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Interested in eTe™ — 7 for abs. lumi.
SA Bhabhas (SABH) challenging for
AL/L=10"" at the Z

Forward ECAL design studies with
emphasis on e/~ separation
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Use upstream mini-tracker as lumi
measurement? Use (7, 0, zy¢x) for lumi
& EM deflection (EMD) study.

Early EMD studies (GP) for LEP/LC.
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Small-angle Bhabhas (SABH) are very challenging.

As discussed in Rimbault et al for ILC,
beamstrahlung (BS) (beam particle energy loss
before collision) and beam-induced EM
deflections (EMD) of the final-state e~ and e
in Bhabha events collectively affect the

acceptance for Bhabhas in the luminometer. wo [
Bhabha suppression effect, BHSE (red) = BS e o by s e o s
(black) + EMD (dashed-blue). Neglected BES? Ao gy (At =),
o (left) ILC RDR: L
Rimbault, Bambade, g Iy ;
Moenig, Schulte 12 Guneaplg o+, T
1000+ =31.3 mrad> ¢ © Electrons
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Voutsinas, Perez, ‘ |
NN | Dam, Janot e R T
Vs (GeV) Zyerex (MM)

@ Was a significant problem for LEP1 luminosity causing a 0.106% bias on supposed
0.034% systematic precision (OPAL). Bias correction relative error of 5% claimed.

@ Useful zy¢x for SABH events at ILC impossible? o(zvtx) 0.290/0.212 mm (Z/250).
@ More recent ILC studies (B-J, L, P, S): claim 5 x 10™* uncertainty from EMD.
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https://iopscience.iop.org/article/10.1088/1748-0221/2/09/P09001
https://arxiv.org/pdf/1403.7348.pdf

Various ECAL designs studied by Brendon

4 ECAL designs

@ Focus has been < h
5 Entries 4000
N g Mean 0.0662
trylng to 8 o0 Std Dev Dgzwz
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@ Need to also keep Deposited EM Energy Fraction

desired excellent
. Table 1. A selection of 4 ECAL designs with measured electromagnetic deposited energy fractions
energy rESO|Ut|on . and energy resolution for 128 GeV photons. All calorimeters are sufficiently deep to guarantee
longitudinal containment (here 40X,).

o (My favored design

Energy Resolution

is still 0.75mm Si f Layer Design | Si thickness | EM fraction | energy resolution
0.1 XO Sampling, 1 Xo 0.3 mm 0.964% 18.4%/VE
o 1 X, I mm 331% 15.7%/ VE
3.7%/VE) L X0 0.3 mm 521% 6.6% VE
1 X, 1 mm 17.0% 4.8%/ VE
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Event display (View 1) first 5 rad. len

128 GeV photons. Original from Brendon
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UHGC (left) : LumiCal-like (right)
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Event display (View 2) first 5 rad. lengths

Rotated a bit. 31 connected energy deposits vs 4 connected energy deposits.
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UHGC (left) : LumiCal-like (right).
Note: With idealized staggering can strive for A/(N+/12) at high E,.
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Event display (View 3) first 5 rad. lengths

Aligned to observed photon direction
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UHGC (left) : LumiCal-like (right)

Getting the correct initial photon conversion is critical (and not picking up hits
from soft back-scattered photons).

Graham Wilson and B. Madison (Univ. of Kansas) ECFA Workshop, Paris October 9, 2024



EMD deflection studies with Guinea-PIG

Took this on myself very recently. LEPZ benchmark looks pretty good. ILCZ case:
only BS (0.265%) or BS + BES (0.3%) affecting Bhabha tracking.
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LUMI BIAS
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EM DEFLECTION CALCULATIONS Ly

Accel. All angle units in radians BES THMIN THMAX DEFL(THMIN) DEFL(THMAX) PREFACTOR DL/L THIS/PREV. THIS/-0.001059
No?

1
2
3 |LEPZ VPDJ Paper Result -1.059E-03
4L J Paper Values. Bias using Egn 3. No? 313603 516E-03  12.81E-06,  11.19E-06 -0.003100041  -1.043E-03 0.9845
5 1L VPDJ Paper OPAL Exact Angles No?  31.288E-03 51.576E-03  12.81E-06]  11.19E-06 -0.00309796  -1.043E-03
6 Guinea Pig 111/112 Yes 31.3E-03 51.6E-03 12.833E-06. 11.203E-06 -0.003100041  -1.045E-03
7 GP 113/114 (Higher Comp. Prec. A) Yes 31.3E-03 51.6E-03 12.958E-06 11.336E-06 -0.003100041  -1.054E-03 1.0093 0.9955
8 ILCZ GP Z-85/2-86 No 31.3E-03 51.6E-03 141.787E-06. 100.188E-06 -0.003100041  -12.07E-03
9 ILCZ GP Z-87/2-88 (Higher Comp. Prec. B) No 31.3E-03 51.6E-03 146.997E-06, 105.267E-06 -0.003100041  -12.49E-03 1.0341
10 ILCZ GP Z-89/2-90 With BES Yes 31.3E-03 51.6E-03 141.509E-06. 100.349E-06 -0.003100041
11 ILCZ GP Z-91/2-92 (Higher Comp. Prec. B) Yes 31.3E-03 51.6E-03 146.691E-06 105.317E-06 -0.003100041: 1.0342
EEliLcz GP 7-93/z-94 (HCP B) and additive BES ~ Yes 31.3E-03 51.6E-03 146.867E-06, 105.096E-06 -0.003100041 .
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LEPZ: (Dx, Dy) = (0.0027, 0.115) & ILCZ: (Dx, Dy) = (0.409, 31.4)
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EMD deflection studies with Guinea-PIG I

