Determination of CP-violating Higgs couplings with transversely-polarized beams at the ILC250

G. Moortgat-Pick (Uni Hamburg/DESY) in collaboration with Cheng Li (Sun Yat-sen University,China) Nico Rehberg (Uni Hamburg)

- Polarization Basics
- CP-odd observables via transversely-polarized beams
- Two approaches for HZZ
- Conclusion & Outlook

Most mature Design: ILC

Polarization basics

- Longitudinal polarization: $\mathcal{P} = \frac{N_R N_L}{N_R + N_L}$
- Cross section:

$$\sigma(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = \frac{1}{4} \{ (1 + \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}})\sigma_{\mathrm{RR}} + (1 - \mathcal{P}_{e^{-}})(1 - \mathcal{P}_{e^{+}})\sigma_{\mathrm{LL}} + (1 + \mathcal{P}_{e^{-}})(1 - \mathcal{P}_{e^{+}})\sigma_{\mathrm{RL}} + (1 - \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}})\sigma_{\mathrm{LR}} \}$$

• Unpolarized cross section:

$$\sigma_0 = \frac{1}{4} \{ \sigma_{\rm RR} + \sigma_{\rm LL} + \sigma_{\rm RL} + \sigma_{\rm LR} \}$$

- Left-right asymmetry: $A_{LR} = \frac{(\sigma_{LR} \sigma_{RL})}{(\sigma_{LR} + \sigma_{RL})}$
- Effective polarization and luminosity:

$$\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^-} - \mathcal{P}_{e^+}}{1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}} \qquad \qquad \mathcal{L}_{\text{eff}} = \frac{1}{2} (1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}) \mathcal{L}$$

Ecfa-EW&T&H@Paris, June 2024

GMP, Cheng Li

Transversely polarized beams

Transversely polarized beams

- enables to exploit azimuthal asymmetries in fermion production !
- the process $e^+e^- \rightarrow W^+W^-$:
 - \Rightarrow azimuthal asymmetry projects out $W_L^+ W_L^-$
- - ➡ probe leptoquark models
- the process e+e- → ff:
 ⇒ probe extra dimensions
- the construction of CP violating oservables: \Rightarrow matrix elements $|M|^2 \sim C \times \Delta(\alpha) \Delta^*(\beta) \times S(C=\text{coupl.}, \Delta=\text{prop.}, S=\text{momenta})$

if CP violation: contributions of $Im(\mathcal{C}) \times Im(\mathcal{S})$ (e.g. contributions of ϵ tensors!) \Rightarrow azimuthal dependence ('not only in scattering plane')

 \Rightarrow observables are e.g. asymmetries of CP-odd quantities: $\vec{p}_a(\vec{p}_b \times \vec{p}_c)$

 $\vec{s}^{2\mu} := \vec{p}_1 \times \vec{p}_3$ perpendicular scattering plane, CP even $\vec{s}^{1\mu} := \vec{p}_1 \times \vec{s}^2(p_1)$ transverse in plane, CP odd

e.g. Cheng Li et al.

Ecfa-EW&T&H@Paris, June 2024

GMP Cheng Li

e.g. Fleischer et al,

e.g. Rindani, Poulose, et al.

e.g. Hewett, Rizzo et al.

Process: Higgs Strahlung

- $\sqrt{s}=250$ GeV: dominant process
- Why crucial?
 - allows model-independent access!

- Absolute measurement of Higgs cross section σ (HZ) and g_{HZZ} : crucial input for all further Higgs measurement!
- Allows access to H-> invisible/exotic
- Allows with measurement of Γ^{h}_{tot} absolute measurement of BRs!

