Determination of CP-violating Higgs couplings with transversely-polarized beams at the ILC250

> *G. Moortgat-Pick (Uni Hamburg/DESY) in collaboration with Cheng Li (Sun Yat-sen University,China) Nico Rehberg (Uni Hamburg)*

- Polarization Basics
- CP-odd observables via transversely-polarized beams
- Two approaches for HZZ
- Conclusion & Outlook

Most mature Design: ILC

Polarization basics

- Longitudinal polarization: $p = \frac{N_R N_L}{N_R + N_L}$
- **Cross section:**

$$
\sigma(\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = \frac{1}{4} \{ (1 + \mathcal{P}_{e^-}) (1 + \mathcal{P}_{e^+}) \sigma_{\rm RR} + (1 - \mathcal{P}_{e^-}) (1 - \mathcal{P}_{e^+}) \sigma_{\rm LL} + (1 + \mathcal{P}_{e^-}) (1 - \mathcal{P}_{e^+}) \sigma_{\rm RL} + (1 - \mathcal{P}_{e^-}) (1 + \mathcal{P}_{e^+}) \sigma_{\rm LR} \}
$$

• **Unpolarized cross section:**

$$
\sigma_0 = \frac{1}{4} \{ \sigma_{\rm RR} + \sigma_{\rm LL} + \sigma_{\rm RL} + \sigma_{\rm LR} \}
$$

- **Left-right asymmetry:** A_{LR} = $\frac{(\sigma_{LR} - \sigma_{RL})}{(\sigma_{LR} + \sigma_{RL})}$
- **Effective polarization and luminosity:**

$$
\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^-} - \mathcal{P}_{e^+}}{1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}} \qquad \mathcal{L}_{\text{eff}} = \frac{1}{2} (1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}) \mathcal{L}
$$

Ecfa-EW&T&H@Paris, June 2024 GMP, Cheng Li

Transversely polarized beams

Transversely polarized beams

- \rightarrow enables to exploit azimuthal asymmetries in fermion production !
- the process $e^+e^- \rightarrow W^+W^-$:
	- \Rightarrow azimuthal asymmetry projects out $W_L^+W_L^-$
- the process $e+e \longrightarrow$ tt:
	- ➡ probe leptoquark models
- the process $e+e \longrightarrow$ ff: ➡ probe extra dimensions
- the construction of CP violating oservables: \Rightarrow matrix elements $|M|^2 \sim C \times \Delta(\alpha) \Delta^*(\beta) \times S$ (C=coupl., Δ =prop., S=momenta)

if CP violation: contributions of $Im(\mathcal{C}) \times Im(\mathcal{S})$ (e.g. contributions of ϵ tensors!) \Rightarrow azimuthal dependence ('not only in scattering plane') \Rightarrow observables are e.g. asymmetries of CP-odd quantities: $\vec{p}_a(\vec{p}_b \times \vec{p}_c)$

> $\vec{s}^{2\mu} := \vec{p}_1 \times \vec{p}_3$ perpendicular scattering plane, CP even $\vec{s}^{1\mu} := \vec{p}_1 \times \vec{s}^2(p_1)$ transverse in plane, CP odd

e.g. Cheng Li et al.

e.g. Rindani, Poulose, et al.

e.g. Fleischer et al,

e.g. Hewett, Rizzo et al.

Ecfa-EW&T&H@Paris, June 2024 GMP Cheng Li

Process: Higgs Strahlung

- **• √s=250 GeV: dominant process**
- **• Why crucial?**
	- **– allows model-independent access!**

- **4** Absolute measurement of Higgs cross section σ (HZ) and g_{HZZ} : **crucial input for all further Higgs measurement!**
- **– Allows access to H-> invisible/exotic**
- **– Allows with measurement of Г^h tot absolute measurement of BRs!**

CP properties CP *properties* CP properties of h125

CP properties: more difficult than spin, observed state can be any admixture of CP-even and CP-odd components

Observables mainly used for investigaton of CP-properties $(H \to ZZ^*, WW^*$ and H production in weak boson fusion) involve HVV coupling

General structure of HVV coupling (from Lorentz invariance):

 $a_1(q_1, q_2)g^{\mu\nu} + a_2(q_1, q_2) \left[(q_1q_2) g^{\mu\nu} - q_1^{\mu} q_2^{\nu} \right] + a_3(q_1, q_2) \epsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}$

SM, pure \mathcal{CP} -even state: $a_1 = 1, a_2 = 0, a_3 = 0$, Pure \mathcal{CP} -odd state: $a_1 = 0, a_2 = 0, a_3 = 1$

