Impact of changes in the flavour tagger performance on the Higgs coupling measurements in ZH fully hadronic final states at the FCCee

Iza Veliscek

Contributions from: Haider Abidi, Viviana Cavaliere, Jan Eysermans, George Iakovidis, Loukas Gouskos, Andrea Sciandra, Michele Selvaggi

3rd ECFA Workshop 9-11 October 2024

Introduction

Performance of the flavour tagging algorithms depends on the detector properties.

The goal is to determine the impact of flavor tagging performance on the Higgs coupling measurements.

• ZH leading Higgs production mode

- + All hadronic decay has the largest branching fraction
- Jet combinatorics, flavour identification
- Abundance of Higgs produced

@ √s = 240 GeV

~2 000 000 ZH events

Some technicalities

• IDEA Detector

- Delphes fast sim
- Jet Clustering
 - N = 4 Durham k_{T} exclusive algorithm
- ParticleNet jet tagger [trained by A. Sciandra]
 - See <u>2202.03285</u> for details on the flavor tagger
- Build on ZH(full hadronic) analysis

presented in Annecy by **G. lakovidis**

[slides]

Background:

- WW
- ZZ
- Zqq
- Z(bb/cc/ss/qq/)H(tautau)
- Z(bb/cc/ss/qq/)H(WW)
- Z(bb/cc/ss/qq/)H(ZZ)
- Z(bb/cc/ss/qq/)H(Z/γ*)
- nunuH(jj)
- Missing Z(bb/cc/ss/qq/)H(qq)
 - Negligible impact !

Signals:

- Z(bb/cc/ss/qq/)H(bb)
- Z(bb/cc/ss/qq/)H(cc)
- Z(bb/cc/ss/qq/)H(ss)
- Z(bb/cc/ss/qq/)H(gg)

Analysis setup

Preselection

Exactly 4 jets!

Lepton cuts

- <= 2 muons and electrons
- Leading muon and electron p_{τ} <20 GeV

Visible Energy

- Visible m > 150 GeV
- Visible E > 150 GeV
- 0.15 < V is ible $\theta < 3.0$

d_{ii} Cuts

- 15000 < d₁₂ < 58000
- 400 < d₂₃ < 18000
- 100 < d₃₄ < 6000
- * $d_{ii} = 2 \min(E_i^2, E_i^2)(1 \cos \theta_{ii})$, distance measure between jet i & j used by clustering

COLLIDER

Jet "tagging"

ParticleNet jet tagger

- Scores provided for the "flavours":
 B, C, S, g, τ, U, D
 q: U,D
- Scores ~ probability jet is of flavour X
- Flavour tagging
 - Maximum flavour score ~ flavor of jet
 - Sums of same flavour scores for jet pairs ~ flavour of jet pair

* Note - no fixed working point used, different than in ATLAS or CMS

> JTURE IRCULAR

OLLIDER

Each jet has a maximum tagger score from a different flavour

TOSS EVENT

<u>CASE 1:</u> All jets have the maximum score from the same flavour

Finding the H&Z candidates

Consider all possible jet pairs

- $\chi_{\rm H} = (m_{\rm ij} m_{\rm H,true})^2$
- $\chi_{Z} = (m_{lk} m_{Z, true})^{2}$
- $\chi_{comb} = \chi_{H} + \chi_{Z}$

The jet paring that gives the minimum χ_{comb} is chosen!

CASE 2: Two jet pairs with same maximum score from the same flavour, but different flavour of the pairs

Finding the H&Z candidates

- Jet paired, if they have the same flavour maximum score
- Z candidate: Pair with minimum

 $\chi_{Z} = (m_{lk} - m_{Z, true})^{2}$

CASE 3: Two jets with maximum score from the same flavour form a pair

Recover second pair:

- Consider all sums of tagger scores
 - $Max(\sum_{ij}Bscore, \sum_{ij}Cscore, \sum_{ij}Sscore, ...)$
 - Determines the flavour of the pair

Finding the H&Z candidates

• Same flavour pairs (Case 1)

 $Min(\chi_{comb}=\chi_{H}+\chi_{Z})$

• Different flavour pairs (Case 2)

• $Min(\chi_{Z} = (m_{lk} - m_{Z, true})^{2}$

<u>CASE 4:</u> Three jets with maximum score from the same flavour

Recover first pair:

- Maximum tagger score sum
 - $Max(\sum_{ij}Bscore, \sum_{ik}Bscore, \sum_{jk}Bscore, ...)$
 - Determines the flavour of the 1st pair

Recover second pair:

- Consider all sums of tagger scores
 - $Max(\sum_{ij}Bscore, \sum_{ij}Cscore, \sum_{ij}Sscore, ...)$
 - Determines the flavour of the pair

Finding the H&Z candidates

• Same as for Case 3

A few more cuts

WW & ZZ rejection

$$\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10$$

$$\sqrt{(m_{z_{jj}} - m_Z)^2 + (m_{H_{jj}} - m_Z)^2} > 10$$

Mass window

 $50 < m_{Z_{jj}} < 125 \, {\rm GeV}, m_{H_{jj}} > 90 \, {\rm GeV}$

After flavour tagging and Z&H identification reject events reconstructed as:

- H->TT
- H->qq, q=u,d
- Z->tt
- Z->gg

*Jet energies are recomputed from jet directions & energy-momentum conservation

Hbb signal categorized according to the flavour tagged. Additional split according to H flavour score in fit (purity)

- Categorize by H->j₁j₂ decay
 - Categorize by $Z \rightarrow j_3 j_4$ decay
 - Additionally by H flavour score
 - Purity category :
 - High (>1.8 (1.4 for Hss))
 - Mid(1.1 (0.8) < score < 1.6
 - (1.4) (Hss cut in ())
 - Low (<1.1 (0.8 for Hss))
- 48 Categorised in total!
- + 1 GeV binning in m_{jj,H}
- + 5 GeV binning in m_{jj,Z}

H score determining the purity categories

Categorization - High purity ZbbHbb category

Will only show biggest changes in tagger's performance

- **Baseline** = baseline IDEA detector concept
- **No TOF** (time of flight, dNdX on the plot)
- No dNdx (cluster counting)

*Initial studies shown that number of pixel layers and pixel-detector material budget have a negligible impact on the analysis

Robustness of flavour tagging strategy

Summing the flavour scores and not rejecting events with low flavour scores guarantees the robustness of flavour tagging

Iza Veliscek

backup slide 26]

IRCULAR

OLLIDER

Impact on strange tagging

Categorization of Hss events Baseline Baseline 0.12 ----- noTOF ····· noTOF 0.8 ----- nodNdx 0.1 ----- nodNdx VXDr+0.5cm 0.7 0.08 0.6 0.5 0.06 0.4 0.04 0.3 0.2 0.02 0.1 L. L n 0.2 0.4 0.6 0.8 1.2 1.6 1.8 0 С S TAU В Q G Higgs falvour score * Re-optimized Hss category definition for no dNdx case

Iza Veliscek

17

Hss events identified as H->ss

Impact on the ZH fully hadronic analysis

Removing PID information

- TOF no significant impact on tagging
- Significant impact from removing dNdX information on Hss coupling
 - x1.6 worse measurement precision at 68% CL

Tracker variations considered

- No notable change in the limits from 65% Worse single hit resolution, 50% Heavier VXD, no intermediate layer, VTXD layers R + 0.5cm
 - Note nominal simulation used only tagger training changed

VARIAN	68% CL precision						
"ION	μ_{Hbb}	μ_{Hcc}	μ_{Hgg}	μ_{Hss}			
Baseline	±0.3%	±4.2%	±2.8%	+674% -669%			
Relative change compared to baseline ($\mu_{variation}/\mu_{baseline}$)							
No TOF	x1.3	x1.02 (upper limit only)	x1	x1.03			
No dNdX	x1.3	x1.07	x1.07	x1.6			
VXDR +500µm	x1.3	x0.98 (lower limit only)	x1.04	x1			

Conclusions

- Cluster information (dNdx) is crucial and has a significant impact on the sensitivity of the measurements
 - Without the number of cluster information x1.6 worse precision on Hss coupling!
- Hbb coupling measurement gets slightly worse for all detector variations considered
- Very small changes in the measurements of Hcc & Hgg couplings
- Changing the tracker does not impact the fully hadronic ZH analysis significantly
 - Could be an underestimation as flavour tagging strategy might be too robust
 - Caveat Only change the flavour tagging training not IDEA simulation

- See the impact on the Z(vv)H(jj)
 - Most sensitive channel
 - Samples available with considering different detector geometry

 Extract the impact on the Higgs self-coupling measurement from the ZH analysis

BACKUP

21

From: Bedeschi, F., Gouskos, L. & Selvaggi, M. Jet flavour tagging for future colliders with fast simulation. Eur. Phys. J. C 82, 646 (2022). https://doi.org/10.1140/epjc/s10052-022-10609-1

by Andrea Sciandra

H score in the H->ss categorise

Baseline

FUTURE CIRCULAR COLLIDER

23

Categorization-High purity ZbbHss category

Reconstructed H->bb decays

Hbb signal events identified as H->bb

- Very high b-score
- Negligible change between different taggerc

 No significant change in H score distributions of background event

Hgg events identified as H->bb

FUTURE CIRCULAR

COLLIDER

Iza Veliscek

Robustness of flavour tagging strategy

Iza Veliscek

Likelihood scan

- Asimov (expected) data = SM = background estimation + SM signal
 - How compatible are different μ_{xx} to the asimov data set, i.e. how sensitive are we?
 - Compare the **test statistic** (λ) of the different μ_{xx} on this dataset.

