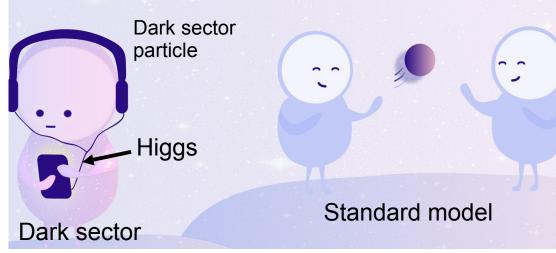


3rd ECFA Workshop, Oct. 9, 2024 @ Paris

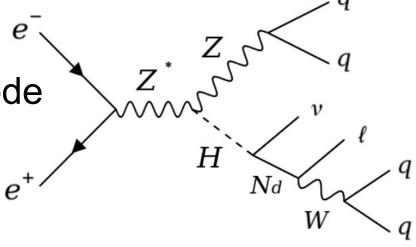

Simon Thor (KTH)

Masaya Ishino, Junping Tian (U. Tokyo)

Paper accepted by PRD, arXiv:2309.11254

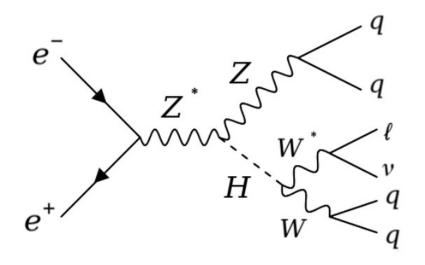
Higgs as probe of BSM

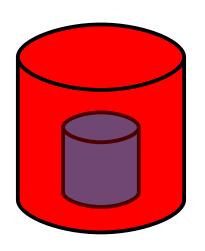
- No signs of BSM yet (except neutrino mass)
- Higgs boson one of the least understood SM particles
 - Might be connected to BSM, e.g., a dark sector
- Precision measurements of Higgs could lead to discoveries

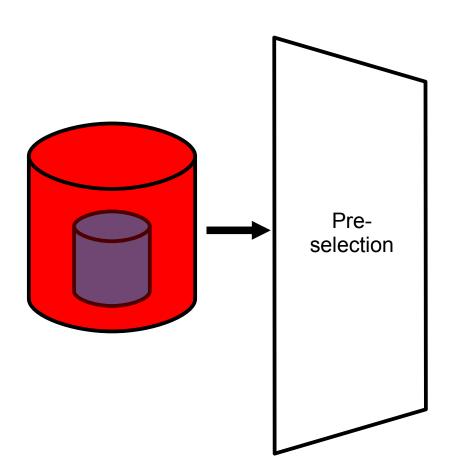


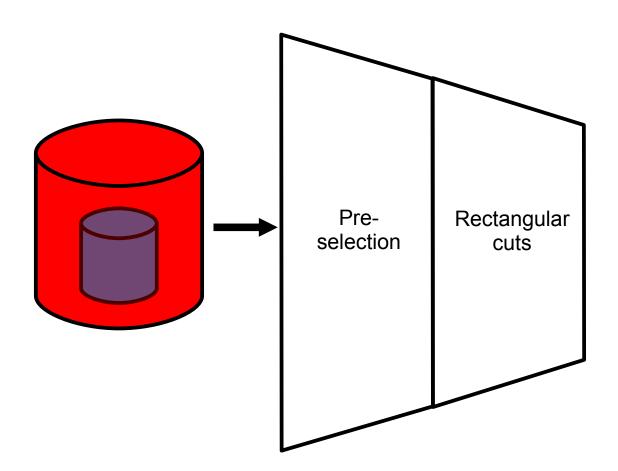
Heavy neutral leptons

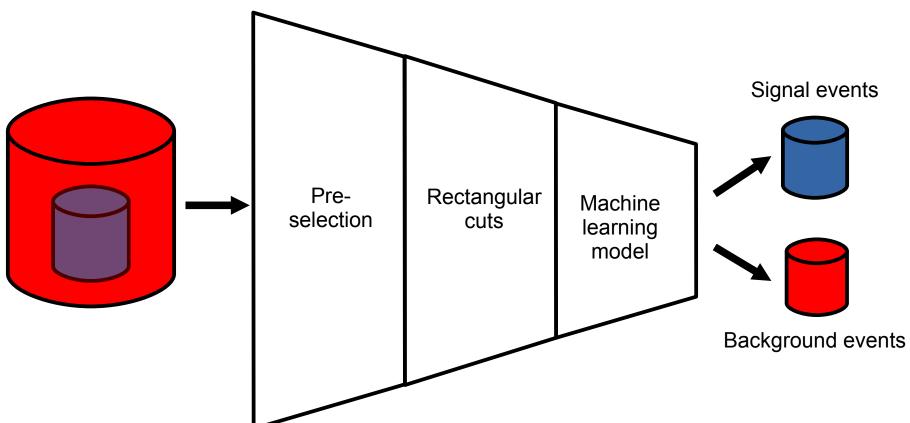
- Also known as sterile neutrinos, dark neutrinos etc.
- Various models
 - Majorana particle that gives neutrinos mass via Type-I Seesaw mechanism
 - Dark sector model with SU(2)_D that result in matterantimatter asymmetry [arXiv:1910.08068]
- In this study: $m_Z < m_{Nd} < m_H$