GMP, Cheng Li nowever, in many models (example: 0001, 21 IDM, ...) a₃ is
loop-induced and heavily suppressed However, in many models (example: CLICY 2HDM and is However: in many models (example: SUSY, 2HDM, ...) a₃ is Ecfa-EW&T&H@Paris, June 2024

6

 $\overline{}$

CP in Higgs-Gauge-boson couplings $\mathcal{L}_{\textsf{EFF}} = c_{\textsf{SM}}\,Z_\mu Z^\mu H - \frac{c_{\textsf{HZZ}}}{v}Z_{\mu\nu}Z^{\mu\nu}H - \frac{\widetilde{c}_{\textsf{HZZ}}}{v}Z_{\mu\nu}\widetilde{Z}^{\mu\nu}H$

At LHC: $H \rightarrow 4$ I measurement:

[CERN-EP-2023-030]

Probing CP at the e+e- collider

• CP probes of HZZ via Z-decay from HZ or Z fusion

- Unpolarised study at CEPC [Q. Sha et al. 22] \bullet
- The spin information of the initial transversely polarised electrons is carried by the Z boson and transferred to the $\mu^+ \mu^$ pair by the Z decay

- Z-fusion study at 1 TeV [I. Bozovic et al. 24]
- Z -fusion process cannot carry the spin information of initial transversely polarised beams, since the final state electron and positron are unpolarised

Spindensity Formalism H. Haber, 1994

• Spin-density initial beams:

$$
\frac{1}{2}(1-\sigma\cdot P)_{\lambda\lambda'}=\frac{1}{2}\begin{pmatrix}1-P^3&P^1-iP^2\\P^1+iP^2&1+P^3\end{pmatrix}=\frac{1}{2}\begin{pmatrix}1-f\cos\theta_P&f\sin\theta_Pe^{-i\phi_P}\\f\sin\theta_Pe^{i\phi_P}&1+f\cos\theta_P\end{pmatrix}
$$

• Bouchiat-Michel:

$$
u(p, \lambda')\bar{u}(p, \lambda) = \frac{1}{2}(1+2\gamma_5)\cancel{p}\delta_{\lambda\lambda'} + \frac{1}{2}\gamma_5(\cancel{\phi}^1_-\sigma_{\lambda\lambda'}^1 + \cancel{\phi}^2_-\sigma_{\lambda\lambda'}^2)\cancel{p}
$$

$$
v(p, \lambda')\bar{v}(p, \lambda) = \frac{1}{2}(1-2\gamma_5)\cancel{p}\delta_{\lambda\lambda'} + \frac{1}{2}\gamma_5(\cancel{\phi}^1_+\sigma_{\lambda\lambda'}^1 + \cancel{\phi}^2_+\sigma_{\lambda\lambda'}^2)\cancel{p}
$$

• Higgsstrahlung:

$$
\rho^{ii'}(e^+e^- \to ZH) = \frac{1}{2}(\delta_{\lambda_r\lambda'_r} + P^m_{-}\sigma^m_{\lambda_r\lambda'_r})\frac{1}{2}(\delta_{\lambda_u\lambda'_u} + P^n_{+}\sigma^n_{\lambda_u\lambda'_u})M^i_{\lambda_r\lambda_u}M^{*i'}_{\lambda'_r\lambda'_u}
$$

= $(1 - P^3_{-}P^3_{+})A^{ii'} + (P^3_{-} - P^3_{+})B^{ii'} + \sum_{mn}^{1,2} P^m_{-}P^n_{+}C^{ii'}_{mn}$

➡both beams polarized required!

Ecfa-EW&T&H@Paris, June 2024 GMP, Cheng Li

Amplitude Level

• Concentrate on additional CP-odd terms

$$
\mathcal{M}|^{2} = |c_{\rm SM} \mathcal{M}_{\rm SM} + \tilde{c}_{HZZ} \widetilde{\mathcal{M}}_{HZZ}|^{2}
$$

= $|c_{\rm SM} \mathcal{M}_{\rm SM}|^{2} + |c_{\rm SM} \tilde{c}_{HZZ} \mathcal{M}_{\rm MZZ}| + |\tilde{c}_{HZZ} \widetilde{\mathcal{M}}_{HZZ}|^{2}$