CP properties of h125

CP properties: more difficult than spin, observed state can be any admixture of CP-even and CP-odd components

Observables mainly used for investigaton of CP-properties $(H \rightarrow ZZ^*, WW^* \text{ and } H \text{ production in weak boson fusion})$ involve HVV coupling

General structure of *HVV* coupling (from Lorentz invariance):

 $a_1(q_1, q_2)g^{\mu\nu} + a_2(q_1, q_2)\left[(q_1q_2)g^{\mu\nu} - q_1^{\mu}q_2^{\nu}\right] + a_3(q_1, q_2)\epsilon^{\mu\nu\rho\sigma}q_{1\rho}q_{2\sigma}$

SM, pure CP-even state: $a_1 = 1, a_2 = 0, a_3 = 0$, Pure CP-odd state: $a_1 = 0, a_2 = 0, a_3 = 1$

However: in many models (example: SUSY, 2HDM, ...) a_3 is loop-induced and heavily suppressed Ecfa-EW&T&H@Paris, June 2024 GMP, Cheng Li

CP in Higgs-Gauge-boson couplings $\mathcal{L}_{\mathsf{EFF}} = c_{\mathsf{SM}} Z_{\mu} Z^{\mu} H - \frac{c_{HZZ}}{v} Z_{\mu\nu} Z^{\mu\nu} H - \frac{\widetilde{c}_{HZZ}}{v} Z_{\mu\nu} \widetilde{Z}^{\mu\nu} H$

At LHC: H → 4 I measurement:

[CERN-EP-2023-030]

Probing CP at the e+e- collider

• CP probes of HZZ via Z-decay from HZ or Z fusion

- Unpolarised study at CEPC [Q. Sha et al. 22]
- The spin information of the initial transversely polarised electrons is carried by the Z boson and transferred to the $\mu^+\mu^-$ pair by the Z decay

- Z-fusion study at 1 TeV [I. Bozovic et al. 24]
- Z-fusion process cannot carry the spin information of initial transversely polarised beams, since the final state electron and positron are unpolarised

H. Haber, 1994

Spindensity Formalism

• Spin-density initial beams:

$$\frac{1}{2}(1-\sigma\cdot P)_{\lambda\lambda'} = \frac{1}{2} \begin{pmatrix} 1-P^3 & P^1-iP^2 \\ P^1+iP^2 & 1+P^3 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1-f\cos\theta_P & f\sin\theta_P e^{-i\phi_P} \\ f\sin\theta_P e^{i\phi_P} & 1+f\cos\theta_P \end{pmatrix}$$

• Bouchiat-Michel:

$$u(p,\lambda')\bar{u}(p,\lambda) = \frac{1}{2}(1+2\gamma_5)\not\!\!/\delta_{\lambda\lambda'} + \frac{1}{2}\gamma_5(\not\!\!/_-\sigma_{\lambda\lambda'}^1 + \not\!\!/_-\sigma_{\lambda\lambda'}^2)\not\!\!/$$
$$v(p,\lambda')\bar{v}(p,\lambda) = \frac{1}{2}(1-2\gamma_5)\not\!\!/\delta_{\lambda\lambda'} + \frac{1}{2}\gamma_5(\not\!\!/_+\sigma_{\lambda\lambda'}^1 + \not\!\!/_+\sigma_{\lambda\lambda'}^2)\not\!\!/$$

Higgsstrahlung:

$$\rho^{ii'}(e^+e^- \to ZH) = \frac{1}{2} (\delta_{\lambda_r \lambda'_r} + P^m_- \sigma^m_{\lambda_r \lambda'_r}) \frac{1}{2} (\delta_{\lambda_u \lambda'_u} + P^n_+ \sigma^n_{\lambda_u \lambda'_u}) M^i_{\lambda_r \lambda_u} M^{*i'}_{\lambda'_r \lambda'_u}$$
$$= (1 - P^3_- P^3_+) A^{ii'} + (P^3_- - P^3_+) B^{ii'} + \sum_{mn}^{1,2} P^m_- P^n_+ C^{ii'}_{mn}$$

⇒both beams polarized required!

