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Introduction

@ Neutrinos have very small, but non-zero masses, as demonstrated by
baseline neutrino oscillation experiments

@ Low-scale inverse seesaw mechanism enables the search for heavy right-
handed neutrinos with Yukawa couplings O(10-6) in the mass range of 10 to

100 GeV

@ Our analysis focuses on the electron final state with two jets, investigating
the (pseudo-) Dirac HNL model between 10-80 GeV with mixing angles
between 10-4 < |Uen|2 < 10-10
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HNL Phenomenology at the FCCee

@ The FCC-ee is expected to produce approximately 1012 Z bosons during its
Z-channel run (spanning ~3 years of data collection)

* High-luminosity & pileup-free environment for the search for HNLs
 Aim to improve upon the limits previously set by the LEP
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 For many of the mass points under
consideration:

- A displaced topology emerges due to the
significant lifetime (7 « M™|U|?)

- Can be distinguished from promptly
decaying mass points using lifetime
metrics, such as decay length or Do
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Background Processes

@ Three dominant SM background processes considered:
 /—Dbb, cc or Z—4 body final state (instead of heavier quark final states like Z—1T)

* The 4-body bkg and all sighal samples are privately generated using MadGraph
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Analysis Methods

@® Cut and Count Method

» Started with a Cut & Count (C&C) analysis which used as baseline for
further optimization strategies
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https://dpnc.unige.ch/MASTERS/MASTER_MOULIN_Dimitris.pdf
https://dpnc.unige.ch/MASTERS/MASTER_CRITCHLEY_THOMAS.pdf
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@ Machine Learning Method(s)

 Explored multivariate methods trying to increase the sensitivity from the C&C
method

4BDT Method:
« XGBoost in conjunction with TMVA (binary classification)

4 DNN Method:

 Keras in Tensorflow with hyperparameter optimization (binary classification)
**For both methods:
* Individual training for every mass point

trying to reach the full sensitivity Object variables
Leading electron  E, ¢, dy, 04y, ARe;;
 The following variables were used —p  Neutrino B, 0
for the training Di-jet system ARjj, ¢

2
Vertex and traCkS Ntracks nprimary tracks Xvertex
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BDT Workflow

Data Preparation Model Training Model Predictions
e Stage 1 flat ntuples (FCC SW) e GridSearch CV * Normalization to 10 fb-"

*Filter applied Eleading electron > 15 GeV e Decision trees made *BDT cut chosen based on
* Training and Testing split optimal significance
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DNN Workflow

Data Preparation
*Stage 1 flat ntuples (FCC SW)

* Filter applied Eleading electron 5 20 GeV |==——ipp>
* Training and Testing split

Model Training
*HP optimization using

Random search

- Feature flattening * Trained for 100 epochs

Hyperparameter Range Step
Units in Input Layer 32 to 512 32
Process Training Events Testing Events Number of Hidden Layers  1to 5 1
Units in Hidden Layers 32 to 512 32
Total Background 2,792,099 2,792,099 Learning Rate 1x107°to 1 x 1072 Log scale
20 GeV, |U?| =107 19,601 19,600 Dropout Rate -2 Fixed
50 GeV. |2 10-6 91 471 91 471 Activation Function ReLU Fixed
ev, o . . Output Activation Function Sigmoid Fixed
70 GeV, U2 — 10_6 23,951 23,951 Optimizer Adam Fixed
Loss Function Binary Crossentropy Fixed
Metrics Accuracy, Precision, Recall, AUC Fixed
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Model Predictions
* Normalization to 10 fb-1

e DNN cut chosen based on
optimal significance
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Sensitivity Comparison

@ BDT model provides ~2 orders of

magnitude more sensitivity FCCee Simulation (DELPHES)
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FCCee Simulation (DELPHES)
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@ BDT already utilizes do as the most
significant variable, thus explicit
selections did not have additional
Impact
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Summary

“CMS result only for 138 fb- @ Scaled to 150 ab-1 without accounting

NI = o o
% F Foces smuiation (DELPHES) for uncertainties, the plot shows
ER broader phase space coverage
£ ob compared to the C&C
(__I) 107 ;_ / CM_S.prompt 3| ] ] ] ]
S 105 B ) &-nt et @ Nearing FCC-ee limits with ~50% of
S10°F emoe - the branching ratio; serves as a guide
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region is essential for robust analysis
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Thank you for your attention!
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DNN vs BDT feature immportance
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Jet algorithms

@ Jet reconstruction was primarily
conducted using the FastJet software,
rather the initial event generation phase
Wlth Pythla Objectswit;variedyij

@ This approach was chosen for the
enhances control and adaptability it
provides when working directly with
partiC|e data from the EDMHEP files Collimated objects with high y;

Vertex

@ 'he Durham jet algorithm was used for
the clustering jets
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