

Expected precisions on the Higgs boson mass and ZH production cross section at $\sqrt{s}=240 \& 365 \text{ GeV}$ at the Future e+e- Circular Collider (FCC-ee)

Gregorio Bernardi¹, Kevin Dewyspelaere¹, Jan Eysermans², Ang Li¹,

for the

FCC collaboration

3rd ECFA HET Workshop October 10th, 2024

¹⁾APC Paris, CNRS/IN2P3

²⁾ M.I.T, Boston, USA

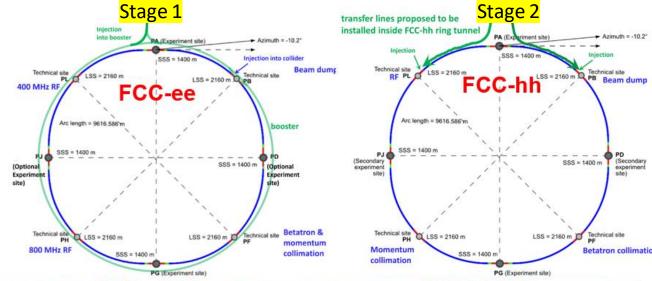
The FCC integrated program (ee + hh) at CERN goes beyond the successful LEP + LHC (1976-2041) program

Comprehensive cost-effective program maximizing physics opportunities

- Construction: during HL-LHC data-taking
- Stage 1: FCC-ee (Z, W, ZH, tt) as first generation Higgs, EW and top e⁺e⁻ factory at highest luminosities.
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier

Complementary physics

Schematic of an long tunne

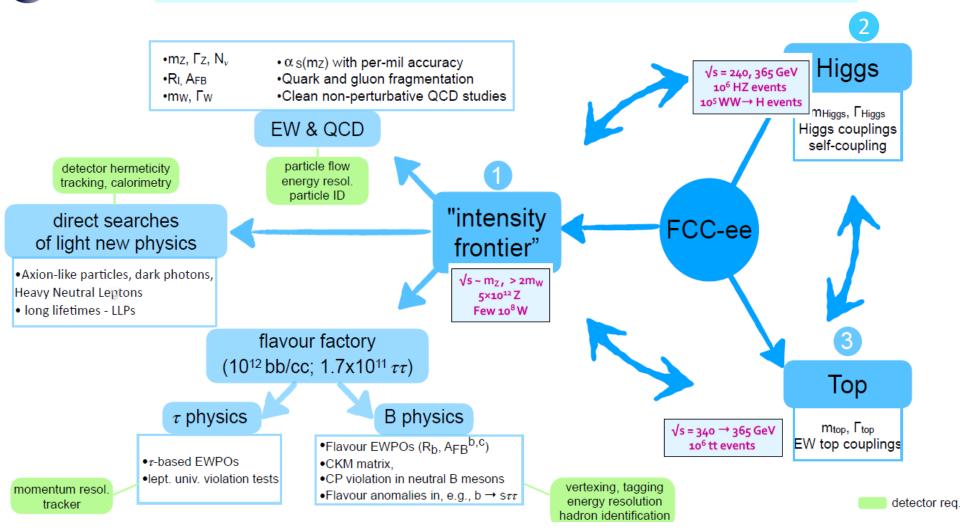

- Integrating an ambitious high-field magnet R&D program
- Common civil engineering and technical infrastructures

Building on and reusing CERN's existing infrastructure.

Construction

FCC-ee SSS = 1400 m

The FCC project is fully integrated with HL-LHC exploitation and provides a natural transition for higher precision and energy

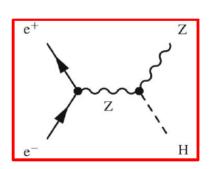


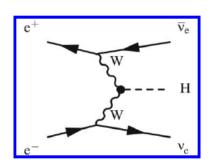
2045 - 2060

2065 - 2090

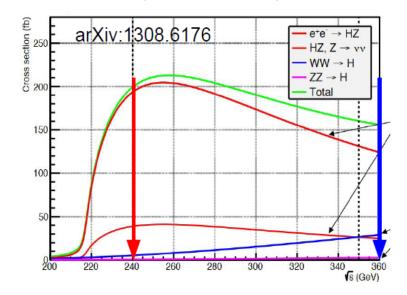
at Circular Colliders → Rich e⁺e⁻ Physics Program ...