Ecfa-EW&T&H@Paris, June 2024

GMP, Cheng Li

Amplitude Level

• Concentrate on additional CP-odd terms

$$\begin{split} \mathcal{M}|^{2} = & |\boldsymbol{c}_{\mathrm{SM}} \mathcal{M}_{\mathrm{SM}} + \widetilde{\boldsymbol{c}}_{HZZ} \widetilde{\mathcal{M}}_{HZZ}|^{2} \\ = & |\boldsymbol{c}_{\mathrm{SM}} \mathcal{M}_{\mathrm{SM}}|^{2} + |\boldsymbol{c}_{\mathrm{SM}} \widetilde{\boldsymbol{c}}_{HZZ} \mathcal{M}_{\mathrm{SM}} \widetilde{\mathcal{M}}_{HZZ}| + |\widetilde{\boldsymbol{c}}_{HZZ} \widetilde{\mathcal{M}}_{HZZ}|^{2} \end{split}$$

 $c_{
m SM} \propto \cos \xi_{CP}, \qquad \widetilde{c}_{HZZ} \propto \sin \xi_{CP}$

$$\begin{aligned} |\mathcal{M}|^2 &= (1 - P_-^3 P_+^3)(\cos^2 \xi_{CP} \,\mathcal{A}_{\text{CP-even}} + \sin 2\xi_{CP} \,\mathcal{A}_{\text{CP-odd}} + \sin^2 \xi_{CP} \,\widetilde{\mathcal{A}}_{\text{CP-even}}) \\ &+ (P_-^3 - P_+^3)(\cos^2 \xi_{CP} \,\mathcal{B}_{\text{CP-even}} + \sin 2\xi_{CP} \,\mathcal{B}_{\text{CP-odd}} + \sin^2 \xi_{CP} \,\widetilde{\mathcal{B}}_{\text{CP-even}}) \\ &+ \sum_{mn}^{1,2} P_-^m P_+^n \left(\cos^2 \xi_{CP} \,\mathcal{C}_{\text{CP-even}}^{mn} + \sin 2\xi_{CP} \,\mathcal{C}_{\text{CP-odd}}^{mn} + \sin^2 \xi_{CP} \,\widetilde{\mathcal{C}}_{\text{CP-even}}^{mn}\right) \end{aligned}$$

$$\mathcal{A}_{ ext{CP-odd}}, \mathcal{B}_{ ext{CP-odd}} \propto \epsilon_{\mu
ulphaeta} [p_{e^-}^{\mu} p_{e^+}^{lpha} p_{\mu^+}^{eta} p_{\mu^-}^{eta}] \propto (\vec{p}_{\mu^+} imes \vec{p}_{\mu^-}) \cdot \vec{p}_{e^-}$$

 $\mathcal{C}_{ ext{CP-odd}}^{mn} \propto \epsilon_{\mu
u
ho\sigma} [(p_{e^-} + p_{e^+})^{\mu} p_{\mu^+}^{
u} p_{\mu^-}^{
ho} s_{e^-}^{\sigma}] \propto (\vec{p}_{\mu^+} imes \vec{p}_{\mu^-}) \cdot \vec{s}_{e^-}$

S. Biswal et al, '09

CP-sensitive observables

Coordinate systems with unpolarised or longitudinal polarised beams

• The ϕ is the azimuthal angle difference between the μ^- - μ^+ plane and the Z-H plane

• The ϕ_{μ^-} is the azimuthal angle of the μ^- - μ^+ plane with fixing the y-axis orientation to $ec{s_{e^-}}$

Angular distribution (MC@WHIZARD)

We fix the total cross-section to the SM tree-level cross-section, and use 100% parallel transverse polarisation

4

5

6

$\sigma_{\rm tot} = \cos^2 \xi_{CP} \, \sigma_{\rm SM} + \sin^2 \xi_{CP} \tilde{\kappa}_{HZZ}^2 \, \tilde{\sigma}_{\rm HZZ} = \sigma_{\rm SM},$

The angular distribution of muon azimuthal angle is sensitive to the CP-violation

3

 ϕ_{μ} -

0

0

2

1

Azimuthal asymmetry

Construct the observables sensitive to CP-violation:

$${\cal O}_{CP}^{
m au} \propto \cos heta_{
m eta} \sin 2 \phi_{\mu^-}, ~~ {\cal O}_{CP}^{
m UL} \propto \cos heta_{\mu} \sin \phi$$