LEPZ Beam Parameters (GP Simulation)
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@ ILCZ plots - here only include BS. Numerically inclusion of BES does not
appear to matter. (I intended to include BES too - will update plots in due
course). LEPZ results do include BES.

o Find lumi bias for ILCZ of 1.25%.
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EMD deflection studies with Guinea-PIG Il

ILCZ Beam Parameters (GP Simulation) ILCZ Beam Parameters (GP Simulation)
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Current ILD Detector Design
ILD forward design (FCAL) is driven largely by the LumiCAL; very similar to the
Gen2 LEP designs like OPAL designed mainly for SABH. FCC-ee squeezes into

62-88 mrad acceptance at z = 1.07 m replicating ILD-LumiCAL (M. Dam).
ILD is now designed for L¥*=4.1m

@ Conical beam-pipe with LumiCAL,
LHCAL, BeamCal

Currently 683mm for LumiCAL+LHCAL
LHCAL helps with hermeticity

May need more space in z if PLUG-Cal
precision sampling calo. proves
attractive (longer L*/smaller zyiy).
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Current parameters.

Physics drivers (not just R) include: 0 2412 < z < 2541 mm.
Q /e /et tagging @ 30 layers of 1 Xp. W absorber +
0.32mm Si.

@ hermeticity
@ R— ¢ pads, R = 1.8mm, §¢ = 7.5°.
[84, 194] mm in R.

Aside: OPAL had 0.25 Xj upstream of luminometer.

© azimuthal and energy resolution
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https://arxiv.org/pdf/2107.12837.pdf

ILD Tracking & Forward Region

Guinea-PIG pairs for ILC, B = 3.5T from
Antoine Laudrain.
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o For tracking upstream of LumiCAL will need to re-design beam-pipe
@ WIP - see effect of extending FTD to r=0 using fast tracking simulation
@ Pairs simulation - very encouraging. Clean upstream phase-space exists.

@ Estimating well Bhabha z,, has a high priority - more so than minimal
upstream material for Bhabha lumi measurement IMO.
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SGV studies. Need excellent A(z) for EMD control

Target zy uncertainty of 41 um at 45 GeV. Use geo4 detector model.

SGV ILD Model
SGV ILD Model

20 Uncertainty [um]

Theta Uncertainty [urad]
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Plots for polar angles of 10° (blue), 20° (magenta), 30° (red), 90° (black). | tried
to extend the geometry to smaller r, and run smaller angles, but issues ....

There are likely more correct analytic approaches, but naively, if one measures rg,
at zg and 6, one can extrapolate to zy at r = 0 using,

re
no

Uncertainty amplified by factors of 20 (Arg) and 400 (A) at 6 = 50 mrad. Need
precise points at low z and less material.

150 Azg = Azg @ Arg/sinf @ re AG/ sin” 0

2y = zg —

October 9, 2024
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Not so large. 40 pb at the Z (for 20°).

100

- ete 5y« 91 GeV —240 GeV —
s Bhabha —160 GeV —365 GeV' —
TTe——

16
12 R=dogf— /At hm,
=8
ab e
0 =
20 40 60 80 100 120 140 160
O or 5 (deg)
V5 (GeV) LO (pb) NLO (pb) w h.o. (pb) Bhabha
LO (pb)
91 39.821 41.043 [+3.07%]  40.870(4) [-0.43%] 26259
160 12.881 13.291 [+3.18%] 13.228(1) [-0.49%] 259.98
240 5.7250 5.9120 [+3.27%] 5.8812(6) [0.54%] 115.77
365 2.4752 2.5581 [+3.35%] 2.5438(3) [-0.58%] 50.373

20° < 0, < 160°, x» > 0.5 from 1906.08056
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https://arxiv.org/abs/1302.3415
https://arxiv.org/abs/1906.08056

Why is ete™ — 7 so attractive?

Focus here on experimental things. The hope and expectation is that theory will
be able to keep up.

@ Bhabhas look very problematic for high-precision absolute lumi. It was even
not under control experimentally at LEP1. Beam-induced EM deflections
affected the luminosity acceptance at the 0.1% level (see 1908.01704).

Di-photon process should not be much affected.
Di-photons much less sensitive to polar angle metrology than Bhabhas.
Di-photons less sensitive to FSR than Bhabhas.

More feasible now with modern calorimeters to do a particle-by-particle
reconstruction. Likely easier with di-photons (no B-field effect).

@ Current detector designs are arguably over-designed for Bhabhas with
some compromises for overall performance especially for high energy photons
in azimuthal and energy reconstruction, and perhaps for hermeticity.