BSM signal


- Exotic Higgs decay: H→vN_d
- Only e, μ channels
- Focus on hadronic decay mode
- Signal characteristics:
 - 4 jets
 - 1 isolated lepton
 - Missing 4-momentum
- Free parameters: HNL mass, BR(H→vN_d)BR(N_d→IW)⁴




Dominant background


- Same final state as signal
- Also includes a W boson
 - Problem for invariant mass reconstruction
- W* can be used for filtering this background

Dataset

- Full detector (ILD) simulations
 - Whizard (event generation)→Pythia (parton shower + hadronization)
 →Geant4 (detector simulation)→Marlin (reconstruction)
- 1000 fb⁻¹ each of beam polarization (-0.8, +0.3), (+0.8, -0.3)
- $\sqrt{s} = 250 \text{ GeV}$
- Aligns with currently proposed configuration of ILC

Signal

- m_{ND} = 95, 100, 105, 110, 115, 120 GeV
- ~200 000 events per mass per beam polarization

Pre-selection

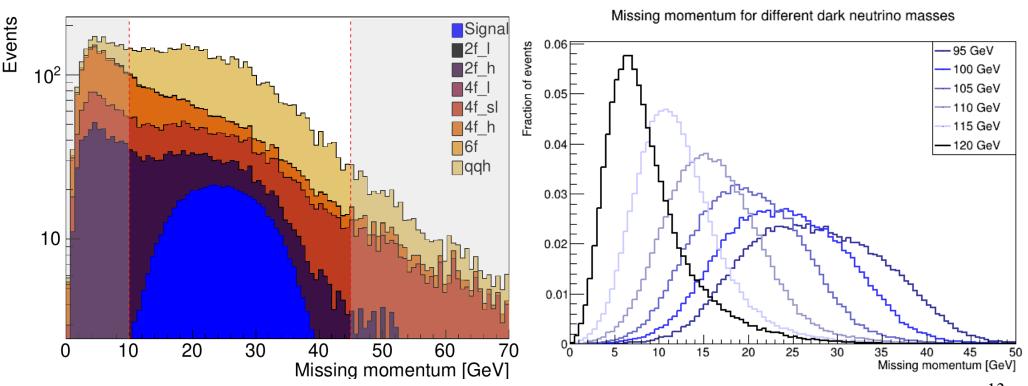
- Require at least one isolated lepton (neural network)
 - Muon: lepton finder output > 0.5
 - Electron: lepton finder output > 0.2

- Cluster remaining particles to 4 jets with Durham clustering
- Pair jets to Z and W to minimize

$$\chi^2 = \left(\frac{m_W - m_{12,jet}}{\Delta m_{W,jet}}\right)^2 + \left(\frac{m_Z - m_{34,jet}}{\Delta m_{Z,jet}}\right)^2$$

Mass resolution calculated from invariant mass from MC truth jets

Rectangular cuts

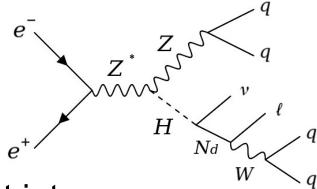

- Optimize cuts to maximize significance $\sigma = s/\sqrt{(s+b)}$
- Separate cuts for each beam polarization, HNL mass

Example (m=100 GeV, (+0.8, -0.3) beam polarization)