We can define the following asymmetries:

$$\mathcal{A}_{CP}^{T} = \frac{N(\mathcal{O}_{CP}^{T} < 0) - N(\mathcal{O}_{CP}^{T} > 0)}{N_{\text{tot}}}$$
$$\mathcal{A}_{CP}^{UL} = \frac{N(\mathcal{O}_{CP}^{UL} < 0) - N(\mathcal{O}_{CP}^{UL} > 0)}{N_{\text{tot}}}$$

Statistical uncertainty (based on binomial distribution) of the Asymmetry:

$$\Delta \mathcal{A} = \sqrt{rac{1-\mathcal{A}^2}{N_{ ext{tot}}}}$$

Ecfa-EW&T&H@Paris, June 2024

Variation of CP-mixing angle

We fix the total cross-section, and vary the CP-mixing angle ξ_{CP}

- This \mathcal{A}_{CP}^{T} is linearly depending on the CP-mixing angle sin $2\xi_{CP}$
- The stronger transverse polarisation leads to larger \mathcal{A}_{CP}^{T} .
- For $(P_{e^-}^T, P_{e^+}^T) = (80\%, 30\%)$ and $L = 500 \text{ fb}^{-1}$, one cannot distinguish the CP-violating case from CP-conserving case for any CP-mixing angle ξ_{CP} with only using \mathcal{A}_{CP}^T observable.

Variation of CP-mixing angle

The A^{UL}_{CP} linearly depends on the sin 2ξ_{CP} as well, while the beams polarisation cannot change the A^{UL}_{CP}.
 One can also simultaneously measure the A^{UL}_{CP} when initial beams are transversely polarised.

GMP, Cheng Li

Determination of CP-mixing angle

Simply combine the two asymmetries

$$\chi^{2}_{\mathcal{A}_{CP}} = (\frac{\mathcal{A}_{CP}^{T}}{\Delta \mathcal{A}_{CP}^{T}})^{2} + (\frac{\mathcal{A}_{CP}^{UL}}{\Delta \mathcal{A}_{CP}^{UL}})^{2} < 3.81$$

(P_{-}, P_{+})	${\cal L}$ [ab $^{-1}$]		$\sin 2\xi_{CP}$ limit (95% C.L.)			
Observables		\mathcal{A}_{CP}^{T}	$\mathcal{A}_{CP}^{\mathcal{T}}$ Combine $\mathcal{A}_{CP}^{\mathcal{T}} \& \mathcal{A}_{CP}^{UL}$			
Transverse pola	arisation					
(80%, 30%)	2.0	[-0.50, 0.53]	[-0.113, 0.125]			
(80%, 30%)	5.0	[-0.36, 0.36]	[-0.068, 0.079]			
(90%, 40%)	2.0	[-0.33, 0.34]	[-0.118, 0.110]			
(90%, 40%)	5.0	[-0.23, 0.22]	[-0.066, 0.077]			
(100%, 100%)	5.0	[-0.082, 0.069]	[-0.056, 0.051]			
Longitudinal po	larisation					
(-80%, 30%)	2.0			[-0.119,0.082]		
(-80%, 30%)	5.0			[-0.066,0.063]		
(-90%, 40%)	2.0			[-0.085,0.106]		
(-90%, 40%)	5.0			[-0.059,0.062]		
(-100%, 100%)	5.0			[-0.047,0.053]		

The systematic uncertainties can be cancelled out by the CP-odd asymmetry, since the background contribution is basically CP-even.

Variation of CP-odd coupling

We fix $c_{\rm SM} = 1$ and vary \tilde{c}_{HZZ} , in this case $\sigma_{\rm tot}$ would be increased by \tilde{c}_{HZZ}

- The \mathcal{A}_{CP}^{T} can reach to maximal when $\tilde{c}_{HZZ} \sim 0.35$, and asymmetry \mathcal{A}_{CP}^{T} would decrease for much higher \tilde{c}_{HZZ} .
- For $(P_{e^-}^T, P_{e^+}^T) = (80\%, 30\%)$ and $L = 500 \text{ fb}^{-1}$, one still cannot determine any CP-odd coupling \tilde{c}_{HZZ} .

