Sensitivity to detecting New Physics effects first in the trilinear Higgs coupling

Based mainly on

arXiv:1903.05417 (PLB), 1911.11507 (EPJC), arXiv:2202.03453 (Phys. Rev. Lett.), arXiv:2305.03015 (EPJC), arXiv:2307.14976 and ongoing works in collaboration with Masashi Aiko, Henning Bahl, Martin Gabelmann, Sven Heinemeyer, Shinya Kanemura, Kateryna Radchenko Serdula, Alain Verduras Schaeidt and Georg Weiglein

Johannes Braathen (DESY)

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Third ECFA Workshop on e+e- Higgs/EW/Top factories Paris, France | 10 October 2024

> **CLUSTER OF EXCELLENCE** QUANTUM UNIVERSE

Form of the Higgs potential and trilinear Higgs coupling

Brout-Englert-Higgs mechanism = origin of masses of elementary particles ...

... but very little known about the **Higgs potential** causing the **electroweak phase transition** (EWPT)

Form of the Higgs potential and trilinear Higgs coupling

Brout-Englert-Higgs mechanism = origin of masses of elementary particles ...

... but very little known about the **Higgs potential** causing the electroweak phase transition (EWPT)

 \succ Trilinear Higgs coupling λ_{hhh} crucial to understand the shape of the potential

h

Form of the Higgs potential and baryon asymmetry

Brout-Englert-Higgs mechanism = origin of masses of elementary particles ...

... but very little known about the **Higgs potential** causing the **electroweak phase transition** (EWPT)

- Trilinear Higgs coupling λ_{hhh} crucial to understand the shape of the potential
- Among Sakharov conditions necessary to explain baryon asymmetry of the Universe via electroweak phase transition (= electroweak baryogenesis):
 - Strong first-order EWPT
 - \rightarrow barrier in Higgs potential
 - \rightarrow typically significant deviation in $\lambda_{_{hhh}}$ from SM

Aparté: Form of the Higgs potential – a more realistic picture

Figure by [K. Radchenko Serdula '24]

Probing New Physics with the trilinear Higgs coupling

In many models with extended Higgs sectors

$$m_{\Phi}^2 = M^2 + \frac{1}{2}g_{hh\Phi\Phi}v^2$$

 m_{Φ} : Physical mass of BSM state M : BSM mass scale of the model $g_{hh\Phi\Phi}$: combination of Lagrangian quartic couplings

Large effects from New Physics possible in λ_{hhh} due to radiative corrections from extra scalars, e.g. at leading order

which grows with mass splitting between M and m_{ϕ}

Probing New Physics with the trilinear Higgs coupling

BSM scalars:

Examples of scalar contributions to λ_{hhh} in aligned 2HDM

 $\Phi \in \{H, A, H^{\pm}\}$ $m_{\Phi}^2 = M^2 + \tilde{\lambda}_{\Phi} v^2$

[NB: 1 h can be replaced by a VEV]

 \rightarrow no further type of coupling entering after 2L

 \rightarrow for each class of diagrams, perturbative convergence can be verified!

DESY. | ECFA 2024 | Johannes Braathen (DESY) | 10 October 2024

e.g. in [Bahl, JB, Weiglein PRL '22]

Mass splitting effects for various BSM models with anyH3

DESY. | ECFA 2024 | Johannes Braathen (DESY) | 10 October 2024

Could BSM Physics be detected first in κ_{λ} ?

i. How do BSM effects in the trilinear and single Higgs couplings scale?

ii. Example 1: Correlation κ_{λ} vs $\Gamma(h \rightarrow \gamma \gamma)$ in an Inert Doublet Model

iii.Example 2: Effective couplings at one and two loops in a Z₂-symmetric singlet model

BSM effects in Higgs couplings: power counting

 $M_{\rm BSM}^2 = \mathcal{M}^2 + \frac{1}{2}g_{hh\Phi\Phi}v^2$

DESY. | ECFA 2024 | Johannes Braathen (DESY) | 10 October 2024

DESY. | ECFA 2024 | Johannes Braathen (DESY) | 10 October 2024

[Aiko, JB, Kanemura '23]

[Aiko, JB, Kanemura '23]

What about the situation at an e⁺e⁻ collider ?

