

Luminosity Spectra Redux

Thorsten Ohl

Institute for Theoretical Physics and Astrophysics University of Würzburg

http://physik.uni-wuerzburg.de/ohl

3rd ECFA Workshop on e^+e^- Higgs/EW/Top Factories Paris, October 9-11, 2024

- extremely dense bunches of charged particles, (required for high luminosities at linear colliders with single bunch crossings)
 - produce strong electromagnetic fields
 - ... EM fields deflect charged particles in the opposing bunch
 - deflected beams emit beamstrahlung, in addition to the ISR from the hard scattering process

- extremely dense bunches of charged particles, (required for high luminosities at linear colliders with single bunch crossings)
 - produce strong electromagnetic fields
 - : EM fields deflect charged particles in the opposing bunch
 - deflected beams emit beamstrahlung, in addition to the ISR from the hard scattering process
- ab-initio description of beamstrahlung and other beam transport effects outside of the scope of event generators for the hard "partonic" process
 - : depends on bunch shapes and beam optics
 - : completely independent of the hard partonic process

- extremely dense bunches of charged particles, (required for high luminosities at linear colliders with single bunch crossings)
 - produce strong electromagnetic fields
 - : EM fields deflect charged particles in the opposing bunch
 - deflected beams emit beamstrahlung, in addition to the ISR from the hard scattering process
- ab-initio description of beamstrahlung and other beam transport effects outside of the scope of event generators for the hard "partonic" process
 - : depends on bunch shapes and beam optics
 - : completely independent of the hard partonic process
- physics event generators need energy distribution functions D(x₁, x₂) and/or a corresponding stream of random numbers (x₁, x₂)

• beamstrahlung at FCC-ee/Z ($\sqrt{s} = 91.2 \text{ GeV}$) will be very soft:

Figure 4: Energy spectrum of emitted beamstrahlung photons using GUINEA-PIG (black) and xsuite (red). Photon counts are normalised to 1.

[Kicsiny, Buffat, Iadarola, Pieloni, Schulte, Seidel, 2022]

• beamstrahlung at FCC-ee/Z ($\sqrt{s} = 91.2 \text{ GeV}$) will be very soft:

Figure 4: Energy spectrum of emitted beamstrahlung photons using GUINEA-PIG (black) and xsuite (red). Photon counts are normalised to 1.

[Kicsiny, Buffat, Iadarola, Pieloni, Schulte, Seidel, 2022]
 modeled consistently by different simulation programs

• beamstrahlung at FCC-ee/Z ($\sqrt{s} = 91.2 \text{ GeV}$) will be very soft:

Figure 4: Energy spectrum of emitted beamstrahlung photons using GUINEA-PIG (black) and xsuite (red). Photon counts are normalised to 1.

[Kicsiny, Buffat, Iadarola, Pieloni, Schulte, Seidel, 2022]

- modeled consistently by different simulation programs
- but will not dominate the shape of e⁺e⁻-luminosity spectrum

harder spectra at higher energy designs

FIG. 1: Flux of the BS radiation as a function of their energy, emitted for the four FCC-ee working points, 45.6 GeV (black), 80.0 GeV (blue), 120.0 GeV (green), and 182.5 GeV (red).

[Boscolo & Ciarma, 2023]

the spectra become harder even as fractions of the nominal beam energies

$$z = \sqrt{rac{{
m E}_{e^-}}{{
m E}_{
m beam}}}rac{{
m E}_{e^+}}{{
m E}_{
m beam}}$$

FCC parameters, June 2024:

UNIVERSITÄT WÜRZBURG

COLLIDER FUTURE FCC-E	e main i	machine	e paramo	eters
Parameter		ww	н (zн)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch intensity [1011]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
horizontal rms IP spot size [µm]	9	21	13	40
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / <mark>5.4</mark>	3.4 / 4.7	1.8 / 2.2
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	≥5.0	1.25
total integrated luminosity / IP / year [ab-1/yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha + BS [min]	15	12	12	11

[Frank Zimmermann, FCC Week, June 2024]

vice-versa, the luminosity spectra for e⁺e⁻ from beamstrahlung alone are very steep, in particular on the Z-pole

$$z = \sqrt{\frac{\mathsf{E}_{e^-}}{\mathsf{E}_{\text{beam}}}} \frac{\mathsf{E}_{e^+}}{\mathsf{E}_{\text{beam}}}$$