Determination of CP-odd coupling

• We made the quadratic function fit for the signal regions with varying \tilde{c}_{HZZ}

$$N_i = a\widetilde{c}_{HZZ}^2 + b\widetilde{c}_{HZZ} + c$$

GMP, Cheng Li

Determination of CP-odd coupling

One can combine the signal regions

$$\chi_{N}^{2} = \sum_{i} \left(\frac{(N(\mathcal{O}_{i} < 0) - N^{\text{SM}}(\mathcal{O}_{i} < 0))^{2}}{N(\mathcal{O}_{i} < 0)} + \frac{(N(\mathcal{O}_{i} > 0) - N^{\text{SM}}(\mathcal{O}_{i} > 0))^{2}}{N(\mathcal{O}_{i} > 0)} \right)$$

(P_{-}, P_{+})	Luminosity $[ab^{-1}]$	Γ _Ι	$_{HZZ}~(imes 10^{-2})$ limit (95% C	C.L.)
Ob	servables	\mathcal{O}_{CP}^{T}	Combine $\mathcal{O}_{CP}^{UL} \& \mathcal{O}_{CP}^{T}$	\mathcal{O}_{CP}^{UL}
Transver	se polarisation			
(80%, 30%)	2.0	[-4.45,4.65]	[-2.26, 1.93]	
(80%, 30%)	5.0	[-3.55,3.85]	[-1.29, 1.06]	
(90%, 40%)	2.0	[-4.55,4.15]	[-2.24, 1.69]	
(90%, 40%)	5.0	[-2.65,3.75]	[-1.12, 0.98]	
Longitudi	nal polarisation			
(-80%, 30%)	2.0			[-1.55, 1.96]
(-80%, 30%)	5.0			[-1.01, 1.16]
(-90%, 40%)	2.0			[-1.73,1.53]
(-90%, 40%)	5.0			[-0.93, 1.18]

* The explicit combined results can be obtained by the background simulation and log-likelihood estimation _

Comparison of both methods

	95% C.L. (2σ)limit						
Experiments	ATLAS	CMS	HL-LHC	CEPC	CLIC	CLIC	ILC
Processes	$H ightarrow 4\ell$	$H ightarrow 4\ell$	$H ightarrow 4\ell$	HZ	W-fusion	Z-fusion	$HZ,~Z ightarrow \mu^+ \mu^-$
\sqrt{s} [GeV]	13000	13000	14000	240	3000	1000	250
Luminosity [fb $^{-1}$]	139	137	3000	5600	5000	8000	5000
(P , P_+)							(90%, 40%)
\widetilde{c}_{HZZ} (×10 ⁻²)	[-16.4, 24.0]	[-9.0, 7.0]	[-9.1, 9.1]	[-1.6, 1.6]	[-3.3, 3.3]	[-1.1, 1.1]	[-1.1, 1.0]
$f_{CP}^{HZZ}(imes 10^{-5})$	[-409.82, 873.58]	[-123.78, 74.91]	[-126.54, 126.54]	[-3.92, 3.92]	[-16.66, 16.66]	[-1.85, 1.85]	[-1.85, 1.53]
<i>č</i> _{ZZ}	[-1.2, 1.75]	[-0.66, 0.51]	[-0.66, 0.66]	[-0.12, 0.12]	[-0.24, 0.24]	[-0.08, 0.08]	[-0.08, 0.07]

- The e^+e^- colliders can significantly improve the sensitivity to CP-odd *HZZ* coupling compared to the LHC or HL-LHC.
- The sensitivity with polarised beams is better than the analysis with unpolarised beams, where the center-of-mass energy and luminosity are similar.
- The Z-fusion process can have similar sensitivity but with much higher center-of-mass energy.

Conclusion & Outlook

- CP-Structure of the Higgs sector still unresolved and sensitive to NP
- e+e- collider with polarized beams can achieve high precision for determining the CP-structure of HZZ
- Transversely-polarized beams provide new CP-odd observables to enhance sensitivity
- Longitudinally-polarized beams enhance x-section, lower stat. uncertainty — higher sensitivity to CP-observables!
- High luminosity and high degree of polarization needed!
- Apply concrete model studies to future designs, including HALHF (250 GeV to 500 GeV and higher!)