Higgs Physics at FCC-ee




FCC-ee offers broad potential for precision Higgs measurements

- Higgs factory: production of 2M Higgs bosons
- Clean environment
- Relative small backgrounds, large S/B


Main production mechanisms

- ZH production "Higgs-strahlung"
- Vector boson fusion (VBF), WW dominant

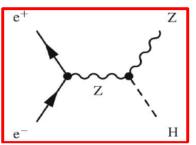
Total Higgs production @ FCC-ee (baseline – 4 IP)						
Threshold	ZH production VBF produc					
240 GeV / 10.8 ab ⁻¹	2.2 M	67 k				
365 GeV / 3 ab ⁻¹	330 k	80 k				

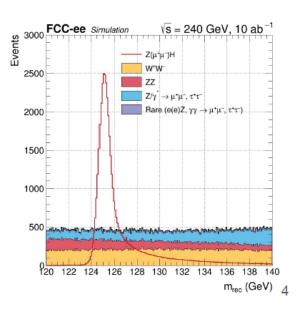
Higgs Physics at the ZH threshold

Highest precision obtained from ZH analyses @ 240 GeV

Main strategy of such analyses based on recoil method

- Tag the Z boson (tight invariant mass constraints) using leptons or jets
- Compute **recoil**, distribution sharp peaked at Higgs mass, **width dominated by detector resolution** 2

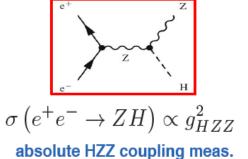

$$m_{recoil}^2 = (\sqrt{s} - E_{ff})^2 - p_{ff}^2$$
$$= s + m_Z^2 - 2E_{ff}\sqrt{s} \approx m_H^2$$


tag additional decays of the Higgs – challenging in multijet environment

Backgrounds: dominated by vector boson (pair) production (WW, ZZ) and Z/γ^*

Challenges for the Higgs programme

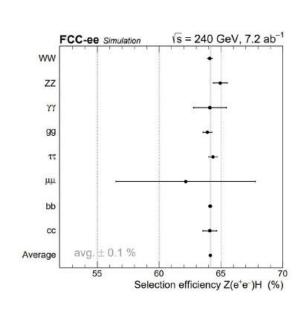
- Detector performance: tracking, vertexing, timing, angular
- Flavour tagging for Higgs couplings
- Jet clustering algorithms (in particular in fully hadronic final states)


 $m_{recoil} \in [120, 140] \text{ GeV}$

The total ZH cross section measurement

Crucial is to measure HZZ coupling strength in a model-independent way

- unique to e⁺e⁻ colliders because of known initial state, not possible at hadron colliders
- challenge to ensure model-independence
- once known, determines couplings to H→XX in a model independent way



Example analysis in Z(II)H(XX) final state

Probe electron and muon final states

- Clean and sharp recoil distribution
- Cutflow + MVA to reduce backgrounds
- Can minimize the model-dependency

Z(qq)H(XX) to be explored to bring uncertainty down, but challenging to retain model-independence

FCC Monte Carlo Samples

Event Selection

Using Fast simulation **DELPHES**:

➤ Signal:

-
$$Z(\mu^+\mu^-)H$$
 (Whizard/Pythia)

Backgrounds:

-
$$W^+W^-$$
 (Pythia)

-
$$e^+e^-Z$$
 (Whizard/Pythia)

-
$$ZZ$$
 (Pythia)

_
$$Z/\gamma o \mu^+\mu^-$$
 (Whizard/Pythia)

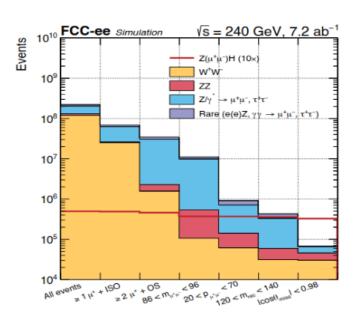
Rare backgrounds:

-
$$Z(qq)$$
 (Pythia)

-
$$Z(au^+ au^-)H$$
 (Whizard/Pythia)

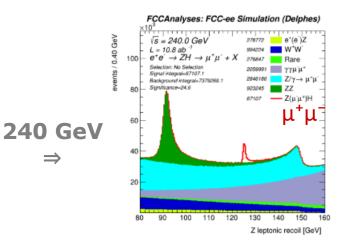
-
$$Z(
u
u)H$$
 (Whizard/Pythia)

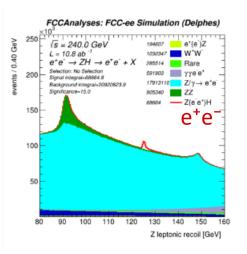
-
$$\gamma\gamma o \mu^+\mu^-$$
 (Whizard/Pythia)

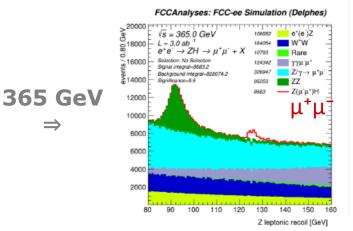

-
$$\gamma\gamma
ightarrow au^+ au^-$$
 (Whizard/Pythia)

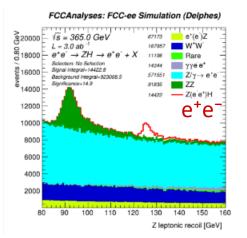
> Events basic selection:

Preselection: Select at least 2 leptons:

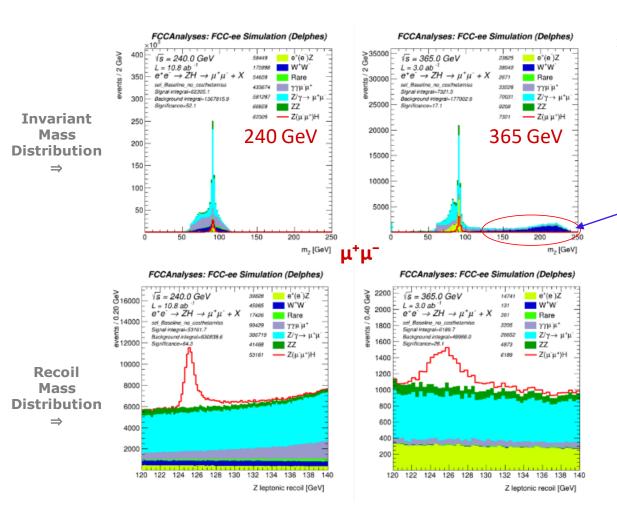

- Opposite sign
- One lepton required to be isolated


$$\begin{split} m_{l^+l^-} &\in [86,96] \text{ GeV} \\ \mathbf{p}_{l^+l^-} &\in [20,70] \text{ GeV} \quad \text{(> 20 GeV at 365 GeV)} \\ m_{recoil} &\in [120,140] \text{ GeV} \end{split}$$




Comparison 240/365 GeV with Preselection Cuts (zoom)

- Zoom between 80 and 160 GeV
- Luminosity is 10.8 ab^{-1} at $\sqrt{s} = 240 \text{ GeV}$ 3.0 ab⁻¹ at $\sqrt{s} = 365 \text{ GeV}$



- Different shapes of the background before selection cuts
- Signal peak has **lower resolution** but also less background at 365 GeV