@ Di-photons at very low angle is challenging! - but gives significant added
value to the assumed clean measurements in the tracker acceptance.
So let’s design precision forward calorimetry for electrons AND photons inspired

by various ideas (and avoiding some of the compromises) of related designs,
CALICE, ILD, SiD, CMS-HGCAL, ALICE-FoCal, Fermi-LAT.
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https://arxiv.org/abs/1908.01704

LUMI: Targets for Absolute Luminosity Precision

@ The standard process used for absolute
luminosity at LEP is small-angle Bhabha
scattering, ete™ — ete™ (high statistics).
This will be important for relative luminosity.

ee” Physics Processes at ILC, P = (~80%, +30%)

@ The pure QED process, ete™ — v, is now
also considered very seriously for absolute
luminosity, for both exptl. and th. reasons.

= @ It emphasizes reconstruction (rejection) of
e high energy photons (electrons) over most of
the detector’s solid angle.

@ Ideally match/improve on the stat. precision of the accelerator. Denominator

normalizing processes should have cross-sections exceeding the numerator.

e Ex. 1. ILC250, 0.9 ab ' LR: oy = 1.7 x 1074 —> otumi = 30 pb.

e Ex. 2. 10% Z per expt. with FCC: = 1.0 x 107%. = oum; > 30 nb.
What is achievable in terms of systematics? For now assume the target of 10~*
for expt.+theory. For 107* at the Z, one has x50 (ILC) or x10* (FCC-ee) more
hadronic Zs than needed. To match 10~# lumi syst. precision with 10~* lumi stat.
precision at the Z, need ojym;i > 2.5 pb (FCC-ee) and > 600 pb (ILC). Need to
prioritize yy acceptance at ILC; for 120 pb, lumi. stat. uncertainty is 2.2 x 1074
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Maximizing the v~ acceptance

The angular distribution favors more forward angles
doy 1 [(1+cos?6
d|cosl| s sin® 6

Note: ogL = o1r, 011 = 0rr = 0 — assists beam polarization measurement.

@ Significant increase in
Di-Photon Acceptance potentia| accepted

o BT T T T .

& cross-section for all \/s

LS compared with a 20°
.

acceptance cut?.

10 mrad
@ Factor of 2.5 — 3 increase

17.5 mrad

3\ a5 mrad feasible by extending to ILD
25 LumiCal acceptance?
2

@ Will need excellent Bhabha

Lo \lu‘\ I EEE RN RS NRTEE TN FENE PR AN

15— \ rejection.
1 — o Note: only use LumiCal to
0.5F define 63", No 67 cut.
) ST N AN A IR AR
0 10 18 0 pyin (deg?‘;es) 4typical LEP choice - driven by

tracker
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LUMI: efe™ — ~+ for absolute luminosity

Targeting 10~* precision. Cross-sections at /s = 161 GeV (o}, ~ 3.5 pb).

Omin (°) | 0yy (Pb) | Ac/o (10 prad) | o(ee)/o(y7)
45 53 20x10°° 6.1

20 12.7 22x107° 22

15 15.5 2.4 x 1075 35

10 19.5 29x10°° 68

6 24.6 3.9x10°° 155

2 35.7 8.1 x 107> 974

@ Unpolarized Born cross-sections. £24% for vy with (80%/30%) longitudinal
beam polarization. Typical HO effects: +5-10%.
Counting statistics adequate for /s > my. Note: Use whole detector.

@ For comparison, 10urad knowledge for OPAL small-angle Bhabha lumi
acceptance, corresponds to lumi. uncertainty of 100 x 1075.
v has “relaxed” fiducial acceptance tolerances compared to Bhabhas.

@ Bhabha rejection (e/~ discrimination) important. Can be aided by much
better azimuthal measurements given electron bending in the B-field.
FoM: B z;car. ILD has 8.7 Tm. FCC about 2.2 Tm. OPAL was 1.04 Tm.
Adequate rejection feasible within tracker acceptance? / challenging below.
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PLUG-Cal: Precision Luminosity Ultra-Granular Calo.

Initial Design Ideas

@ Precise location of the high-energy photon interaction point (via conversion
to eTe™) in thin absorbers (see Fermi-LAT for extreme version of this).

@ 250 GeV photons need longitudinal containment to avoid large constant
term. (10, 1)% of photons survive for (3, 6) Xp prior to interaction.

© Above items — many thin layers assuming a sampling Si-W ECAL.
@ Calibration — more straightforward with uniform sampling.

@ Potential for adoption in part of pixel-based devices. FoCal prototype
achieved 30 micron resolution for high energy electron showers with ALPIDE
sensors (1708.05164). 2 planes adopted for ALICE-FoCal upgrade.

Include 0t™'-layer and maybe more for enhanced e/~ discrimination.

Emphasize azimuthal measurements for ete™ / ~v discrimination. Expect
about 57 mrad acoplanarity for B z;cay = 8.7 Tm at /s = 91.2 GeV.

Particle-by-particle reconstruction capabilities.

o

(7}

o

© More emphasis on energy resolution.