Ecfa-EW&T&H@Paris, June 2024

GMP, Cheng Li

Higgs sector@250 GeV

What if no polarization / no P_{et} available?

 $\sigma_{pol}/\sigma_{unpol} \sim (1-0.151 P_{eff}) * L_{eff}/L$ Higgsstrahlung dominant

> With $P_{e+}=0\%$: $\sigma_{pol}/\sigma_{unpol}\sim 1.13$ With P_{at} =40%: $\sigma_{rad}/\sigma_{urrad}$ ~1.55 (about 37% increase comp. to 0%)

- Background: mainly ZZ (if leptonic), WW (if hadronic)

Loss if no P _{e+} :	~20%	~ factor 2
	1.22 (+,-)	3.98 (+,-)
– S/√B:	0.99 (+,0)	1.95 (+,0)
	1.20 (+,-)	12.6 (+,-)
– S/B:	1.14 (+,0)	4.35 (+,0)

– If no P(e+): 20% longer running time!....~few years and less precision!

In general: Interactions and Polarization

• Different Interaction structures:

 $\sigma \thicksim T_k \, T_l ^*$

hep-ph/0507011

24

S=scalar-, P=pseudoscalar-, V=vector-, A=axial-vector-, T=tensor- like interactions

Inter	action structure	Longitu	dinal	Transverse		Longitudinal/Transverse
Γ_k	$ar{\Gamma}_{m{\ell}}$	Bilinear	Linear	Bilinear	Linear	Interference
S	S	$\sim P_{e^-}P_{e^+}$	_	$\sim P_{e^-}^T P_{e^+}^T$	_	_
S	Р	-	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	-
S	V,A	-	_	_	$\sim P_{e^\pm}^T$	$\sim P_{e^{\pm}} P_{e^{\mp}}^T$
S	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$		_
Р	Р	$\sim P_{e^-}P_{e^+}$	_	$\sim P_{e^-}^T P_{e^+}^T$	_	_
Р	V,A	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$	$\sim P_{e^\pm}^T$	$\sim P_{e^{\pm}} P_{e^{\mp}}^T$
Р	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^\pm}$	$\sim P_{e^-}^T P_{e^+}^T$		_
V,A	V,A	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	-
V,A	Т	-	_	-	$\sim P_{e^\pm}^T$	$\sim P_{e^{\pm}} P_{e^{\mp}}^T$
Т	Т	$\sim P_{e^-}P_{e^+}$	$\sim P_{e^{\pm}}$	$\sim P_{e^-}^T P_{e^+}^T$	_	_

dependence on polarization provides information on kind of interaction
 Ecfa-EW&T&H@Paris, June 2024
 GMP Cheng Li

Compton polarimetry at ILC

• Upstream polarimeter: use chicane system

- Can measure individual e± bunches
- Prototype Cherenkov detector tested at ELSA!
- **Downstream polarimeter:** crossing angle required
 - Lumi-weighted polarization (via w/o collision)
 - Spin-tracking simulations required

Ecfa-EW&T&H@Paris, June 2024

GMP Cheng Li

Polarimetry requirements

- SLC experience: measured ΔP/P=0.5%
 - Compton scattered e- measured in magnetic spectrometer
- Goal at ILC: measure ΔP/P≤0.25%
 - Dedicated Compton polarimeters and Cherenkov detectors
 - Use upstream and downstream polarimeters

- Use also annihilation data: `average polarization'

> Longterm absolute calibration scale, up to $\Delta P/P=0.1\%$

Statistics Suppression of WW and ZZ production

WW, ZZ production = large background for NP searches!

 W^- couples only left-handed:

 \rightarrow WW background strongly suppressed with right polarized beams!