	$\Delta BR/BR(h \rightarrow \gamma\gamma)$ NB: $\Delta \kappa_{\gamma} \neq \Delta BR(h \rightarrow \gamma\gamma)$!	Δλ _{hhh} /λ _{hhh}	[Given here: 1σ prospects]
ILC-250	4.5% [1]	Indirect	
ILC-500	2.6% [1]	23% [4,5]	
FCC-ee	3.1% [2]	Indirect	

[1] "Physics Case for the 250 GeV Stage of the International Linear Collider," Fujii, Grojean, Peskin et al., 1710.07621

[2] "Higgs physics opportunities at the Future Circular Collider," G. Marchiori, talk at ICHEP 2024

[3] "Higgs Boson studies at future particle colliders," de Blas et al., 1905.03764

[4] B. Bliewert, J. List et al. 2024 + see previous talk by B. Bliewert

[5] "Opportunities & Experimental Challenges at the Higgs-Top interface," J. Tian, talk at LCWS 2024 DESY. | ECFA 2024 | Johannes Braathen (DESY) | 10 October 2024 Page 14

Inert Doublet Model (IDM) $m_{\mu_{+}} = m_{\Lambda}$ varied in scenario with heavy DM $m_H = 500 \text{ GeV}, \ \mu_2^2 = (499.9)^2 \text{ GeV}^2$ along the curves candidate 1.00 (until limit from pert. unit.) Blue: ILC-500 (2σ) E0.98 Orange: FCC-ee (2σ) $\gamma\gamma$)IDM $\gamma\gamma)_{\rm SM}$ *Prospects at e+e- Higgs factories* 0.96 Η± BR($h \rightarrow \gamma \gamma$) λ_{hhh} $-m_A = m_{H^{\pm}}$ 0.94 BR(hBR(h**ILC-250** 4.5% Indirect ILC-500 2.6% 23% 0.92 LO, $\lambda_2 = 0.1$ DM candidate $(\lambda \lambda)$ 3.1% FCC-ee Indirect m_H NLO, $\lambda_2 = 0.1$ 0.90 = 500 GeV---- NLO, $\lambda_2 = 1$ R[BR(hNLO, $\lambda_2 = 5$ 0.88 $\simeq \mu_2$ BSM mass scale 2σ (ATLAS) Expected bounds on $R[BR(h \rightarrow \gamma \gamma)]$ at HL-LHC 2σ (CMS) 0.86 Expected bound on κ_{λ} at 2σ (HL-LHC) 0.84<u></u> HL-LHC 3 1 2 4 5 6 vh $\kappa_{\lambda} \equiv$ $[\lambda_{\alpha}]$: inert doublet self-coupling]

[Aiko, JB, Kanemura '23]