@ Limited solid-angle — cost is not an over-arching concern.
@

Retain or exceed performance for Bhabha-based measurement.
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Use acoplanarity = (¢g — ¢, ) —m for yy/eTe” separation

OPAL luminometer (hep-ex/9910066)  Future e"e™ collider. Use OPAL
LumiCal acceptance (z = 2.46m)

; OPAL
T
\s =92.3 GeV
£ 4000
kel Entries 27229
o
§3500 0.1mm o, ?=_3‘5T } Mean  0.0562844
o BHLUMI, e*e” — e*e(y)
S I e | StdDev 0.00599364
= 3000 babayaga, e'e” — yy(y) {
o Entries 14151
2
8 2500 Mean  -8.849680-05
w
Std Dev 0.0209507

2000

1500/

1000/

500, k

ci“ L IS L L N L 1
‘0'5 L L L | L L L -0.04 -0.02 0 0.02 004 006 0.08 0.1 0.12

. | | )
4 08 -06 04 -02 0 02 04 06 08 1 Signed acoplanarity [rad]

Acoplanarity (rad)

) ) . Assumes B=3.5T, 0.1mm x, y resolution.
Lousy azimuthal resolution and eight (relative normalization arbitrary). Calo.

times weaker B-field (0.435T) rejection factors of 200 feasible.
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Energy Resolution Landscape

Calorimeter Photon Energy Resolution

L @ OPAL resolution was about
Gé;z‘s 480 1/10-X,, 750 um Si, 500 um G10, W 25%/\/E[Gevl at 45 GeV-
£ rocew e o ILD LumiCal with 30 layers with 1
] Xo sampling. Thin sensors. About
" . 20%/+/E[GeV] at low energy.

@ Should not under-specify 4-vector
reconstruction. Issues like
% ez o s o beamstrahlung etc.

8 1 1.2
Layer Thickness [X0]

Precision EM Calorimetry

@ Many samples enables energy precision with a sampling calorimeter.
@ Here 10 samples per radiation length - gives 3.66%/v/E[GeV].

The basic parameters of targeting excellent energy and azimuthal resolution and
photon/(electron - positron) separation are backed up by full simulation studies of
various longitudinal configurations (primarily for energy resolution) and initial
studies for transverse resolution (for x,y and so r, ¢).
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PLUG-Cal: Initial GEANT4 Design Studies

@ In collaboration with Brendon Madison. We have been exploring some
aspects of the design using various GEANT4 (4-11-01-patch-02 [MT])
examples (TestEm3, HGCAL _testbeam)

@ Basic EM energy performance studies using TestEm3. Range cut 1
micron. XY extent 100 cm. Adds up globally the energies deposited in each
type of material. Apply to Si-W calorimeter with various absorber and sensor
thicknesses.

o Initial results were for 35 Xy depth of W absorber with 140 samples with same
Si sensor thickness as ILD.

o New results based on simulations with 48 Xp total depth with samples every
0.1 Xp. Allows to optimized longitudinal containment and obtain results for
different sampling frequencies (every 0.2 Xy etc).

© Also using HGCAL _testbeam example to look at position resolution
observables. This has hexagonal pads with similar transverse dimensions to
standard ILD and SiD. Conclude 100 um position resolution in x and y is
well within reach.
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Longitudinal Studies for Energy Performance

Initial study (0.25 Xy per layer) used GEANT4 TestEm3 example with sampling
calorimeter with two materials.

© Tungsten: 0.876 mm
@ Silicon: 0.525 mm
with a total of 140 layers.

Later study (0.1 Xy per layer) used
@ Silicon: 0.750 mm
@ G10 (PCB): 0.500 mm
© Tungsten: 0.313 mm

and 480 layers to facilitate a variety of actual “software thicknesses” and “ganging
schemes" .

The increased Si thickness was also partly chosen as a result of the re-observation that
the first longitudinal layer hit in the ECAL for photons can easily be out-of-time and not
associated directly with the initial interaction and resulting high-energy shower particles.
Denote this as “backsplash” (see later Backsplash slide for more details) that can cause
outliers in position measurements that overweight “shallow” energy deposits.
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Measuring Energy Linearity and Resolution

Typical calorimeter analyses fit Gaussian distributions to truncated regions of
plots. Here instead a Gamma distribution is used to also model the skewness. The
two parameters can be configured to be the mean, i, and the fractional resolution,
(¢'/p). The mean and fractional resolution are annotated as (Ep, o) in the plots.

Geant4 Si-W ECAL Study

in

£ 60000 [ o 727 romer M”‘m -] . Ge§n14 Si-w ECA'L Study
3 | €= 77.0734 4/- 0.0062 Mev. 8 f 60000 — o= 7:8410 +/-0.0061 % Nyno06105 7
2 F g -1cev I > [ & - 77.1239 - 00062 Mev i
2 [t 140 14X, layers 1 E [ E=1Gev enae wre ||
g 40000 — —— Gaussian Model esumwsszsums: || P [t 14014 layers 7
2 L ] % 40000 [~ —— Gamma Model amumwissuns | 7]
H 20 ]
2 S g 2 t _
20000 - — g L ]
20000 — -1
ok . . N J [ ]
£ 10E W IR 0 L L h
§ of . 5 2H t ot L LT
s L E f} b i E 3 b bt bt o i
T 5 ' QI o R t
I T B ; § S b AT
70 80 90 8 4F t =
Deposited Energy in Si [MeV] =

