# Overview on low mass scalars at $e^+e^-$ facilities - theory

### Tania Robens

#### Rudjer Boskovic Institute

3rd ECFA workshop on  $e^+e^-$  Higgs, Electroweak and Top Factories Campus des Cordeliers Paris, France 9.10.2024



Tania Robens

Light Scalar Bosons



# Models

- new scalars  $\Rightarrow$  models with scalar extensions
- many possibilites: introduce new  $SU(2) \times U(1)$  singlets, doublets, triplets, ...
- unitarity  $\Rightarrow$  important sum rule\*

$$\sum_{i} g_i^2(h_i) = g_{SM}^2$$

for coupling g to vector bosons

• many scenarios  $\Rightarrow$  signal strength poses strong constraints

\* modified in presence e.g. of doubly charged scalars, see Gunion, Haber, Wudka, PRD 43 (1991) 904-912.

Tania Robens

Light Scalar Bosons

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > 
 ECFA 2024, 9.10.24

# What about extensions ?

• in principle: no limit

can add more singlets/ doublets/ triplets/ ...

⇒ consequence: will enhance particle content

additional (pseudo)scalar neutral, additional charged, doubly charged, etc particles

common feature:

# new scalar states, which can now also be produced/ decay into each other/ etc

Tania Robens

Light Scalar Bosons

ECFA 2024, 9.10.24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Particle content

### typical content: singlet extensions ⇒ additional CP-even/ odd mass eigenstates 2HDMs, 3HDMs: add additional charged scalars

- e.g. 2 real scalars  $\Rightarrow$  **3 CP-even neutral scalars**
- 2HDM  $\rightarrow$  2 CP-even, one CP odd neutral scalar, and charged scalars

• ...

Image: A matched and A matc

# Constraints

### Constraints

### • Theory

minimization of vacuum (tadpole equations), vacuum stability, positivity, perturbative unitarity, perturbativity of couplings

### Experiment

provide viable candidate @ 125 GeV (coupling strength/ width/ ...); agree with null-results from additional searches and ew gauge boson measurements (widths); agree with electroweak precision tests (typically via S,T,U); agree with astrophysical observations (if feasible)

### Limited time $\Rightarrow$ next slides highly selective...

[long list of models, see e.g. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG3]

#### tools used: HiggsTools, ScannerS, ...

Tania Robens

Light Scalar Bosons

ECFA 2024, 9.10.24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Singlet extensions [TR, arXiv:2203.08210 and Universe 8 (2022) 286]

TRSM: 2 real singlets [TR, T. Stefaniak, J. Wittbrodt, Eur.Phys.J.C 80 (2020) 2, 151]



 low-low: both additional scalars below 125 GeV; high-low: one new scalar above 125 GeV

Tania Robens

Light Scalar Bosons

# Two Higgs Doublet Models

another popular extension: Two Higgs Doublet models

- extend SM scalar sector by one additional doublet
- a priori: can lead to flavour changing neutral currents
- way to prevent this: introduce additional symmetries in potential

**particle content:** 
$$\underbrace{h, H}_{CP-even}, \underbrace{A}_{CP-odd}, H^{\pm}$$

parameters: **masses**, + tan  $\beta$ , cos  $(\beta - \alpha)$ ,  $m_{12}$ 

- also subject to various constraints: **B-physics, direct** searches, signal strength, ...
- different types of Yukawa couplings ⇒ different effects of constraints

Tania Robens

Light Scalar Bosons

# 2HDM parameter space for fixed $\cos(\beta - \alpha)$ , Type I TR, ArXiv:2409.19657



 $m_H = m_A = m_{H^{\pm}}$ 

[using thdmTools, Biekoetter ea, JHEP 01 (2024) 107]

Tania Robens

Light Scalar Bosons

ECFA 2024, 9.10.24

< ロト < 同ト < ヨト < ヨト

# Current constraints on alignment in 2HDMs



# Typical processes at Higgs factories

### various production modes possible

- 1) easiest example:  $e^+ e^- \rightarrow Z h_1$ , onshell production interesting up to  $m_1 \sim 160 \,\mathrm{GeV}$
- 2) in models with various scalars: e.g. also  $e^+ e^- \rightarrow h_1 h_2$ (e.g. from 2HDMs); example processes and bounds from LEP in Eur.Phys.J.C 47 (2006) 547-587

again: for onshell production,  $\sum_i\,m_i\,\leq\,250\,{\rm GeV}$ 

3) another (final) option: look at  $e^+e^- \rightarrow h_i Z$ ,  $h_i \rightarrow h_j h_k$ 