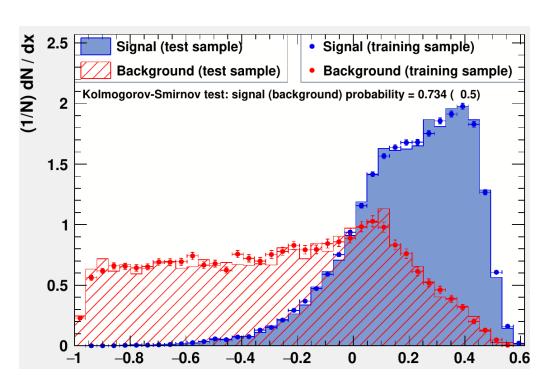
- (Lepton energy)/50 + (missing energy)/100 < 1
- Isolated lepton finder output > 0.6
- 160 GeV < 4-jet invariant mass < 220 GeV
- Durham jet distance $y_{4\rightarrow 3} > 0.004$ (if jets are more likely from 4 or 3 quarks)
- At least 4 particles in each jet $y_{4 o 3} = \min_{i,j} \left\{ \frac{2 \min\{E_i, E_j\}^2 (1 \cos(\theta_{ij})}{E_{vis}^2} \right\}$
- 10 GeV < Missing momentum < 45 GeV

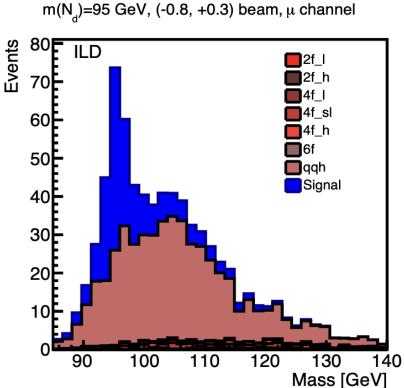
Missing momentum cut

Differs significantly for different dark neutrino masses

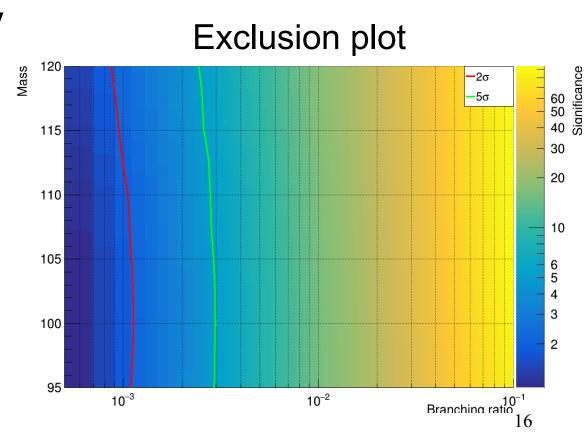

13

Machine learning

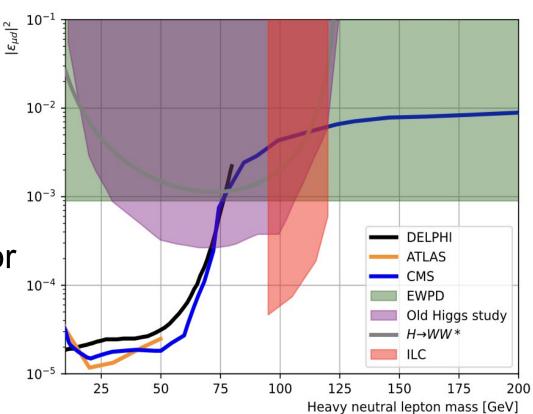

- Boosted decision tree
- Separate BDT for each mass, beam polarization


Input parameters

- Lepton energy, missing energy
- 4-jet combined momentum
- Angle between isolated lepton and closest jet
- Lepton, Missing 4-momentum, Z boson production angle
- Lepton helicity angle in dark neutrino rest frame
- Higgs, Z boson, W boson, dark neutrino invariant mass


After cuts: signal & background

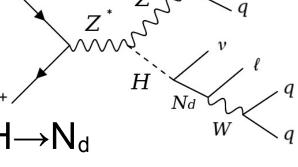
Total significance


- Background reduced by factor of ~200 000
- ~20% of signal left
- H branching ratio can be probed down to 0.1%
- By some estimates, BR measurements could be
 25x better than HL-LHC!

