

Hints for New Higgs Bosons in **Associated Di-Photon Production**

3rd ECFA Workshop 2024, Paris 9th October 2024

Swiss National Science Foundation

Universität Zürich

Sumit Banik Based on: arXiv:2407.06267

- O SM not the ultimate theory of nature.
- O Minimality of the scalar sector of the SM not guaranteed theoretically.
- O Associated Production provides a fairly unexplored window to NP.
- O Reduced SM background and enhanced NP sensitivity.

O ATLAS recently performed Model-Independent analysis of $\gamma\gamma + X$ for SM Higgs

Target
High jet activity
Top
Lepton
Tau
$E_{\mathrm{T}}^{\mathrm{miss}}$

\circ 22 final states (X)

Full Run 2 Data

Signal region	Detector level	Correlatio
4j	$n_j \ge 4$	-
$\ell b \ t_{ m lep}$	$n_{\ell} \ge 1, n_{b-\text{jet}} \ge 1$ $n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1$	-
$rac{2\ell}{1\ell}$	$ee, \mu\mu \text{ or } e\mu \\ n_{\ell} = 1, n_{t_{\text{had}}} = 0, n_{b-\text{jet}} = 0$	< 26%
$1\tau_{\rm had}$	$n_{\ell} = 0, n_{\tau_{\text{had}}} = 1, n_{b-\text{jet}} = 0$	_
$\begin{array}{l} E_{\mathrm{T}}^{\mathrm{miss}} > 100 \ \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss}} > 200 \ \mathrm{GeV} \end{array}$	$E_{\rm T}^{ m miss} > 100 { m ~GeV} \\ E_{ m T}^{ m miss} > 200 { m ~GeV}$	29%

O Excesses Most Pronounced: $\gamma\gamma + \ell b$, $\gamma\gamma + MET$, $\gamma\gamma + 1\tau$, $\gamma\gamma + 4j$, $\gamma\gamma + 1\ell$

[ATLAS: CERN-EP-2022-232]

O Possible new Higgs Boson?

[ATLAS-CONF-2024-005]

o No Excesses at 152 GeV in SRs: $\gamma\gamma + t_{\text{lep}}$, $\gamma\gamma + 2\ell$, $\gamma\gamma + 2\tau$

• Hints towards DY production of new Higgs at LHC

O No significant excess in Inclusive Searches

Simplified Model

- O Two New Particles: S_{152} , S^{\pm}
- $\circ S_{152}$ produced only via DY process
- Dominant decays of S^{\pm} : $tb, \tau\nu, WZ$
- O Simulation Setup: MadGraph + Pythia + Delphes
- O Log-Likelihood Fit performed using Poisson Statistics

Simplified Model Charged Higgs Decay

- $O BR(H^{\pm} \rightarrow tb \rightarrow bbW) = 100\%$
- o Dominant Effect: $\gamma\gamma + \ell b, \gamma\gamma + MET, \gamma\gamma + 1\ell, \gamma\gamma + t_{ep}$
- O Combined significance: 3.8σ

Simplified Model Charged Higgs Decay $\circ BR(H^{\pm} \to \tau \nu) = 100\%$

- O Dominant Effect: $\gamma\gamma + MET, \gamma\gamma + 1\tau, \gamma\gamma + 1\ell$
- o Combined significance: 3.8σ

Simplified Model Charged Higgs Decays

$\circ BR(H^{\pm} \rightarrow WZ) = 100\%$

- O Dominant Effect: $\gamma\gamma + MET$, $\gamma\gamma + 1\ell$, $\gamma\gamma + 2\ell$, $\gamma\gamma + 2\tau$
- O Combined significance: 3.5σ

Dominant in Triplet Model (See [2404.14492])

Model Building Key Points O Small total production cross-section

- O Dominant DY production cross-section
- o Large BR($H^{\pm} \rightarrow tb$) and BR($H^{\pm} \rightarrow \tau\nu$)
- Small BR($H^{\pm} \rightarrow WZ$) to avoid multiple leptons
- Sizable BR($H \rightarrow \gamma \gamma$)

Explanation in 2HDM-I Description

- o Two $SU(2)_L$ doublets: ϕ_1 and ϕ_2
- O Scalar Particles: h, H, A, H^{\pm}
- o Free Parameters: $m_h, m_H, m_A, m_{H^{\pm}}, m_{H^{\pm}$

$$m_{12}^2, \tan\beta = v_2/v_1, \alpha$$

O Suppressed gluon-fusion, VBF, VH cross-section of H for large tan β in Type 1

- O Dominant decay modes of H^{\pm} : $\tau\nu$, tb
- **O** Considered Benchmark Point:

 $m_H = 152 \text{ GeV}, m_{H\pm} = 130 \text{ GeV}, \alpha - \beta \approx \pi/2$ $m_A = 200 \text{ GeV}, \tan \beta = 20, m_{12}^2 = 1100 \text{ GeV}$

- $O Br(H \rightarrow \gamma \gamma)$ required at the percent level
- O Possible in Aligned 2HDM without Z_2 symmetry

- O Model-Independent analysis by ATLAS of $\gamma\gamma + X$ in 22 SRs
- O Excesses observed in some SRs
- O Hints for associated production of Neutral Higgs Boson
- Explanation possible in 2HDM Type-1
- Charge $Br(H \rightarrow \gamma \gamma)$ in general aligned 2HDM

Thank you for your attention!