Invariant Mass and Recoil Mass distributions

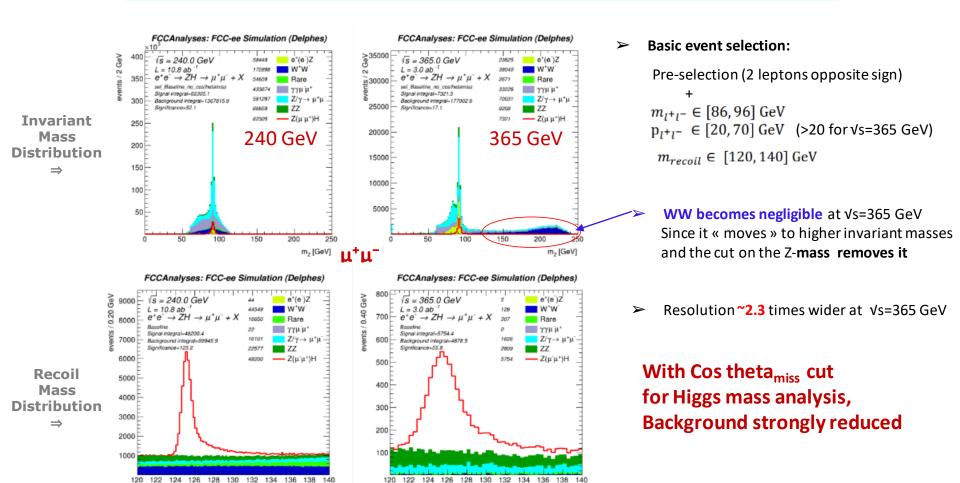
Basic event selection:

Pre-selection (2 leptons opposite sign)

 $\begin{array}{l} m_{l^+l^-} \in [86,96] \; {\rm GeV} \\ {\rm p}_{l^+l^-} \, \in [20,70] \; {\rm GeV} \; \; \mbox{(>20 for Vs=365 GeV)} \end{array}$

 $m_{recoil} \in [120, 140] \text{ GeV}$

WW becomes negligible at Vs=365 GeV Since it « moves » to higher invariant masses and the cut on the Z-mass removes it


Resolution ~2.3 times wider at Vs=365 GeV

S/B still needs to be improved to gain precision

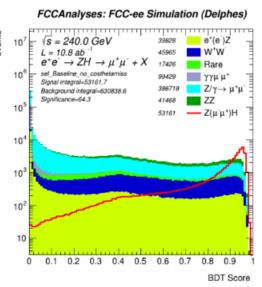
- BDT for model independent analysis, ZH cross section
- Cos theta_{miss} cut for Higgs mass analysis

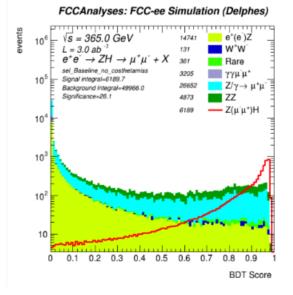
Invariant Mass and Recoil Mass distributions

Gregorio Bernardi APC - Paris

Z leptonic recoil [GeV]

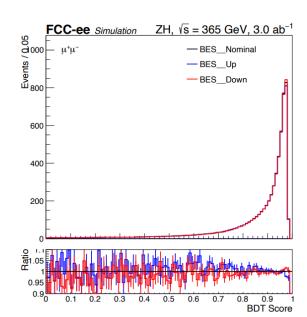
Z leptonic recoil [GeV]


Boosted Decision Tree used for σ_{7H} analysis

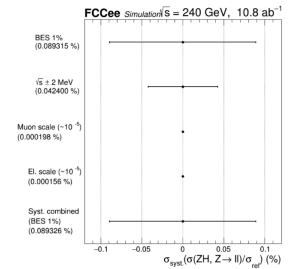

- Use of a Machine learning algorithm to separate signal from background, a Boosted Decision Tree (BDT)
- ➤ The BDT, using only variables from the leptons of the Z, allows for a model independent analysis

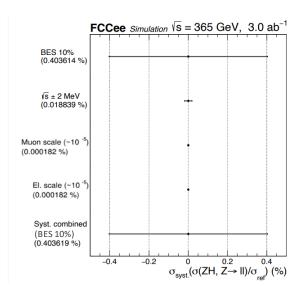
- BDT Score comparison between 365 and 240 GeV
- This BDT score is fitted to measure the ZH cross-section value

Training variables for BDT:


Variable	Description Lepton pair momentum		
$p_{\ell^+\ell^-}$	Lepton pair momentum		
$\theta_{\ell^+\ell^-}$	Lepton pair polar angle		
$m_{\ell^+\ell^-}$	Lepton pair invariant mass		
$p_{l_{\rm leading}}$	Momentum of the leading lepton		
$\theta_{l_{\rm leading}}$	Polar angle of the leading lepton		
$p_{l_{\mathrm{subleading}}}$	Momentum of the subleading lepton		
$\theta_{l_{\rm subleading}}$	Polar angle of the subleading lepton		
$\pi - \Delta \phi_{\ell^+\ell^-}$	Acoplanarity of the lepton pair		
$\Delta \theta_{\ell^+\ell^-}$	Acolinearity of the lepton pair		

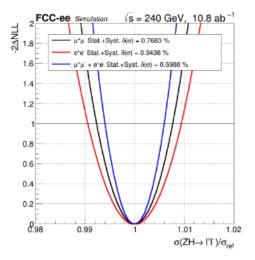
Systematic uncertainties for ZH cross section measurement

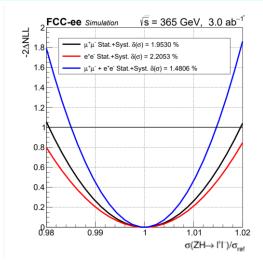

- Centre-of-mass (Vs): Uncertainty on the centre-of-mass energy which is expected to be known at the ~2 MeV level for 240 and 365 GeV
- ▶ Lepton momentum scale: Uncertainty from the momentum of leptons assumed to be known at 10⁻⁵ precision level both for 240 and 365 GeV

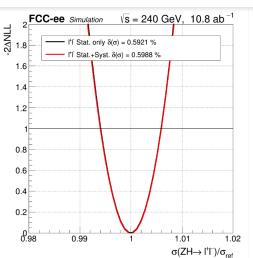

Beam energy spread, depends on the beam energy.

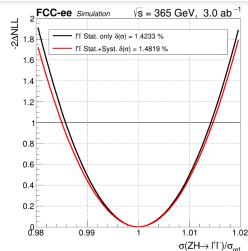
At a center-of-mass energy of 240 (365) GeV, the beam energy spread (BES) is $\pm 0.185\%$ ($\pm 0.221\%$) per beam, i.e. ± 222 (± 403) MeV.

Uncertainty assumed on the BES value is ~1% at 240 GeV and ~10% at 365 GeV → Dominant systematic for ZH cross section measurement


➤ **ISR uncertainty** is not estimated precisely yet, but expected to be smaller







ZH cross-section measurements ($\mu^+\mu^-$, e⁺e⁻ and combined) at \sqrt{s} =240 & 365 GeV

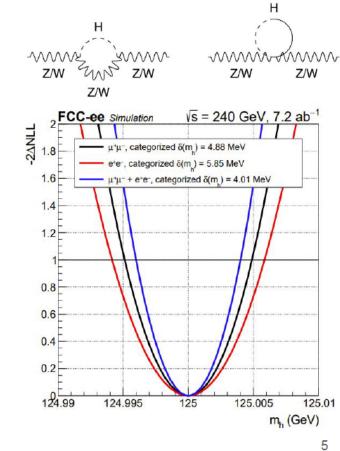
- By fitting the BDT output we obtain the cross-section, with its statistical and stat+systematics uncertainties.
- 1.42% Statistical uncertainty at Vs=365 GeV compared to 0.59% at Vs=240 GeV
- ► 1.48% Stat+Syst uncertainties at Vs=365 GeV compared to 0.60% at Vs=240 GeV
- Systematics are larger at 365 GeV, but ZH cross section precision still dominated by statistics
- Intrinsic sensitivity is similar (~25% larger) at 365 GeV vs. 240 GeV for ZH cross section, contrarily to the mass measurement where the difference is much larger (see below)

Higgs Mass Measurements

Higgs mass enters SM EWK parameters via radiative corrections, depending logarithmically on m_{μ} , e.g.

$$\sin^2\theta_W = \left(1 - \frac{M_{\rm W}^2}{M_{\rm Z}^2}\right) = \frac{A^2}{1 - \Delta r} \qquad \begin{array}{c} \Delta {\rm r} \sim \ln({\rm m_H}) \\ \Delta {\rm r} \sim {\rm m_t}^2 \\ \Delta {\rm r} \sim {\rm new~physics?} \end{array}$$