### already quite a few studies for 1), 3) available

# Production modes in 2HDMs

[notation on this slide  $h \equiv h_{125}$ ]

 $e^+e^- 
ightarrow {\it h/HZ}, {\it hA}, {\it HA}, {\it H^+ H^-}$ 

• for on-shell production: need  $\sum_i m_i \lesssim \sqrt{s}$ 

requires relatively light scalars, typically  $m \lesssim 160\,{
m GeV}$ 

- include suppression/ alignment, and mass range: HZ, hA supressed by  $\cos(\beta \alpha)$
- $H^+ H^-$  production: kinematic limit only need light(ish)  $H^{\pm}$ ,  $m_A + m_H \lesssim 250 \,\mathrm{GeV}$

Tania Robens

Light Scalar Bosons

ECFA 2024, 9.10.24

(日) (同) (三) (

### Possible production modes and rates [TR, Universe 2022, 8(5), 286, updated]

### $e^+ e^- \rightarrow Z^* \rightarrow Zh, e^+ e^- \rightarrow \nu \bar{\nu} h$ (VBF)



LO analytic expressions e.g. in Kilian ea, Phys.Lett.B 373 (1996) 135-140]

### • rule of thumb: rescaling $\leq 0.1$

•  $\Rightarrow$  maximal production cross sections around 50 fb •  $\sim 10^5$  events using full luminosity Tania Robens Light Scalar Bosons ECFA 2024, 9:10.24

# Projections for additional scalar searches

[P. Drechsel, G. Moortgat-Pick, G. Weiglein, Eur.Phys.J.C 80 (2020) 10, 922]



estimate of ILC sensitivity based on validation using LEP results ILC:  $\sqrt{s} = 250 \,\mathrm{GeV}, \int \mathcal{L} = 2 \,\mathrm{ab}^{-1}$ ; S95: rescaling limit

Tania Robens

Light Scalar Bosons

ECFA 2024, 9.10.24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# $h \rightarrow 4j/4b/4c$ final states

[Z. Liu, L.-T. Wang, H. Zhang, Chin.Phys.C 41 (2017) 6, 063102]



95% CL bounds,  $\sqrt{s} = 240 \,\text{GeV}, \, \int \mathcal{L} = 5 \,\text{ab}^{-1}$ 

Tania Robens

Light Scalar Bosons

4 ロ ト 4 日 ト 4 至 ト 4 至 ト 至 の Q ( ECFA 2024, 9.10.24

# Singlet extension, with connection to strong first-order electroweak phase transition

[J. Kozaczuk, M. Ramsey-Musolf, J. Shelton, Phys.Rev.D 101 (2020) 11, 115035] [see also M. Carena, Z. Liu, Y. Wang, JHEP 08 (2020) 107]



blue band = strong first-order electroweak phase transition

#### comment: current constraints lead to prediction $\lesssim 10^{-1}$

[invisible BR, signal strength, assumes SM-like decay to *b*s] [projections taken from Z. Liu, L.-T. Wang, and H. Zhang, Chin. Phys. C 41, 063102 (2017)] こう イント・マート Tania Robens ECFA 2024, 9.10.24

### Ongoing ECFA study: Direct discovery potential at Higgs factories, Extra scalar subgroup [CERN e-group: ECFA-WHF-WG1-SRCH]

### Expert team activities

| .F.Żarneck                           | i (U. of Warsaw)                                                             | EXscalar report                                     | June 27, 2023                   | 6            |
|--------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|--------------|
|                                      | again assuming<br>invisible,)                                                | different decay channels for $\boldsymbol{\varphi}$ | (bb, ττ,                        |              |
|                                      | $h_{125} \rightarrow \varphi \; \varphi$                                     |                                                     |                                 |              |
| •                                    | light scalar production in 125 GeV Higgs boson decays                        |                                                     |                                 |              |
|                                      | with different possible decay channels: bb, $\tau\tau$ , invisible, $\ldots$ |                                                     |                                 |              |
|                                      | $e + e \rightarrow Z \phi$                                                   |                                                     |                                 |              |
| •                                    | search for light exotic scalars in the scalar-strahlung process              |                                                     |                                 |              |
| Two                                  | targets identified                                                           | i:                                                  | document.                       |              |
| Discussion on the choice of benchman |                                                                              | choice of benchmark scenar                          | ios included in shared goog     | ns and<br>le |
| Sec                                  | Second meeting on zoom on June 20                                            |                                                     | Overview of light scalar scenar | scenarios    |