 $c_{\rm SM} \propto \cos \xi_{CP}, \qquad \tilde{c}_{HZZ} \propto \sin \xi_{CP}$

$$
|\mathcal{M}|^2 = (1 - P^3 - P^3 +)(\cos^2 \xi_{CP} A_{CP-even} + \sin 2\xi_{CP} A_{CP-odd} + \sin^2 \xi_{CP} \widetilde{A}_{CP-even})
$$

+
$$
(P^3 - P^3 +)(\cos^2 \xi_{CP} B_{CP-even} + \sin 2\xi_{CP} B_{CP-odd} + \sin^2 \xi_{CP} \widetilde{B}_{CP-even})
$$

+
$$
\sum_{mn}^{1,2} P^m_- P^n_+ \left(\cos^2 \xi_{CP} C^{mn}_{CP-even} + \sin 2\xi_{CP} C^{mn}_{CP-odd} + \sin^2 \xi_{CP} \widetilde{C}^{mn}_{CP-even} \right)
$$

$$
\mathcal{A}_{\text{CP-odd}}, \mathcal{B}_{\text{CP-odd}} \propto \epsilon_{\mu\nu\alpha\beta} [p_{e^-}^{\mu} p_{e^+}^{\nu} p_{\mu^+}^{\alpha} p_{\mu^-}^{\beta}] \propto (\vec{p}_{\mu^+} \times \vec{p}_{\mu^-}) \cdot \vec{p}_{e^-}
$$

$$
\mathcal{C}_{\text{CP-odd}}^{mn} \propto \epsilon_{\mu\nu\rho\sigma} [(p_{e^-} + p_{e^+})^{\mu} p_{\mu^+}^{\nu} p_{\mu^-}^{\rho} s_{e^-}^{\sigma}] \propto (\vec{p}_{\mu^+} \times \vec{p}_{\mu^-}) \cdot \vec{s}_{e^-}
$$

S. Biswal et al, '09

CP-sensitive observables

Coordinate systems with unpolarised or longitudinal polarised beams

• The ϕ is the azimuthal angle difference between the μ^- - μ^+ plane and the Z-H plane

• The ϕ_{μ^-} is the azimuthal angle of the μ^- - μ^+ plane with fixing the y-axis orientation to \vec{s}_{e^-}

Angular distribution (MC@WHIZARD)

We fix the total cross-section to the SM tree-level cross-section, and use 100% parallel transverse polarisation

 $\overline{5}$

6

$\sigma_{\text{tot}} = \cos^2 \xi_{CP} \sigma_{\text{SM}} + \sin^2 \xi_{CP} \tilde{\kappa}_{HZZ}^2 \tilde{\sigma}_{\text{HZZ}} = \sigma_{\text{SM}},$

➡ *The angular distribution of muon azimuthal angle is sensitive to the CP-violation*

3

 ϕ_{μ} -

 $\overline{4}$

0

0

 $\frac{1}{2}$

 $\mathbf{1}$

Azimuthal asymmetry

Construct the observables sensitive to CP-violation:

$$
{\cal O}^{\cal T}_{CP}\propto \cos\theta_H\sin2\phi_{\mu^-},~~{\cal O}^{UL}_{CP}\propto\cos\theta_\mu\sin\phi
$$

We can define the following asymmetries:

$$
\mathcal{A}_{CP}^T = \frac{N(\mathcal{O}_{CP}^T < 0) - N(\mathcal{O}_{CP}^T > 0)}{N_{\text{tot}}}
$$
\n
$$
\mathcal{A}_{CP}^{\mathit{UL}} = \frac{N(\mathcal{O}_{CP}^{\mathit{UL}} < 0) - N(\mathcal{O}_{CP}^{\mathit{UL}} > 0)}{N_{\text{tot}}}
$$

Statistical uncertainty (based on binomial distribution) of the Asymmetry:

$$
\Delta \mathcal{A} = \sqrt{\frac{1-\mathcal{A}^2}{\textit{N}_{\textrm{tot}}}}
$$

Ecfa-EW&T&H@Paris, June 2024 GMP, Cheng Li

Variation of CP-mixing angle

We fix the total cross-section, and vary the CP-mixing angle ξ_{CP}

- This A_{CP}^T is linearly depending on the CP-mixing angle sin $2\xi_{CP}$
- The stronger transverse polarisation leads to larger \mathcal{A}_{CP}^T . \bullet
- For $(P_{e^-}^T, P_{e^+}^T)$ = (80%, 30%) and $L = 500$ fb⁻¹, one cannot distinguish the CP-violating case from CP-conserving case for any CP-mixing angle ξ_{CP} with only using \mathcal{A}_{CP}^T observable.