Scaling factor = $\sigma^{pol}/\sigma^{unpol}$ for WW and ZZ:

$P_{e^-} = \mp 80\%, \ P_{e^+} = \pm 60\%$	$e^+e^- \rightarrow W^+W^-$	$e^+e^- \rightarrow ZZ$
(+0)	0.2	0.76
(-0)	1.8	1.25
(+-)	0.1	1.05
(-+)	2.85	1.91

'No lose theorem':		S	B	S/B	
scaling factors for	Example 1	$\times 2$	×0.5	$\times 4$	
signals&background	Example 2	$\times 2$	$\times 2$	Unchanged	
			-		

L_{eff} and P_{eff}: further example

• Charged currents, i.e. t-channel W- or v-exchange (A_{LR}=1):

$$\sigma(\mathcal{P}_{e^-}, \mathcal{P}_{e^+}) = 2\sigma_0(\mathcal{L}_{\text{eff}}/\mathcal{L})[1 - \mathcal{P}_{\text{eff}}]$$

In other words: *no P_{e+} means 30% more running time needed* !

Quite substantial in Higgs production via WW-fusion!

Leff and Peff

More concrete: If only LR and RL contributions: only 50 % of collisions useful

effective luminosity: $L_{\rm eff}/L = \frac{1}{2}(1 - P_{\rm e} - P_{\rm e})$

This quantity = the effective number of collisions, can only be changed with Pe- and Pe+:

 ILC baseline:
 With $\pm 80\%$, $\pm 30\%$, the increase is 24%
 Peff~89%

 With $\pm 80\%$, $\pm 60\%$, the increase is 48%
 Peff~95%

 With $\pm 90\%$, $\pm 60\%$, the increase is 54%
 Peff~97%

In other words: *no P*_{e⁺} *means* 24% *more running time* (!) *and* 10% loss in P_{eff} ≙ 10% loss in analyzing power!

Quite substantial in (Higgsstrahlung) and electroweak 2f production !

- allows model-independent access!
- Absolute measurement of Higgs cross section σ (HZ) and g_{HZZ} : crucial input for all further Higgs measurement!
- Allows access to H-> invisible/exotic
- Allows with measurement of Γ^h_{tot} absolute measurement of BRs!

Polarization basics

• Applicable for V,A processes (most SM, some BSM)

 σ (Pe-,Pe+)=(1-Pe- Pe+) σ_{unpol} [1-P_{eff} A_{LR}]

- With both beams polarized we gain in
 - Higher effective polarization (higher effect of polarization)
 - Higher effective luminosity (higher fraction of collisions)

\sqrt{s}	$P(e^{-})$	$P(e^+)$	$P_{ m eff}$	$\mathcal{L}_{\mathrm{eff}}$	$\Delta A_{LR}/A_{LR}$
total range	$\mp 80\%$	0%	$\pm 80\%$	0.5	1
250 GeV	$\mp 80\%$	$\pm 40\%$	$\mp 91\%$	0.65	0.43
$\geq 350~{\rm GeV}$	$\mp 80\%$	$\pm 55\%$	$\mp 94\%$	0.7	0.30
	04	- 04	04		

CP-violating admixtures in the Higgs sector Sensitivity at the LHC and e⁺e⁻ Higgs factories

[C. Li, G. Moortgat-Pick '24]

 $e^+e^- \rightarrow HZ \rightarrow H\mu^-\mu^+$ with transverse and longitudinal beam pol.

Experiments	ATLAS[24]	CMS[19]	HL-LHC[25]	CEPC[29]	CLIC[30]	CLIC [31 , 40]	ILC
Processes	$H \to 4\ell$	$H\to 4\ell$	$H \to 4\ell$	HZ	W-fusion	Z-fusion	$HZ, \ Z \to \mu^+ \mu^-$
$\sqrt{s} \; [\text{GeV}]$	13000	13000	14000	240	3000	1000	250
Luminosity $[fb^{-1}]$	139	137	3000	5600	5000	8000	5000
(P_{-} , P_{+})							(90%, 40%)
$\widetilde{c}_{HZZ}~(\times 10^{-2})$							
95% C.L. $(2\sigma) {\rm limit}$	[-16.4, 24.0]	[-9.0, 7.0]	[-9.1, 9.1]	[-1.6, 1.6]	[-3.3, 3.3]	[-1.1, 1.1]	$[-1.1, \ 1.0]$

$$\widetilde{c}_{HZZ} = a_3$$

Ecfa-EW&T&H@Paris, June 2024

GMP Cheng Li