Needs for FCC-ee


- Very high precision on cross-sections, sub-percent level
- This translates to a Higgs mass requirement < O(10) MeV to control the radiative corrections for the cross-sections and branching fractions

Roadmap for ultimate precision on Higgs mass

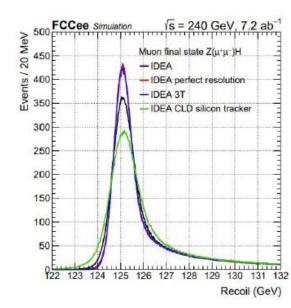
TODAY ~ 150 MeV

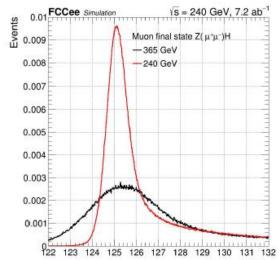
HL-LHC ~ 20 MeV

FCC-ee ~ 4 MeV

Together with precise Top and W/Z masses, Higgs mass will provide stringent test of the Standard Model

Higgs Mass Analysis and Studies


Higgs mass extracted from fitting recoil distribution

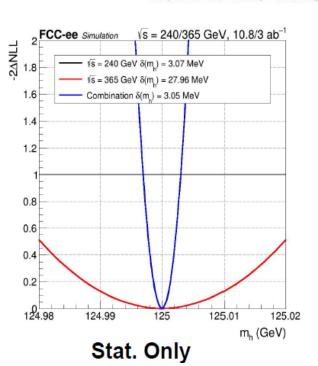

$$M_{recoil}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$$

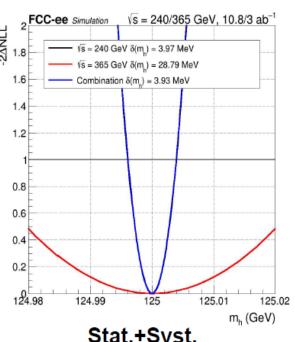
- Muon and electron final states
- Tight event selection (follow closely the ZH cross-section selection)
- Categorize in central and forward regions to probe different material budget
 - In total 3 categories: central, forward, central+forward
- Done at center-of-mass 240 and 365 GeV
 - Limited sensitivity at 365 due to small statistics, higher BES and ISR

Simultaneous fit over all the 12 categories (2 flavor, 3 angular categories, 2 ECM)

Final state		Muon	Electron	Combination
Categorized	(7.2 ab ⁻¹ + 3.0 ab ⁻¹)	4.79(5.50)	6.06(6.68)	3.76(4.53)
Inclusive	(7.2 ab ⁻¹ + 3.0 ab ⁻¹)	4.83(5.51)	6.15(6.70)	3.80(4.54)

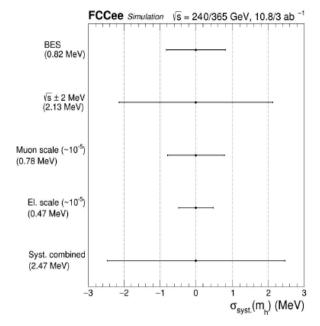
Gr


Recoil (GeV)



Higgs Mass Results and Systematics at 240 and 365 GeV

Using 10.8 ab-1 (240 GeV) and 3 ab-1 (365 GeV)


- Current combined uncertainty: 3.05(3.93) MeV
- Systematics contribute ~2.5 MeV, ecm uncertainty dominant
- Improvement by adding 365 GeV ~ 1%

Systematics:

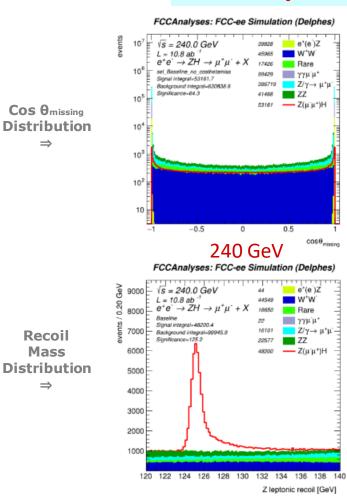
For the Higgs mass, the systematic uncertainty is dominated by the uncertainty on the c.o.m energy