Exclusion

 Convert branching ratio to mixing angle between SM neutrino and HNL

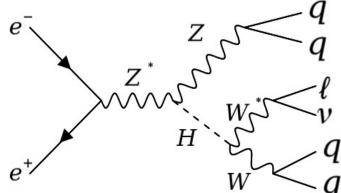
 Exclusion improved by factor of 10 compared to current constraints (possibly more)



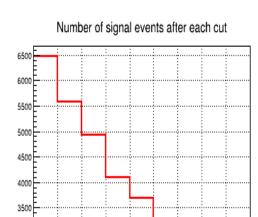
Summary

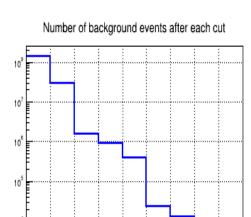
- Study heavy neutral lepton model
- $m_Z < m_{Nd} < m_H$

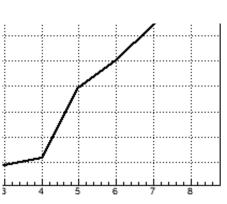
- Rectangular cuts + machine learning
- Constrain BR($H\rightarrow vN_d$)BR($N_d\rightarrow IW$) to **0.1%** (at 2σ)
- 25x higher significance compared to HL-LHC
 - ILC allows for high precision measurements!
- Accepted by PRD: <u>arXiv:2309.11254</u>



Side outcome: H→WW*

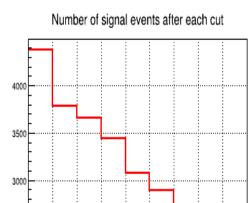

- H→WW*→qq Iv dominant background
- H→WW* interesting to study on its own
 - Key to Higgs total width

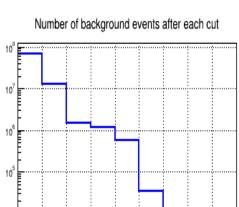


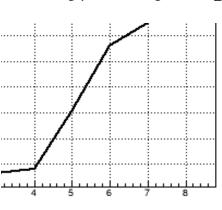

- Only investigate H→WW*→qq Iv decay cnanner
- Same workflow as dark neutrino analysis
- Dark neutrino-related input parameters to BDT are removed
- No lepton channel separation (yet)

Cut table | (-0.8, +0.3) beam

	Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f
No cuts	6472	136651487	0.55	12982897	77324421	10379315	19163106	16800470	1278
Pre-selection	5583	30106102	1.02	7366002	1606336	7651845	13260215	220833	872
elep/50. + emis/90. < 1.	4930	1556237	3.95	75113	265900	857303	209602	147613	705
0.8 < mvalep	4101	877321	4.37	54525	41290	623639	138607	18676	585
(180. < mvis) && (mvis < 225.)	3695	386614	5.91	34476	21865	237881	82092	9918	383
0.007 < y34	3201	23318	19.66	160	2109	406	13519	6778	346
2 < min_n	3126	12464	25.04	4	1223	7	4376	6541	314
(10. < mis.P()) && (mis.P() < 50.)	2896	5327	31.93	2	564	4	2207	2449	102
MVA cut	2420	981	41.50	1	73	2	570	304	31







Cut table | (+0.8, -0.3) beam

	Total signal	Total background	Significance	2f_l	2f_h	4f_l	4f_sl	4f_h	6f
No cuts	4376	66511092	0.54	10314870	45672588	6114301	2839022	1570051	260
Pre-selection	3778	12547917	1.07	5696748	979693	4109167	1739683	22431	194
elep/60. + emis/100. < 1.	3661	1518141	2.97	99987	189804	1016886	193442	17855	167
0.6 < mvalep	3435	1206227	3.12	88826	62401	890288	159199	5357	156
(160. < mvis) && (mvis < 220.)	3071	559413	4.10	63936	33233	359843	99486	2819	96
0.004 < y34	2896	33799	15.12	565	6575	2378	21820	2369	93
4 < min_n	2527	5638	27.97	0	1775	0	1881	1910	71
(10. < mis.P()) && (mis.P() < 50.)	2344	2852	32.52	0	879	0	1049	902	23
MVA cut	2100	510	41.11	0	94	0	245	162	9
					: :		: 1		

22

Significance

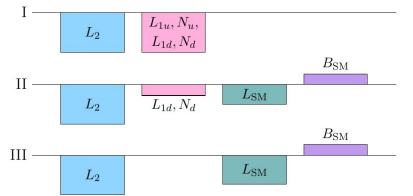
- Combined significance: 58σ
- Previous study of same decay channel at ILC (H. Ono): 36σ
 - Both W*→Iv and W*→qq were used

- Previous study of H→WW* significance, with all decay modes: 61σ
- Major improvement of significance compared to previous studies at ILC

Particles in dark sector

- Two Higgs doublets
- Higgs potential:

$$\begin{split} V(\Phi) &= \mu_1^2 \Phi_1^{\dagger} \Phi_1 + \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \mu_3^2 (\Phi_1^{\dagger} \Phi_2 + c.c.) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + c.c. \right]. \end{split}$$