# Want to get involved ? Let us know ! Target: Whitepaper, input for next European Strategy report

Tania Robens

Light Scalar Bosons

# Conclusions

- many new physics models predict one/ several scalars below 125 GeV
- typical decays into  $b \bar{b}, \tau^+ \tau^-$
- already constraints from current LHC searches, mainly in context of 2HDMs
- at ee: cross sections could reach up to  $300/60 \,\mathrm{fb}$  from Zh production
- decays of  $h_{125} \rightarrow s s$  also within reach
- important connection to EWSB/ EW phase transitions

#### Still space for more studies !

Tania Robens

Light Scalar Bosons

# Appendix

Tania Robens

Light Scalar Bosons

<ロト < 合 ト < 言 ト < 言 ト ミ の へ () ECFA 2024, 9.10.24

# Special role of the scalar sector

• Higgs potential in the SM

$$\mathbf{V} = -\mu^2 \, \mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} + \lambda \, \left( \mathbf{\Phi}^{\dagger} \, \mathbf{\Phi} \right)^2, \quad \mathbf{\Phi} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathbf{0} \\ \mathbf{v} + \mathbf{h}(\mathbf{x}) \end{pmatrix}$$

 $\Rightarrow$  mass for Higgs Boson and Gauge Bosons

$$m_h^2 \,=\, 2\,\lambda\,v^2,\, m_W\,=\, g\,\frac{v}{2},\, m_Z\,=\, \sqrt{g^2+(g')^2}\,\frac{v}{2}$$

where v: Vacuum expectation value of the Higgs field, g, g'': couplings in SU(2)  $\times$  U(1)

 $\Rightarrow$  everything determined in terms of gauge couplings, v, and  $\lambda$ 

# form of potential determines minimum, electroweak vacuum structure

- $\Rightarrow$  stability of the Universe, electroweak phase transition, etc
  - full test requires checks of hhh, hhhh couplings
- ⇒ so far: only limits; possible only at future machines [HL-LHC: constraints on hhhh]

Tania Robens

Light Scalar Bosons

# Other possible extensions

- A priori: no limit to extend scalar sector
- make sure you
  - have a suitable ew breaking mechanism, including a Higgs candidate at  $\sim~125\,{\rm GeV}$
  - can explain current measurements
  - are **not excluded by current searches** and precision observables
- nice add ons:
  - can push vacuum breakdown to higher scales
  - can explain additional features, e.g. dark matter, or hierarchies in quark mass sector

• ...

- Multitude of models out there
- adding ew gauge singlets/ doublets/ triplets...

```
\Rightarrow new scalar states \Leftarrow
```



ECFA 2024, 9.10.24

🗄 ୬ବ୍ଚ

Tania Robens

Light Scalar Bosons

# Current constraints on alignment in 2HDMs

### [ATLAS-CONF-2021-053]



# N2HDM example

[H. Abouabid, A. Arhrib, D. Azevedo, J. El Falaki, P. M. Ferreira, M. Muehlleitner, R. Santos, arXiv:2112.12515]

# N2HDM: 2HDM+ real singlet • $H_1=H_{SM}$ • $H_2=H_{SM}$ • $H_3=H_{SM}$ N2HDM-1



Tania Robens

leptons

# Lepton-specific IDM

[X.-F. Han, T. Li, H.-X. Wang, L. Wang, Y. Zhang, Phys.Rev.D 104 (2021) 11, 115001]

Inert Doublet Model, with  $\mathbb{Z}_2$  breaking terms coupling to



### various constraints (including agreement with $g_{\mu} - 2$ ); squares: allowed, bullets: forbidden

Tania Robens

Light Scalar Bosons

# Scalar triplet model

### [P.M. Ferreira, B.L. Gonalves, F.R. Joaquim, JHEP 05 (2022) 105]



#### 5 neutral, 3 singly charged, 2 doubly charged scalars

Tania Robens

Light Scalar Bosons

◆□ → < □ → < 三 → < 三 → < 三 → ○</p>
ECFA 2024, 9.10.24

### [slide from A. Lopez Solis, CERN LHC Seminar, 19.7.22]



### **!!** analysis still fixes many parameter values **!!**

Tania Robens

Light Scalar Bosons

# Projections for additional scalar searches

[Y. Wang, M. Berggren, J. List, arXiv:2005.06265]