UTURE

OLLIDER

Impact on the ZH fully hadronic analysis [NLL scnas]

Impact on the ZH fully hadronic analysis [NLL scnas]

Tagger performance

Iza Veliscek

Impact on the analysis - Higgs C score

Truth H->cc jets flavour: The better rejection of the Nominal tagger is reflected in a higher fraction of truth H->cc events, with a very high Higgs C score. [see next slide]

Migration of ZZ events

33

Andrean re-trained tagger for different detectors [see Andrea' presentation]:

- Baseline: IDEA baseline
- idealVXDCalo:
 - Best material budget, hit resolution and calorimeter granularity
- lighterVXD_100pc:
 - \sim No material interaction

(X₀>>1m)

- heavierVXD_100pc:
 - Super small radiation length

(X₀<<1m)

• CLD

```
Iza VeliscekO Fast sim of the CLD o1_v01
```


Approximating the impact on tagging

Propagating the impact of retraining the tagger:

- Account only for impact on **b-,c- and s-score**
- Histo per jet flavour (4x) per detector variation [Thanks Andrea!]
 - Sample from histogram to update the b- c- and s-score score
 - Depends on the jet truth label!

Drawbacks of the strategy

- <u>Jet truth labelling</u> not optimal
 - 88% accuracy in Z(qq)H(bb) samples [Thanks Jan E.!]
 - Does not tag gluon jets
- Ignoring some correlations
 - Correlation of the b-,c-, s- score to u/d, gluon score neglected

* Older tagger training, tau's not included

Iza Veliscek

Impact on the analysis - Higgs B score

Truth H->bb jets flavour: The hit in performance of the tagger has the largest effect on the Higgs C-score. Smaller c-jet rejection leads to a larger Higgs C score.

Impact on the analysis - Migration between fit categories

Results

- IDEA baseline very close to ideal vertex & calo detector
- Robust analysis strategy
 - Small change in event selection
 - Main effect is migrates events between categories, dues to changes in performance
- No change in μ_{Haa} as expected
 - G-score not varied nor truth gluon jet score corrected
- Largest impact on μ_{Hcc} w/ CLD trained tagger
- Caveats remainder!
 - Only approximate propagation of tagging effects
 - Ignored correlations of between b/c/s with g and light scores

^{68%} CL precision Variation	μ_{Hbb}	μ_{Hcc}	
BASE	±0.3%	±3.9%	
idealVXDCalo	±0.3%	+3.9% -3.8%	
lighterVXD_100pc	±0.3%	±3.9%	
heavierVXD_100pc	±0.4%	+4.6% -4.5%	
CLD	±0.4%	±4.3%	

Jet energy correction

Precision with e⁺e⁻ colliders (4)

- Why are e⁺e⁻ colliders the tool of choice for precision anyway ? (cont'd)
 - + Electrons are leptons, i.e., elementary particles: no underlying event
 - Corollary: Final state has known energy and momentum: (\sqrt{s} , o, o, o)
 - Example: an $e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}q\bar{q}$ candidate
 - Four jets in the event and nothing else
 - Total energy and momentum are conserved
 - $\Rightarrow \mathbf{E}_1 + \mathbf{E}_2 + \mathbf{E}_3 + \mathbf{E}_4 = \sqrt{\mathbf{s}}$
 - $P_1^{x,y,z} + p_2^{x,y,z} + p_3^{x,y,z} + p_4^{x,y,z} = 0$
 - Jet directions (β_i = p_i/E_i) are very well measured

1	1	1	1	E_1		\sqrt{s}
β_1^x	β_2^x	β_3^x	β_4^x	E_2	=	0
β_1^y	β_2^y	β_3^y	β_4^y	E_3		0
β_1^z	eta_2^z	β_3^z	β_4^z	E_4		0

- Jet energies (or di-jet masses: m_w) determined analytically by inverting the matrix
 - No systematic uncertainty related to jet energy calibration

A lot of Z are available anyway to calibrate and align everything

Patrick Janot

Physics at Future Colliders 28-29 July 2016

7

 If any jet in event E<0 OR E>240
 GeV [only a few percent of events] keep uncorrected value