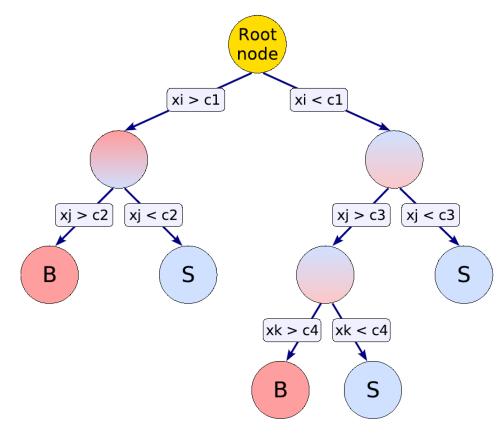

- λ_{5,6,7} are complex (CP violation)
- Left-handed L_{1u}, L_{1d} with charge Q₁

field	$SU(2)_D$	γ_5	Q_1	Q_2	\mathbb{Z}_2
$\Phi_{1,2}$	2	0	0	0	+
L_1	2	-1	+1	0	+
$N_{u,d}$	1	+1	+1	0	+
L_2	2	-1	0	+1	_

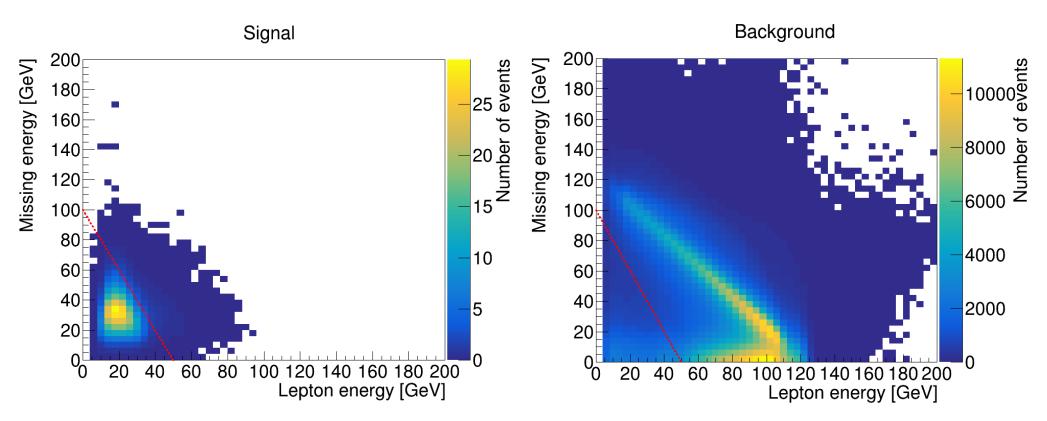
- Right-handed N_u, N_d (dark neutrinos) with charge Q₁
- L₂: massless particle with charge Q₂
 - Exists to counteract Witten's anomaly but not important

Early universe

- I. Dark first-order phase transition in early universe
 - More particles than antiparticles in dark sector
- II.N_u decays to SM leptons
 - Q₁ asymmetry converted to SM lepton asymmetry
 - Some leptons converted to baryons through SM sphaleron
- III.After EW symmetry breaking, Nd decays to SM leptons
 - →additional lepton asymmetry

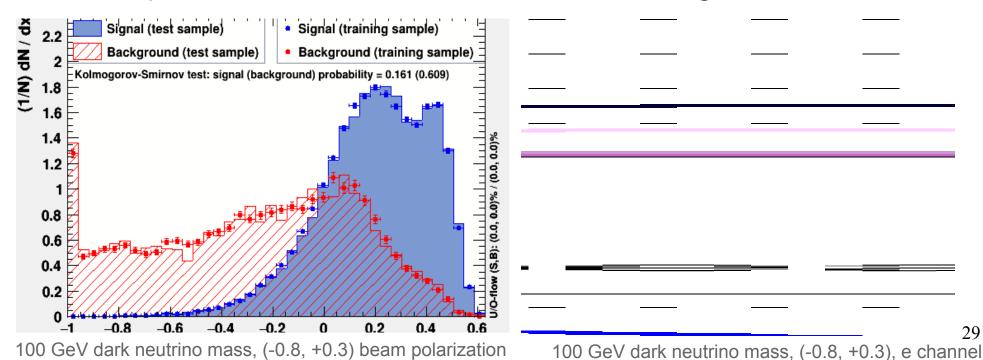

Techincal details

- Use ROOT::RDataFrame in Jupyter notebook Simplifies:
 - Making and analyzing cuts
 - Defining new variables
 - Running the code in parallel→performance boost
 - Visualize the filtered data
 - Exploratory data analysis