Variation of CP-mixing angle

The \mathcal{A}_{CP}^{UL} linearly depends on the sin 2 ξ_{CP} as well, while the beams polarisation cannot change the \mathcal{A}_{CP}^{UL} . \bullet One can also simultaneously measure the $\mathcal{A}_{\mathbb{C}\mathbb{P}}^{UL}$ when initial beams are transversely polarised.

Determination of CP-mixing angle

Simply combine the two asymmetries \bullet

$$
\chi^2_{\mathcal{A_{CP}}} = (\frac{\mathcal{A}_{CP}^{\mathcal{T}}}{\Delta \mathcal{A}_{CP}^{\mathcal{T}}})^2 + (\frac{\mathcal{A}_{CP}^{\mathcal{UL}}}{\Delta \mathcal{A}_{CP}^{\mathcal{UL}}})^2 < 3.81
$$

■ The systematic uncertainties can be cancelled out by the CP-odd asymmetry, since the background contribution is basically CP-even.

Variation of CP-odd coupling

We fix $c_{SM} = 1$ and vary \tilde{c}_{HZZ} , in this case σ_{tot} would be increased by \tilde{c}_{HZZ}

- The \mathcal{A}_{CP}^T can reach to maximal when $\widetilde{c}_{HZZ}\sim 0.35$, and asymmetry \mathcal{A}_{CP}^T would decrease for much higher \widetilde{c}_{HZZ} .
- For $(P_{e^-}^T, P_{e^+}^T)$ = (80%, 30%) and $L = 500$ fb⁻¹, one still cannot determine any CP-odd coupling \tilde{c}_{HZZ} .

Determination of CP-odd coupling

• We made the quadratic function fit for the signal regions with varying \tilde{c}_{HZZ}

$$
N_i = a\widetilde{c}_{HZZ}^2 + b\widetilde{c}_{HZZ} + c
$$

Determination of CP-odd coupling

• One can combine the signal regions

$$
\chi_N^2 = \sum_i \left(\frac{(N(\mathcal{O}_i < 0) - N^{\text{SM}}(\mathcal{O}_i < 0))^2}{N(\mathcal{O}_i < 0)} + \frac{(N(\mathcal{O}_i > 0) - N^{\text{SM}}(\mathcal{O}_i > 0))^2}{N(\mathcal{O}_i > 0)} \right)
$$

* The explicit combined results can be obtained by the background simulation and log-likelihood estimation

Comparison of both methods

- The e^+e^- colliders can significantly improve the sensitivity to CP-odd HZZ coupling compared to the LHC or HL-LHC.
- The sensitivity with polarised beams is better than the analysis with unpolarised beams, where the center-of-mass energy and luminosity are similar.
- The Z-fusion process can have similar sensitivity but with much higher center-of-mass energy. \bullet

Conclusion & Outlook

- **• CP-Structure of the Higgs sector still unresolved and sensitive to NP**
- **• e+e- collider with polarized beams can achieve high precision for determining the CP-structure of HZZ**
- **• Transversely-polarized beams provide new CP-odd observables to enhance sensitivity**
- **• Longitudinally-polarized beams enhance x-section, lower stat. uncertainty → higher sensitivity to CP-observables!**
- **• High luminosity and high degree of polarization needed!**
- **• Apply concrete model studies to future designs, including HALHF (250 GeV to 500 GeV and higher!)**

Ecfa-EW&T&H@Paris, June 2024 GMP, Cheng Li

Higgs sector@250 GeV

• What if no polarization / no P_{a+} available?

 $\sigma_{_{\sf pol}}/\sigma_{_{\sf unpol}}{\sim}$ (1-0.151 P $_{_{\sf eff}}$) * L $_{_{\sf eff}}$ /L - Higgsstrahlung dominant

> With $P_{e+} = 0\%$: $\sigma_{pol}/\sigma_{unpol} \sim 1.13$ With P_{a+} =40%: $\sigma_{\text{mol}}/\sigma_{\text{unpol}}$ ~1.55 (about 37% increase comp. to 0%

- Background: mainly ZZ (if leptonic), WW (if hadronic)

– If no P(e+): 20% longer running time!…..*~few years and less precision!*

In general: Interactions and Polarization

• Different Interaction structures:

S=scalar-, P=pseudoscalar-, V=vector-, A=axial-vector-, T=tensor- like interactions

• dependence on polarization provides information on kind of interaction
a-EW&T&H@Paris, June 2024 **CALLACA CHARA Cheng Li** Ecfa-EW&T&H@Paris, June 2024