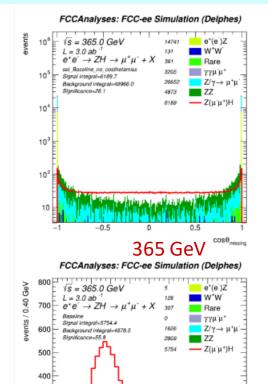
Higgs Mass Sensitivities \rightarrow experimental constraints

at 240 GeV, 10.8 ab-1

	Final state	Muon	Electron	Combination
Nominal configuration ———				
- Tommar comiguration	Nominal	3.92(4.74)	4.95(5.68)	3.07(3.97)
Crystal ECAL to Dual Readout	Categorized	3.92(4.74)	4.95(5.68)	3.10(3.97)
Nominal 2 T → field 3 T	Degradation electron resolution			3.24(4.12)
	Magnetic field 3T	3.22(4.14)	4.11(4.83)	2.54(3.52)
$\textbf{IDEA drift chamber} \rightarrow \textbf{CLD Si tracker} ~ \color{red} \longrightarrow$	Silicon tracker	5.11(5.73)	5.89(6.42)	3.86(4.55)
Impact of Beam Energy Spread	BES 6% uncertainty	3.92(4.79)	4.95(5.92)	3.07(3.98)
	Disable BES	2.11(3.31)	2.93(3.88)	1.71(2.92)
Perfect (=gen-level) momentum resolution	Ideal resolution	3.12(3.95)	3.58(4.52)	2.42(3.40)
	Freeze backgrounds	3.91(4.74)	4.95(5.67)	3.07(3.96)
	Remove backgrounds	3.08(4.13)	3.51(4.58)	2.31(3.45)
		-	-	,

- we want to get down to $\Delta m_H \sim \Gamma_H \sim 4$ MeV to allow for electron Yukawa at \sqrt{s} = 125 GeV as expected, tracking resolution highly impacts m_H precision
- light tracker/ high B field highly preferable


Summary


- The ZH cross section and the Higgs boson masses expected measurements have been presented at 240 GeV and at 365 GeV c.o.m.
- σ_{ZH} is measured in a model independent way with 0.6% accuracy at 240 GeV, 1.5% at 365 GeV opening the way to precise Higgs couplings measurements
- The Higgs boson mass is measured with 4.0 MeV accuracy at 240 GeV,
 3.9 MeV when adding 365 GeV allowing for precise tests of the SM
- Systematics and detector constraints have been studied and presented, and will help to determine the best detector configurations for FCC-ee in the FCC feasibility study

Comparison 240/365 GeV after Selection Cuts

- The requirement |cos θmissing| < 0.98 is used for the mass analysis only</p>
- O_{missing} is the polar angle of the missing momentum vector with respect to the beam axis
- This requirement is removing the large background concentrated in the last bins.
 The remaining background becomes small
- This Introduces biases on the Higgs decay modes that break the model independence, which is not crucial for the mass analysis
- Width of the recoil mass becomes more than 2 times larger at 365 GeV (due to BES and lepton momentum resolution)
 Significant last in most provision
 - → Significant loss in mass precision

Gregorio Bernardi APC - Paris 20

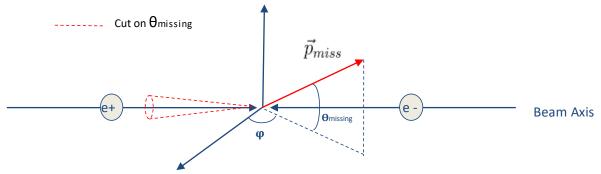
Z leptonic recoil [GeV]

120 122 124 126 128 130

300

200

100


Missing momentum polar angle

The missing momentum is defined by the negative vectorial sum of the momenta of all reconstructed particles:

$$\vec{p}_{miss} = -\sum_{n_{nart}} \vec{p}_{rec}$$

> $\Theta_{missing}$ is the **polar angle** of the **missing momentum vector** with respect to the **beam axis**

> The requirement $|\cos \theta_{\text{missing}}| < 0.98$ is used for the mass analysis only, which means that we are removing events mostly collinear to the beam axis