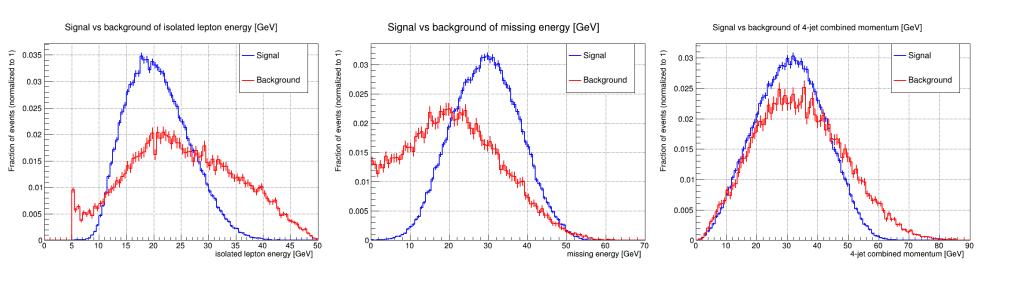

```
ROOT::RDataFrame df("myTree", file);
auto h = df.Filter("y > 2").Histo1D("x");
h->Draw()
```

Boosted decision tree

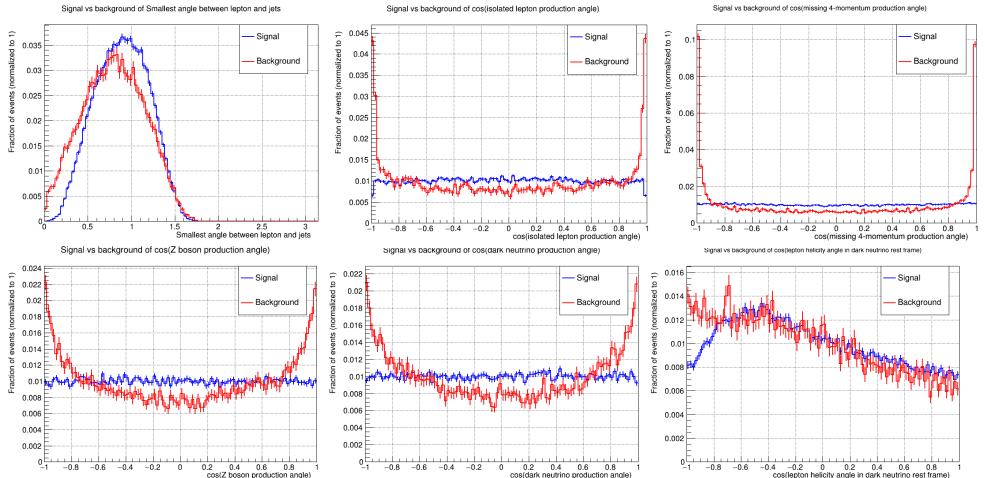
- Multiple binary decision trees are trained
- When evaluating an event, the trees "vote" if the event is signal or background
- The BDT output is the weighted mean of all trees
- Events are reweighted such that signal and background is equal in size

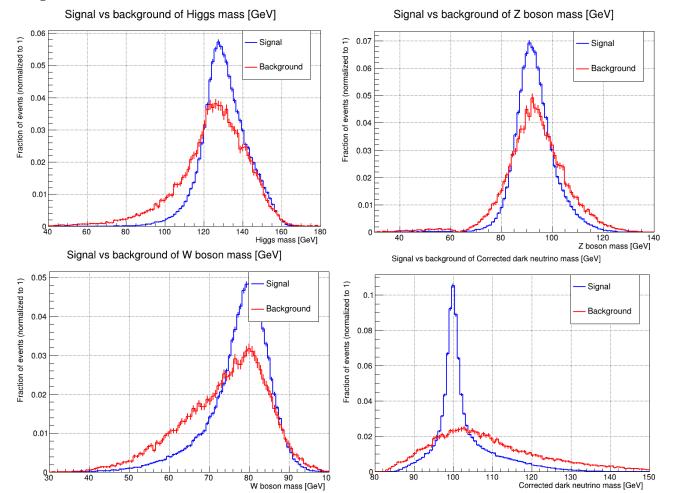


Lepton/missing energy distribution



Machine learning output


- Confirm that BDT is not overtrained
- Find optimal BDT cut value to maximize significance