90
Deposited Energy in Si [MeV]

Unacceptable Gaussian fit. Low energies

. . . But same data fits great to Gamma. As
and worse designs give distinct positive

o/ E improves, tends to a Gaussian.

skew. Not surprising given what we know CLT in action!

about the Poisson and Landau distributions.
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Energy Linearity and Resolution: 0.1, 0.3 GeV Photons

Geant4 Si-W ECAL Study Geant4 Si-W ECAL Study
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Graham Wilson and B. Madison (Univ. of Kansas) ECFA Workshop, Paris October 9, 2024



Energy Linearity and Resolution: 1 GeV, 3 GeV Photons

Geant4 Si-W ECAL Study Geant4 Si-W ECAL Study
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Energy Linearity and Resolution: 10 GeV, 30 GeV Photons

Geant4 Si-W ECAL Study Geant4 Si-W ECAL Study
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Energy Linearity and Resolution: 100, 300 GeV Photons

Geant4 Si-W ECAL Study Geant4 Si-W ECAL Study

€ 4000 2000
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Energy Linearity and Resolution

Calorimeter Photon Linearity Calorimeter Photon Energy Resolution

%77-5 I N R AR RN 2 82 I R T
g 775 . |401/A7X0W,525um8\t \\% : :
2 F Bl o L ® 140 1/4-X, W, 525 um Si—
<774 w 81 5 i E
e - T [ £=7.854%0.004% /{E (GeV ]
& 77.3[ ¢ [ E B
& . . £ 5
() . ] = -
B 772 ¢+ - ]
g I |
- + o, - -
= +0.1% band 1 790
é 77f + f [ 0 ! 1 ]
2 7.8
& 76.9F 3 [ ]
o £ ]
) n | =
2 768 = 7] 1
s S DN S DU BV DU i + 1 band (v =9.1/7)
T 050 log [Photon Eneray (Gev) A I I I IR WY U P
Yo o [y 115 2 2
) ) ) Iogm[Photon Energy (GeV)]
Excellent linearity in [0.1, 300] GeV . _ _
range. Within 0.1% above 2 GeV. Fits OK with only a stochastic term and
Albedo affects < 2 GeV. EM sampling MO constant term. Energy resolution of
fraction of 7.7%. 0.460 + 0.006% at 300 GeV.
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What causes the out-of-time back splash?

Some part of the shower energy travels towards the front of the calorimeter in
more isotropic processes like Compton scattering (back scatter peak around 250
keV) and positron annihilation (leads to back-to-back 511 keV photons).
Simulate 10,000 photons of 100 GeV impinging on 24 mm of Tungsten (6.8 Xp).
Measure flux of photons created (black), exiting the rear, exiting the front.

energy of neutral secondaries at creation

Enves 15400450208
Mean 01969
SDev 02339

0 0.2 0.4 0.6 0.8 [MeV‘]
Note the discontinuities (W X-ray
K-edge) and forward CS continuum
below the 511 keV peak

Graham Wilson and B. Madison (Univ. of Kansas)

ECFA Workshop, Paris

@ A significant portion of the backward

going photon flux is from positron
annihilation in matter resulting in
511 keV annihilation photons.

Suggests considering designing the
active layer for veto potential against
energy depositions from soft photons
(energy < 511 keV).

Also may want to understand how to
properly model the time delays in
annihilation photon emission (positron
thermalization in matter - and
sometimes positronium formation)

October 9, 2024



Si thickness choice for clean 511 keV photon rejection

ILD Si-W ECAL design currently has 525 um thick Si layers. Thicker, 725 pym
layers were already envisaged for future productions. | chose 750 um to allow for
noise. Current noise model is 1250 /t/ter € With ter = 325 um.

@ Choose Silicon volume pixel of
2.0mm*2.0mm*0.75mm.

@ Shoot both 511 keV photons (red)

Q
®
Ty

I — L
Entries 16407

>

% 750 um Silicon Mean 0.0098885
and 50 GeV electrons at center of 8 107 —— 511 keV photon SwDev  00and00s

2 E o+l
front face. :ﬁj o 50 GeV e- + 50 GoV 4] v somise?

Entries 500000
Mean 0.541609
Std Dev  0.118222
Underflow 0

o Add energies from odd and even
electron events (blue) to
simulate "double-MIP” pair expected  1°* oo __FTE
from a 100 GeV converted photon. 3

@ Smear by noise amount. %

o Find 99.941 4+ 0.003% pair efficiency
for 380 keV cut (the 511 keV
Compton edge is at 340 keV) with Ll ‘ Ll
pI’Oba b|||ty Of (23 :I: 02) X 10_5 to 02 Nmseos‘rtnearedoegergy dgpfosmon in Si [MeV]
mis-id a 511 keV photon.

Sy T

Graham Wilson and B. Madison (Univ. of Kansas) ECFA Workshop, Paris October 9, 2024



Current Calorimeter Model Energy Resolution

More layers. Thicker Si. Include gap material.