Luminosity Spectra for ee

Thorsten Ohl (Univ. Würzburg)

UNIVERSITÄT WÜRZBURG

In a circular collider, the bunches are passing each other many times

Energy Spread

due to the focussing beam optics, energy losses do not accumuluate

UNIVERSITÄT WÜRZBURG

- In a circular collider, the bunches are passing each other many times
- due to the focussing beam optics, energy losses do not accumuluate
- simulation results are well described a gaussian energy spread

FCC/Z Energy Spread

(data provided by [Katsunobu Oide, 2023])

Energy Spread

- In a circular collider, the bunches are passing each other many times
- due to the focussing beam optics, energy losses do not accumuluate
- simulation results are well described a gaussian energy spread

FCC/Z Energy Spread

(data provided by [Katsunobu Oide, 2023])

Energy Spread

- In a circular collider, the bunches are passing each other many times
- due to the focussing beam optics, energy losses do not accumuluate
- simulation results are well described a gaussian energy spread

FCC/Z Energy Spread

(data provided by [Katsunobu Oide, 2023])

note that the x-scale is the same!

Energy Spread

Thorsten Ohl (Univ. Würzburg)

FCC parameters including energy spread:

Parameters

UNIVERSITÄT WÜRZBURG

FCC-ee collider parameters as of June 3, 2023.					
Beam energy	[GeV]	45.6	80	120	182.5
Layout		PA31-3.0			
# of IPs		4			
Circumference	[km]	90.658816			
Bend. radius of arc dipole	[km]	9.936			
Energy loss / turn	[GeV]	0.0394	0.374	1.89	10.42
SR power / beam	[MW]	5		0	
Beam current	[mA]	1270	137	26.7	4.9
Colliding bunches / beam		15880	1780	440	60
Colliding bunch population	$[10^{11}]$	1.51	1.45	1.15	1.55
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.71	1.59
Ver. emittance at collision ε_y	[pm]	1.4	2.2	1.4	1.6
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.75	1.25	0.85	0.9
Arc cell		Long 90/90 90/90		/90	
Momentum compaction α_p	$[10^{-6}]$	28.6 7.4		.4	
Arc sext families		75 146		16	
$\beta_{x/y}^*$	[mm]	110 / 0.7	220 / 1	240 / 1	1000 / 1.6
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.358	398.148 / 398.182
Chromaticities $Q'_{x/y}$		0 / +5	0 / +2	0 / 0	0 / 0
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.089	0.070 / 0.109	0.104 / 0.143	0.160 / 0.192
Bunch length (SR/BS) σ_z	[mm]	5.60 / 12.7	3.47 / 5.41	3.40 / 4.70	1.81 / 2.17
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38
Harm. number for 400 MHz		121200			
RF frequency (400 MHz)	MHz	400.786684			
Synchrotron tune Q_s		0.0288	0.081	0.032	0.091
Long. damping time	[turns]	1158	219	64	18.3
RF acceptance	[%]	1.05	1.15	1.8	2.9
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5
Beam crossing angle at IP $\pm \theta_x$	[mrad]	±15			
Piwinski angle $(\theta_x \sigma_{z,BS})/\sigma_x^*$		21.7	3.7	5.4	0.82
Crab waist ratio	[%]	70	55	50	40
Beam-beam ξ_x / ξ_y^a		0.0023 / 0.096	0.013 / 0.128	0.010 / 0.088	0.073 / 0.134
Lifetime $(q + BS + lattice)$	[sec]	15000	4000	6000	6000
Lifetime (lum) ^b	[sec]	1340	970	840	730
Luminosity / IP	$[10^{34}/cm^2s]$	140	20	5.0	1.25
Luminosity / IP (CDR, 2 IP)	$[10^{34}/cm^2s]$	230	28	8.5	1.8

"incl. hourglass.