* *hep-ph/0507011*

 σ ~ T_k T_l^*

Compton polarimetry at ILC

• Upstream polarimeter: use chicane system

- Can measure individual e± bunches
- Prototype Cherenkov detector tested at ELSA!
- Downstream polarimeter: crossing angle required
	- Lumi-weighted polarization (via w/o collision)
	- Spin-tracking simulations required

Ecfa-EW&T&H@Paris, June 2024 GMP Cheng Li

Polarimetry requirements

- SLC experience: measured ∆P/P=0.5%
	- Compton scattered e- measured in magnetic spectrometer
- Goal at ILC: measure ∆P/P≤0.25%
	- Dedicated Compton polarimeters and Cherenkov detectors
	- Use upstream and downstream polarimeters

– Use also annihilation data: `average polarization'

Longterm absolute calibration scale, up to ∆P/P=0.1%

Statistics Suppression of WW and ZZ production

 WW, ZZ production $=$ large background for NP searches!

 W^- couples only left-handed:

 $\rightarrow WW$ background strongly suppressed with right polarized beams!

Scaling factor $= \sigma^{pol}/\sigma^{unpol}$ for WW and ZZ:

Leff and Peff: further example

• Charged currents, i.e. t-channel W- or *v***-exchange (ALR=1):**

$$
\sigma(\mathcal{P}_{e^-},\mathcal{P}_{e^+})=2\sigma_0(\mathcal{L}_{\text{eff}}/\mathcal{L})[1-\mathcal{P}_{\text{eff}}]
$$

In other words: *no Pe+ means 30% more running time needed !*

Quite substantial in Higgs production via WW-fusion!

Leff and Peff

• More concrete: If only LR and RL contributions: only 50 % of collisions useful

effective luminosity: $L_{\text{eff}}/L = \frac{1}{2}(1 - P_{\text{e}} - P_{\text{e}+})$

This quantity = the effective number of collisions, can only be changed with Pe- and Pe+:

ILC baseline: With $\mp 80\%$, $\pm 30\%$, the increase is 24% **Peff~89% Peff~95%** With $\mp 80\%$, $\pm 60\%$, the increase is 48% **Peff~97%** With \mp 90%, \pm 60%, the increase is 54%

In other words: *no Pe+ means 24% more running time (!) <u>and</u> 10% loss in Peff* ≙ *10% loss in analyzing power!*

Quite substantial in Higgsstrahlung and electroweak 2f production !

- **– allows model-independent access!**
- **Absolute measurement of Higgs cross section σ(HZ) and g_{HZZ}: crucial input for all further Higgs measurement!**
- **– Allows access to H-> invisible/exotic**
- **– Allows with measurement of Г^h tot absolute measurement of BRs!**

Polarization basics

• **Applicable for V,A processes (most SM, some BSM)**

σ (Pe-,Pe+)=(1-Pe- Pe+) σunpol [1-Peff ALR]

- **With both beams polarized we gain in**
	- **Higher effective polarization (higher effect of polarization)**
	- **Higher effective luminosity (higher fraction of collisions)**

Sensitivity at the LHC and e⁺e⁻ Higgs factories the *CP-violating admixture* better than the hadron collider with 3 ab¹. Note that the polarised beams at *e*⁺*e Universit¨at Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany* ³*Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany CP-violating admixtures in the Higgs sector* $\frac{1}{2}$ μ ionivity at the Lito and

collider can improve the sensitivity to the *CP*-odd coupling, compared to the CEPC unpolarised analysis via the exact same Higgs strahlung process with 5.6 ab ¹ [29]. *[C. Li, G. Moortgat-Pick '24]*

can also provide a sensitivity to *CP*-odd couplings roughly at the same level as the $e^+e^-\rightarrow HZ\rightarrow H\mu^-\mu^+$ with transverse and longitudinal beam pol.

muon pair from the *Z* boson decay, and constructe *CP*-odd observables sensitive to

 C ects, where we derived this observable both by analytical calculations of the c

channel to the Higgs strahlung process, and can be more dominant with larger center-

of-mass energy, the *Z*-fusion analysis at CLIC would be the complementary study

$$
\widetilde{C}_{HZZ} = a_3
$$

⁴ (*q*1⌫*q*2*^µ ^gµ*⌫*q*¹ *· ^q*2) .
منط Ecfa-EW&T&H@Paris, June 2024 GMP Cheng Li

GMP Cheng Li