Calorimeter Photon Energy Resolution Calorimeter Photon Energy Resolution
? T 1 : e Eaame ° T : o Emam
fu fu
[) F — [+] = -
o [ ] o [ ]
Wk e 480 1/10-X, 750 um Si, 500 um G10, W — Wk e 380 1/10-X, 750 um Si, 500 um G10, W —|
[ ] [ ]
< 4 EE—3664+0008% NE (GeV) ] < 4 EE—3664+0008% E (GeV) ]
38} 1 38 ]
L ) . L ) e
36 T 36 4
3 + 16 band (%/v = 2.3/4) . 3 + 10 band (x¥v = 2.3/4) 1
34/ 1 34 1
3.21 1 3.21 1
T T B [ B T B B N B
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
Iogm[Photon Energy (GeV)] Iogm[Photon Energy (GeV)]

@ Need 38 Xj to avoid energy resolution degradation up to 250 GeV.

@ Length around 60 cm. Can be further reduced. Coarser deep layers and/or
fitted leakage corrections.

@ Very competitive with homogeneous calorimetry.
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Position Resolution Tests

How much can the photon and electron position resolution be pushed with small
cells? Can one localize the initial photon interaction point? thus measuring the ~
scattering angle, = tan~1(r/z), and aiding in separating electrons and photons.

o Use GEANT4 example HGCal_testbeam (CMS). The software was well
adapted to the task - but is NOT the proposed design concept.

@ Uses hexagonal Si pads with 28 layers totalling 27 Xy. Absorbers included
Pb, Cu, CuW (quite a mix...).

e In a first step changed hexagonal pixel areas from 1.09 cm? to 0.301 cm?.
@ So far, longitudinal structure unchanged - except beam starts inside Al box.

Beam particles are incident on the array with a Gaussian profile with spread in x
and y of 1.5 cm. Residuals for calorimeter position observables are calculated with
respect to the randomized true beam position event-by-event.

hexagon x horizontal hexagon y vertical

Graham Wilson and B. Madison (Univ. of Kansas) ECFA Workshop, Paris October 9, 2024



HGCAL 405-cell version

6 muﬁ—u——mfnzm
yén\,;m‘,_ PECDSIORT
o = =
4 220
2
0
-2
w
& 000 0 e e
—4 )
e e ™
claloiaios
6 & o

405 cells per wafer, area = 30.1 mm

T e T a7 . 7 HGCAL 10K-cell'version ™ .. ™ o ™ 7

NoName

Enves 41397850507 )

NoName
Entries 82215 X Mean x -0.01507 |
Mean x 0.09171 Meany 0192 )¢
Meany -0.006474 5(

StdDevx 2792
StdDevy  3.867
o

Std Devx 2751

St Devy a9t e

» 9275 cells per wafer, area = 1.25 mm?.
Zoomed into R=1cm.

Graham Wilson and B. Madison (Univ. of Kansas)
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Choosing the best hit in the first hit layer

1 GeV photon

s

02 0 o2

1 GeV photon

i

i

i
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100 GeV photon
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Note: often outliers from “back-splash” (more prevalent at the higher energy)
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aham Wilson and B. Madison

Shower center-of-gravity (all layers)

1 GeV photon
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Timing/Promptness Potential (Work In Progress)

Check consistency of true time-of-flight with speed-of-light. Here for the highest
energy hit in the 1st hit layer for 100 GeV photon with 180 keV cut.

Only look at the 88% of events where
rovesd the chosen hit is prompt.

id
Envies 10000

a

100 GeV photon

Events per 10 ps bin
3

800,

5 . T T I T T T T UTT T Enres 8810
10t £ || Prompt highest energy hit in 1st layer Mean  0.00129776

£ 700f| Hegagon-x StdDev  0.165034
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1 5 600 Overflow 15

o ~ HGCAL-like, A,, = 0.30 cm? Entries 8810

2 Mean  0.00238903

1 2 500
i
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N

8

8
T

Std Dev 0.16581
Underflow 15
Jﬁw i Overflow 16

il ol e b
-08 -06 -04 -02 0 0.2 0.

@
S
3

Define prompt hit as within 0.1ns of
expected time. In 12% of events the hit
previously chosen based on its energy to
define the position is non-prompt.

N
S
3

T T T

=]
3

4 06 0
Position Residual [cm]

Can recuperate close to perfect hexagonal pitch resolution even for high energy
showers. Here perfect would be o, , = 0.155 cm.
To do: use alternate position estimator for the missing 12% - like next layer.
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HGCTB Shower Fitting for Position

@ Use default 300 um thick Si sensors.

@ Add cells into longitudinally integrated “towers” if cell energy exceeds 180
keV (a double-MIP like cut).

@ Then fit for the shower transverse center (x, y) using the energy depositions
in each hexagonal tower with more than 0.5% of the observed energy with a
mixture model with a shower core and a shower tail.

o Used MC integration in 2-d (about 1s per event for fit).

Very promising results (imposed a R < 25 mm cut).