BDT parameter distributions - energies

BDT parameter distributions - angles

BDT parameter distributions - masses

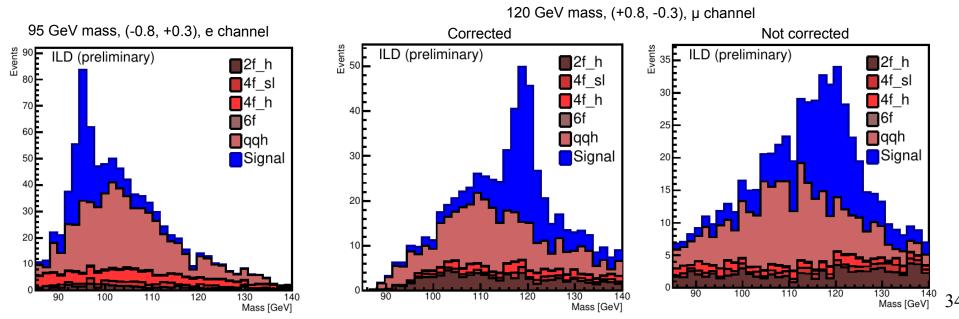
Example cut table for dark neutrino

2f h

4f I

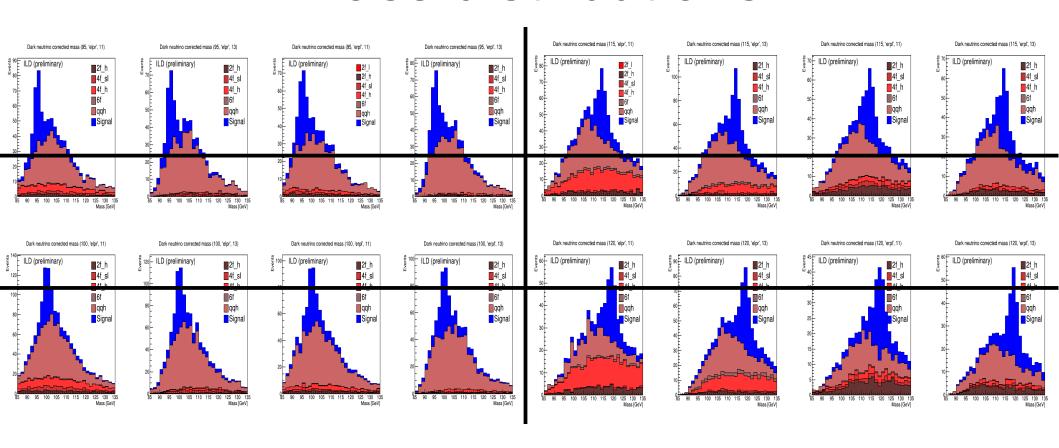
4f sl

2f I


		_	_	-							
	No cuts	1396	136859842	0.12	12982897	77324421	10379315	19163106	16800470	1278	208355
	Pre-selection	1233	30132034	0.22	7366002	1606336	7651845	13260215	220833	872	25932
1% branching ratio	leptype == 11	627	14973089	0.16	1184642	1402269	4919234	7252824	198385	514	15221
100 GeV	elep/50. + emis/100. < 1	580	1136651	0.54	44637	248305	504438	192462	139969	415	6425
100 Gev	0.8 < mvalep	482	557011	0.65	28048	36926	348278	123436	16772	335	3217
(-0.8, +0.3)	(180. < mvis) && (mvis < 225.)	438	235510	0.90	13427	17309	126473	67151	8377	220	2553
Electron channel	0.007 < y34	376	19834	2.65	79	1762	298	9504	5855	200	2136
	3 < min_n	357	10234	3.47	0	920	1	1726	5458	171	1957
	(15. < mis.P()) && (mis.P() < 45.)	325	3498	5.26	0	256	0	671	1131	30	1410
	MVA cut	242	825	7.41	0	56	0	59	146	13	552
		Total signal	Total background	Ciamificana.	26	1 251	. 45	45 -1	45 1-	CE	
		iotai sigilai	iotai background	Significance	2f_	I 2f_h	n 4f_	l 4f_sl	4f_h	6f	qqh
	No cuts	941	66651497	0.12				2839022		260	qqn 140405
1% branching ratio	No cuts Pre-selection	-	-	3	10314870	0 45672588	8 6114301	2839022		260	
1% branching ratio		941	66651497	0.12	10314870 5696748	0 45672588 8 979693	6114301 3 4109167	2839022 7 1739683	1570051 22431	260 194	140405
1% branching ratio 120 GeV	Pre-selection	941 891	66651497 12565351	0.12 0.25	10314870 5696748 4803207	0 45672588 8 979693 7 116849	3 6114301 3 4109167 9 976723	2839022 7 1739683 8 542562	1570051 22431 2613	260 194	140405 17434
_	Pre-selection leptype == 13	941 891 448	66651497 12565351 6449265	0.12 0.25 0.18	10314870 5696748 480320 7996	45672588 979693 7 116849 1 30683	3 6114301 3 4109167 9 976723 7 461188	2839022 7 1739683 8 542562 3 32974	1570051 22431 2613	260 194 45	140405 17434 7267
120 GeV (+0.8, -0.3)	Pre-selection leptype == 13 elep/70. + emis/90. < 1	941 891 448 434	66651497 12565351 6449265 609993	0.12 0.25 0.18 0.56	10314870 5696748 480320 7996 74804	979693 7 116849 1 30683 4 19446	3 6114301 3 4109167 9 976723 7 461188 6 433438	2839022 7 1739683 8 542562 8 32974 8 29481	1570051 22431 2613 1971 1301	260 194 45 40 39	140405 17434 7267 3172
