measurement at the International Linear Collider* in Proceedings of the International Workshop on Future Linear Colliders LCWS2023, 2023. DOI: <u>10.48550/arXiv.2307.16515</u>
- **Db20** de Blas, J., Cepeda, M., D'Hondt, J. et al. *Higgs Boson studies at future particle colliders* in *Journal of High Energy Physics*, Vol. 2020, Is. 1, Springer Science and Business Media LLC (2020). DOI: <u>10.1007/JHEP01(2020)139</u>
- **Du16** Duerig, Claude Fabienne. *Measuring the Higgs Self-coupling at the International Linear Collider*. PhD-Thesis, Universität Hamburg. Verlag Deutsches Elektronen-Synchrotron, 2016. DOI: <u>10.3204/PUBDB-2016-04283</u>