Chi-squared p-value 100 GeV photon
300 hpChisq 1000
Entries 7489
Mean 0.4927
Std Dev 0.2866
¥/ ndf 4301749
00 1489517

Fitted center
Hegagon-x
800 Hexagon-y

900,
250

HGCAL-lke, A, = 0.30
200 700 ) Moo
SdDev 0227325
Al Underfiow 0
1 Overfiow [

000258138

Events per 0.1 mm bin

150 - - 500, | ]
400, rr
100 200
50

o L

% 01 02 03 04 05 06 07 08 F;?:value‘ %08 e 040z 0 02 0305...3;2m|mmf
Very acceptable fits Position resolution improves to 225um.
Still to use 3-d information (narrow shower start) J
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s 100 microns feasible? YES.

@ Found 225 microns for 100 GeV photons with HGCAL test beam set up.
Limited especially by cell-size of 0.30 cm?. Latest results with 1.25 mm?
cells: 112 microns (100 GeV) and 75 microns (250 GeV) with shower fitting.

@ Likely can still be improved. Should be even better with the 100+ thick-layer
designs (much more sampling information but also Ry degradation).

@ The FoCal prototype 1708.05164 as shown below gives EM-shower position
resolution on the 25 micron scale for 30 GeV showers!

;'}""""""""""""'; @ Note offset zero
501 .

F ] @ Simulation neglects beam
[ « Data(e/e" ] .

45:’“ il ] divergence.

F O ¢ Simulation

sof-| ] In fact 100 microns looks to be a good
o\ ] target for 45 GeV photons given the wish
W ] to cleanly separate Bhabhas from ~~

sl \ "~ 3 using acoplanarity at all energies.

ol ~—_ . ] Improved resolution at higher energy
3 -

S D DT D BT should offset some of the separation
0 50 100 150 200 250

Energy(GeV) degradation from less magnetic
FoCal prototype deflection.

Position Resolution(um)
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https://arxiv.org/abs/1708.05164

Conclusions

@ | believe the PLUG-Cal concept has potential for superior performance for
luminosity measurements even with ete™ — v below the tracker acceptance.
Potential doubling of acceptance. Very detailed shower reconstruction.

Many Bhabhas for calibration /cross-checks.

@ It can likely make radial measurements better than ILD LumiCal but with longer
Moliere radius and better energy and azimuthal resolutions and hermeticity.
So competitive for Bhabha-based measurements too.

@ Key issue for luminosity: systematic uncertainty on the acceptance definition.
Easier with a tracking-like focus on the position response of the shower start
and neutral particles (EMD concerns).

@ Plan to benchmark against current ILD design for electrons and photons once
baseline PLUG-Cal design has emerged.

@ How to optimize for position resolution not yet clear. I'm wary of compromising
the analog performance as energy resolution is also a key part of defining the
acceptance and background rejection. Will have electron tracking layers (also may
help with EM deflection diagnostics).

o Radiative neutrino counting is a great physics motivation for electron/photon

separation beyond the tracker. See recent Cracow Epiphany Conference talk.
At /s = 250 GeV, the radiative-return to the Z photons have 108 GeV.

Graham Wilson and B. Madison (Univ. of Kansas) ECFA Workshop, Paris October 9, 2024


https://indico.cern.ch/event/1288528/contributions/5718575/attachments/2777490/4840923/Epiphany_GWW_V1.pdf
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ILD LumiCal
"\ Outer éctive radius R = 195.2 mm -

3:x 100 pm guard rings
Inner active radius R = 80.0 mm

October 9, 2024
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FCC-ee LumiCal
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Shower Shapes Examples

With 12 samples per Xj these are measured really well. At 4 GeV the C-0-G
resolution is 0.07 Xj - see approximate 1/\/E scaling of resolution.
Here use W / 1mm G10 / 525 um Si (totaling 1/12 Xj).

Geant4 Si-W ECAL Study (1 GeV) Geant4 Si-W ECAL Study (4 GeV)
x=2500F" T T T T T T T T T i <= 600r T T T T T T T T T ]
] L B o r Entries 100000 | [ Entries 25000 | ]
I~ L Entries 100000 | [Enties  100000| | S E Mean 69102 || Mean  7.7335 |
& 2000/— Mean 5.502 | |Mean 6.3411| —| g 500~ StdDev  0.98066 || Std Dev  1.5497 ||
2 L StdDev  1.0117] [StdDev 16035 | — o E ]
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- Ultra-fine sampling (1/12 Xn) B [ ping o
I ] 300 —— Electron -
ol — Electron ] C ]
1000 Photon - r Photon b
L oto B 200(— 3
500 - r ]
[ B 100~ M -
L. | E M"Wm.. ]
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Shower Longitudinal Center-of-Gravity [X | Shower Longuudmal Cemer of-Gravity [X ]
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Averaged Shower Longitudinal Profiles

Same calorimeter model as previous slide (1/12 X, samples). 1 GeV photons.

Longitudinal profile

Longitudinal profile

Layer number
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250
Layer number

Energy deposited (Si+G10+W) per layer

Energy deposited in Si per layer
This well-known pernicious “shower-age” effect means that the e/MIP ratio tends

to get smaller with shower depth, but in an energy dependent way. Makes it
non-trivial to calibrate calorimeters with nonuniform sampling.