^bonly the energy acceptance is taken into account for the cross section

[Katsunobu Oide, FCC Week, June 2023]

7

► e^{\pm} energy spread from BS and average photon energy much smaller than beam energy spread $\Delta E_{e^{\pm}}/E_{beam} \approx 0.15\%$ after many bunch crossings:

FCC 2024	$\Delta_{\text{BS}}\text{E}_{e^{\pm}}/\text{Gev}$	$\langle E_{\gamma} \rangle_{BS}/Gev$	$0.15\% \cdot E_{e^\pm}/Gev$
Z	0.0012	0.0016	0.07
WW	0.0039	0.0059	0.12
ZH	0.0140	0.0189	0.18
Тор	0.0329	0.0531	0.27

► e^{\pm} energy spread from BS and average photon energy much smaller than beam energy spread $\Delta E_{e^{\pm}}/E_{beam} \approx 0.15\%$ after many bunch crossings:

FCC 2024	$\Delta_{\text{BS}} \text{E}_{e^{\pm}}/\text{Gev}$	$\langle E_{\gamma} \rangle_{BS}/Gev$	$0.15\% \cdot E_{e^\pm}/Gev$
Z	0.0012	0.0016	0.07
WW	0.0039	0.0059	0.12
ZH	0.0140	0.0189	0.18
Тор	0.0329	0.0531	0.27

only visible for the high energy designs

(distributions fitted by circe2)

Thorsten Ohl (Univ. Würzburg)

► e^{\pm} energy spread from BS and average photon energy much smaller than beam energy spread $\Delta E_{e^{\pm}}/E_{beam} \approx 0.15\%$ after many bunch crossings:

FCC 2024	$\Delta_{\text{BS}} \text{E}_{e^{\pm}}/\text{Gev}$	$\langle E_{\gamma} \rangle_{BS}/Gev$	$0.15\% \cdot E_{e^\pm}/Gev$
Z	0.0012	0.0016	0.07
WW	0.0039	0.0059	0.12
ZH	0.0140	0.0189	0.18
Тор	0.0329	0.0531	0.27

only visible for the high energy designs

(distributions fitted by circe2)

Thorsten Ohl (Univ. Würzburg)

Fitting the modified gaussian is trivial ...

Fitting the modified gaussian is trivial ... e⁻e⁺ at FCC/Z

... after adapting the example circe2_input destributed with Whizard

- ... after adapting the example circe2_input destributed with Whizard
- allow for energies above the nominal E_{beam}:

- ... after adapting the example circe2_input destributed with Whizard
- allow for energies above the nominal E_{beam}:

filter out the regions without statistical significance to avoid spurious bins

```
map = null { 1 [0, 0.9945] }
map = null { 1 [1.0055, 1.1] }
```


- ... after adapting the example circe2_input destributed with Whizard
- allow for energies above the nominal E_{beam}:

filter out the regions without statistical significance to avoid spurious bins

```
map = null { 1 [0, 0.9945] }
map = null { 1 [1.0055, 1.1] }
```

don't adapt bin sizes too agressively

```
iterations = 1
```


- ... after adapting the example circe2_input destributed with Whizard
- allow for energies above the nominal E_{beam}:

filter out the regions without statistical significance to avoid spurious bins

```
map = null { 1 [0, 0.9945] }
map = null { 1 [1.0055, 1.1] }
```

don't adapt bin sizes too agressively

```
iterations = 1
```

only apply minimal additional smoothing

```
smooth = 1 [0, 1.1] [0, 1.1]
```


▶ e⁻e⁺ at FCC/Top

γγ at FCC/Z

γγ at FCC/Top

• Caveat: $e^-\gamma$ at FCC/Z needs some work

- Caveat: e⁻γ at FCC/Z needs some work
- > $z = \sqrt{xy}$ is contains an artifact that is not visible from the individual distributions:

e[−]γ at FCC/Top

UNIVERSITĂT WÜRZBURG

• for comparison: e^-e^+ at C³ [Lindsey Grey]

• for comparison: e^-e^+ at C^3 [Lindsey Grey]

map = null { 1 [0, 0.3] }
map = power { 99 [0.3, 1] beta = -0.7 eta = 1 }

Thorsten Ohl (Univ. Würzburg)

UNIVERSITÄT WÜRZBURG

e[−]γ at C³

UNIVERSITÄT WÜRZBURG

 C^3

 C^3

γγ at C³

Thorsten Ohl (Univ. Würzburg)