120 GeV	Pre-selection leptype == 13 elep/70. + emis/90. < 1 0.6 < mvalep	941 891 448 434 431	66651497 12565351 6449265 609993 561464	0.12 0.25 0.18 0.56 0.57	10314870 5696748 4803207 7996 74804 60238	979693 7 116849 1 30683 4 19446 9 16093	3 6114301 3 4109167 9 976723 7 461188 5 433438 1 186398	2839022 7 1739683 8 542562 8 32974 29481 8 24018	1570051 22431 2613 1971 1301 1049	260 194 45 40 39 23	140405 17434 7267 3172 2956
120 GeV (+0.8, -0.3)	Pre-selection leptype == 13 elep/70. + emis/90. < 1 0.6 < mvalep (160. < mvis) && (mvis < 220.)	941 891 448 434 431 406	66651497 12565351 6449265 609993 561464 290455	0.12 0.25 0.18 0.56 0.57	10314870 5696748 480320 7996 74804 60239	979693 7 116849 1 30683 4 19446 9 16093	3 6114301 3 4109167 9 976723 7 461188 5 433438 1 186398	2839022 7 1739683 8 542562 8 32974 9 29481 8 24018 9 9535	1570051 22431 2613 1971 1301 1049 900	260 194 45 40 39 23 22	140405 17434 7267 3172 2956 2636
120 GeV (+0.8, -0.3)	Pre-selection leptype == 13 elep/70. + emis/90. < 1 0.6 < mvalep (160. < mvis) && (mvis < 220.) 0.004 < y34	941 891 448 434 431 406 381	66651497 12565351 6449265 609993 561464 290455 16966	0.12 0.25 0.18 0.56 0.57 0.75	10314870 5696748 480320 7996 74804 60239	979693 7 116849 1 30687 4 19446 9 16097 2 2630	3 6114301 3 4109167 9 976723 7 461188 5 433438 1 186398 0 1067	2839022 7 1739683 8 542562 8 32974 8 29481 8 24018 9535 9 742	1570051 22431 2613 1971 1301 1049 900 693	260 194 45 40 39 23 22 16	140405 17434 7267 3172 2956 2636 2380

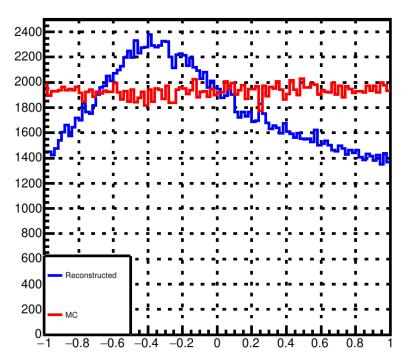
Total signal Total background Significance

qqh


Mass distributions

- Corrected mass: m_{ND} − m_W + m_{W0}
- W boson jet momentum error dominant for dark neutrino reconstruction→error removed in correction

^{*}Dark neutrino mass not used as input to MVA


Mass distributions

Potential improvements

- Lepton helicity angle in dark neutrino rest frame is incorrectly reconstructed
- Slight increase of negative angles
- Caused by error in jet clustering
 - W and Z jets are mixed
- Improved jet clustering algorithms crucial for future collider experiments

cos(lepton angle in dark neutrino rest frame) | 110 GeV | eR.pL