Si/(Si+G10+W) energy ratio per layer
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Radiative Neutrino Pair Production

Z" v
SR Mﬁ 2 P Approximate Born cross-section
‘ ‘ Mv (Mw — oo limit, neglect TGC graph)
et —4—banaaans Y ot ——— _
, Where x = E, /Eyeam, y = cosb,.

oy Gias(l—1z) [(1 -2y 4 s_:ﬁ]
7 T dzdy 672z(1 - y7) ’
e~ PN Ve ot = v,
w - VM/‘/MM 24 NU (gv+gzx) +2(gu +ga) [1—"'&511]
et ———— 3+ v .
[ sl-z[] +r2/M2

w
“.:}WW ! Note. s(1 — x) = M2,

Cross-section Features

@ 3 components: Pure Z exchange (for v.v.,v,V,, .V, proportional to N,),
pure W exchange (for veve only), W-Z interference (for veve only).

o Angular distribution mostly 1/sin”6.,.

Recent paper discusses measuring I, using W-Z interference (Aleksan, Jadach
1908.06338).

Graham Wilson and B. Madison (Univ. of Kansas) ECFA Workshop, Paris October 9, 2024



Example Data from OPAL (ABBIENDI 200

Kinematic acceptance: xt = pJ/Epeam > 0.05, 15° < 6 < 165°.
OPAL OPAL

< T = 20 T T T
% 150 B 3
= + . P .
3 \'s = 189 GeV £ e'e” — y(y)+invisible particle(s)
= &
E @ Xp>0.05, 15" <9 < 165°
g N,=2.63 S5p i
[:] 100 £ =1.12 B vVy(y) prediction
w=1e
10 | -
50 B
5 4
o S S e S =,
10 20 30 40 50 60 70 80 90 100
Ey (GEV) L L 1 L L L L L
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Centre-of-mass energy (GeV)

Figure 5: Photon energy distributions for single-photon events. The points with error bars are the
data. The solid histogram is the prediction for the values fir = 112, N,
with the data. The dashed histogram is the expectation for the Standa

2.63 most. consistent

Model values fiy = 1 Figure 1:  The measured value of o(e’e” — 5(7) + invisible particle(s)), within the kinematic
Ny = 3. The hatched region indicates the pure s-channel Z" contribution for N, = 2.63. All predicted acceptance of the single-photon selection, as a function of /5. The data points with error bars are
distributions were caleulated using the NUNUGPVYS generator OPAL measurements at /5 = 1 1. 172, 183 and 189 GeV. The eurve is the prediction for
y) from the KORALZ generator.

Note xt cut driven by need to veto radiative Bhabhas. Inner edge of forward
calorimeter at 25 mrad in OPAL.

the Standard Model process e™e~ — 177(y
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Radiative Bhabha Scattering

Can mimic eTe™ — vy if e and e™ are undetected below polar angle, 0.

Rodisbne Blebhs Becky
¥
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Examine potential for v/s = 250 GeV

Kinematic acceptance: xr > 0.01, 1° < 6 < 179°. (x > 0.1).
\s = 250 GeV (KKMCee5)

£ 9007\ \'s = 250 GeV (KKMCee5)
g hst_SinThPhVis 5§ 9000
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@ RH plot shows v.7.v(7) in blue and v,7,7(7) in red.

@ Loosening of acceptance increases cross-section to 13.7 pb at /s = 161 GeV and
to 5.5 pb at 250 GeV.

o Needs very good electron/photon discrimination down to 1° and beam calorimeter
(BCAL) veto to 5-10 mrad (feasible for ILC not FCC-ee).

@ Excellent forward calo. energy resolution can help isolate the W-Z interference.

Graham Wilson and B. Madison (Univ. ECFA Workshop, Paris October 9, 2024



New plots with energy threshold

Only count hits with > 180 keV in 300 micron Si layer.

Graham Wilson and B. Madison (Univ. of Kansas) ECFA Workshop, Paris October 9, 2024



Choosing the best hit in the first hit layer

1 GeV photon
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Shower center-of-gravity (all layers)

1 GeV photon
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First Hit Layer CoG

1 GeV photon
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CoG from layers within 5 Xj of 1st hit layer

1 GeV photon
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100 GeV photon
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Timing/Promptness Potential (Work In Progress)

Check consistency of true time-of-flight with speed-of-light. Here for the highest
energy hit in the 1st hit layer for 100 GeV photon with 180 keV cut.

Only look at the 88% of events where
rovesd the chosen hit is prompt.
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Define prompt hit as within 0.1ns of
expected time. In 12% of events the hit
previously chosen based on its energy to
define the position is non-prompt.
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Can recuperate close to perfect hexagonal pitch resolution even for high energy
showers. Here perfect would be o, , = 0.155 cm.
To do: use alternate position estimator for the missing 12% - like next layer.
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Fun facts on hexagons

@ For random points within a hexagon of side-length, a, with a = 1, centered on
(0,0), x extends from (-1.0, 1.0) while y extends from (—‘/7§ ‘/75)

o The hexagon area is 3‘[ a°.

@ The square with identical area has side-length, d = 1.61185 a.

@ The distributions are a superposition of uniform and triangular components.

Hexagonal x Distribution Histogram Hexagonal y-Distribution Histogram

075 050 025 000 025 050 075
v

For the same area, surprisingly hexagons have 2% better localization resolution??
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