Inert Doublet Model (IDM) $m_{\mu_{+}} = m_{\Lambda}$ varied in scenario with heavy DM $m_H = 500 \text{ GeV}, \ \mu_2^2 = (499.9)^2 \text{ GeV}^2$ along the curves candidate 1.00 (until limit from pert. unit.) Blue: ILC-500 (2σ) E0.98 Orange: FCC-ee (2σ) $\gamma\gamma$)IDM $\gamma\gamma$)sm *Prospects at e+e- Higgs factories* 0.96 Η± BR($h \rightarrow \gamma \gamma$) λ_{hhh} $-m_A = m_{H^{\pm}}$ 0.94 $\overline{BR(h)}$ BR(hILC-250 4.5% Indirect ILC-500 2.6% 23% 0.92 LO, $\lambda_2 = 0.1$ DM candidate $(\lambda \lambda)$ 3.1% FCC-ee Indirect m_H NLO, $\lambda_2 = 0.1$ At both ILC-500 and = 500 GeV-- NLO, $\lambda_2 = 1$ FCC-ee limits from R[BR(h]NLO, $\lambda_2 = 5$ $_{\rm cl}$ κ , are much stronger •••• $\simeq \mu_2$ BSM mass scale Expected bounds on 2σ (ATLAS) than those from $R[BR(h \rightarrow \gamma \gamma)]$ at HL-LHC - 2σ (CMS) *Γ(h* → *γγ)*! Expected bound on κ_{λ} at 2σ (HL-LHC) HL-LHC 0.84^L 2 1 3 Δ 5 6 vh $\kappa_{\lambda} \equiv$ $[\lambda_{2}: inert doublet self-coupling]$ DESY. | ECFA 2024 | Johannes Braathen (DESY) | 10 October 2024

[Aiko, JB, Kanemura '23]

Effective couplings in the Z₂SSM

[Bahl, JB, Gabelmann, Heinemeyer, Radchenko Serdula, Verduras Schaeidt, Weiglein *WIP*]

Z,SSM: SM + real singlet S, charged under unbroken Z₂ symmetry

$$V_{\rm SSM-\mathbf{Z}_2}(\Phi, S) = V_{\rm SM}(\Phi) + \frac{1}{2}\mu_S^2 S^2 + \frac{1}{4!}\lambda_S S^4 + \lambda_{S\Phi} S^2 \Phi^{\dagger}\Phi \qquad m_S^2 = \mu_S^2 + \lambda_{S\Phi} v^2.$$

$$\text{ Corrections to } \mathbf{\kappa}_{\lambda} \text{ at 1L: } \kappa_{\lambda}^{(1)} \simeq 1 - \frac{m_t^4}{\pi^2 v^2 m_h^2} + \frac{m_S^4}{12\pi^2 v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2}\right)^3 \\ \dots \text{ and 2L: } \kappa_{\lambda}^{(2)} \simeq \kappa_{\lambda}^{(1)} + \frac{1}{256\pi^4} \left[\frac{16m_S^6}{v^4 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2}\right)^4 + \frac{24\lambda_S m_S^4}{v^2 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2}\right)^3 - \frac{2m_S^6}{3v^4 m_h^2} \left(1 - \frac{\mu_S^2}{m_S^2}\right)^5 \right]$$

Single Higgs couplings get leading BSM corrections only via external leg corrections

- > O(50%) accuracy on κ_{λ} is stronger than O(0.5%) accuracy on c_{eff} (i.e. $g_{\mu\nu\nu}$)
- > O(20%) accuracy on κ_{λ} is competitive with O(0.3%) accuracy on c_{eff} (i.e. g_{hVV}) for most of the parameter plane DESY. | ECFA 2024 | Johannes Braathen (DESY) | 10 October 2024

Summary

- > λ_{hhh} plays a crucial role to probe the shape of the Higgs potential and the nature of the EW phase transition, and search indirect signs of New Physics
- λ_{hhh} can deviate significantly from SM prediction (by up to a factor ~10), for otherwise theoretically and experimentally allowed points, due to mass-splitting effects in radiative corrections involving BSM scalars
- Current experimental bounds on λ_{hhh} can already exclude significant parts of otherwise unconstrained BSM parameter space, and future prospects even better!
- ► BSM Physics could potentially be found first in λ_{hhh}, even with future precision measurements of other Higgs couplings or BRs like g_{hZZ} or Γ(h → γγ)

We could find BSM Physics in λ_{hhh} , even if nothing shows up in precision measurements of Higgs properties like hZZ or hyy

Thank you very much for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Johannes Braathen DESY Theory group Building 2a, Room 208a johannes.braathen@desy.de

DESY.