### additional scalar, $\sin \theta$ rescaling wrt SM prediction, comparison of different detector models recoil method

Tania Robens

Light Scalar Bosons

ECFA 2024, 9.10.24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E Sac

## Possible searches

- one option: consider  $h_{125} \rightarrow s s$
- also possible: direct searches
- for all of these: dominant decays typically to  $b \bar{b}$  or  $\tau^+ \tau^-$
- $h_{125} \rightarrow s s$  also constrained from  $\Gamma_{125} \leq 9 \,\mathrm{MeV}$ , and  $\mathsf{BR}_{h \rightarrow inv} \leq 0.11$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Exotic decays - $h \rightarrow s s \rightarrow 4\tau$

### [J. Shelton, D. Xu, arXiv:2110.13225]



### comment: current constraints lead to prediction $\lesssim \, 10^{-3}$

[invisible BR, signal strength, assumes SM-like decay to  $\tau$ s]

Tania Robens

Light Scalar Bosons

ECFA 2024, 9.10.24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Type X 2HDM, 4 $\tau$ final state via $\tau \tau A$ production

[E. J. Chun, T. Mondal, Phys.Lett.B 802 (2020) 135190] one doublet couples to quarks, other to fermions; CP violation

Searches for light A in 2HDMX at ILC250

- The channel Z → h<sub>SM</sub>A is not possible since the relevant coupling is proportional to cos(β − α).
- At ILC250, Z → HA may not be feasible when H is heavier than 200 GeV.
- Possible option :  $Z \rightarrow \tau \tau \rightarrow \tau \tau A \rightarrow 4\tau$ . So called Yukawa production.



- $\bullet\,$  This is the equivalent to ttH searches at LHC. Independent probe of Yukawa structure.
- At the ILC all the 4τ s can be reconstructed using collinear approximation.

Light (Pseudo)Scalar @ ILC

This enables to measure mass of the light particle.

Tania Robens

Tanmoy Mondal, KIAS, Seoul

Light Scalar Bosons

< □ > < □ > < □ > < ⊇ > < ⊇ >
 ECFA 2024, 9.10.24

(D) (M) (E) (E) (E) (D) (O)

KIAS ===

Conclusions

# Type X 2HDM, 4 $\tau$ final state via $\tau \tau A$ production

[E. J. Chun, T. Mondal, Phys.Lett.B 802 (2020) 135190]



Tania Robens

Light Scalar Bosons

# Test of degenerate additional scalar, including dark matter

[S. Abe, G.-C. Cho, K. Mawatari, Phys.Rev.D 104 (2021) 3, 035023]

- setup: complex singlet, including dark matter candidate
- test of degenerate additional scalar



Conclusions

# 2HDM parameter space w thdmtools, thanks to K. Radchenko



# Aligned 2HDM

# [O. Eberhardt, A. Penuelas Martinez, A. Pich, JHEP 05 (2021) 005]



low mass region allowed; however, *HZZ* typically suppressed by  $\cos(\beta - \alpha) \lesssim 0.25$ ]

Tania Robens

Light Scalar Bosons

ECFA 2024, 9.10.24

Image: A match a ma

## ... and in terms of mixing angle... [Universe 8 (2022) 286; Thanks to V. Miralles]



# CMS MSSM summary plots, early Run II

[https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsHIG]



◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

# The 96 GeV LEP resonance

# [S. Heinemeyer, C. Li, F. Lika, G. Moortgat-Pick, S. Paasch, arXiv:2112.11958]

[see also T. Biekoetter, M. Chakraborti, S. Heinemeyer, Eur.Phys.J.C 80 (2020) 1, 2]

### various BSM models, rates using $\int \mathcal{L} = 2 a b^{-1}$



N2HDM/ 2HDMS: 2HDM extended by real (complex) singlet, various symmetries imposed, fit to LEP/ CMS\_data\_[within/ outside 1  $\sigma$ ] =

Tania Robens

Light Scalar Bosons

Conclusions

# Reminder: decays of a SM-like Higgs of mass $M \neq 125 \, { m GeV}$



(using HDecay, courtesy J.Wittbrodt)



(https://twiki.cern.ch/twiki/bin/view/LHCPhysics

/LHCHXSWGCrossSectionsFigures)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Light Scalar Bosons