

LLPs from Exotic Higgs Decays at FCC-ee

Axel Gallén, Giulia Ripellino, Magdalena Vande Voorde and Rebeca Gonzalez Suarez

3rd ECFA workshop on e+e- Higgs, Electroweak and Top Factories

2024-10-10

Searches for long-lived particles

- Long-Lived Particles (LLPs) are abundant in the SM and well-motivated in several BSM models
 - Searching for LLP signatures is technically challenging → new physics could have evaded detection until now!
- Experimental benefits:
 - Little/no backgrounds from SM decays
 -but atypical backgrounds might be significant (cosmics, beam halo, instrumental effects, etc.)
- Experimental challenges:
 - main detectors, triggers, and offline reconstruction not designed for displaced particles

Room for improvement at future colliders!

Magdalena Vande Voorde | 3rd ECFA workshop - Paris | 10th October 2024

Distinct signatures depending on the LLP lifetime, mass, charge, and decay products

New physics from Higgs decays

FCC-ee as a discovery machine

- The Higgs boson is and can be connected to many open physics questions
 - The electroweak phase transition
 - Dark Matter
 - Naturalness
 - Flavour (wide hierarchy of fermion masses)
- To study its properties is a powerful probe to new physics!
- The ZH-stage of FCC-ee will produce 1.45.10⁶ ZH events in a very clean environment!
- Currently predict 1% precision on the total Higgs width, and BR(H -> inv) < 0.18%
 - Will set indirect constraints on BSM physics
 - Still the Higgs boson can have sizeable couplings to new particles → exotic Higgs decays

Great potential to directly search for BSM physics!

Reference: FCC Midterm Report

Long-lived scalars from exotic Higgs decays

- Our considered model: SM + scalar (arXiv:1312.4992, arXiv:1412.0018)
- The new scalar can be a portal between the SM and a dark sector, motivated by e.g Dark Matter
- New real scalar field S couples to the Higgs doublet H at renormalizable level, via the Higgs-Scalar coupling κ

$$\mathcal{L}_{SM} \ni \underbrace{\frac{1}{2}\mu_S^2 S^2 - \frac{1}{4!}\lambda_s S^4}_{\text{scalar potential}} - \underbrace{\frac{1}{2}\kappa S^2 |H|^2}_{\text{portal term}} + \underbrace{\mu^2 |H|^2 - \lambda |H|^4}_{\text{Higgs potential}} \qquad \qquad \text{BR}(h \to ss) = \frac{\kappa^2 v_h^2}{32\pi m_h \Gamma_h} \sqrt{1 - 4\frac{m_s^2}{m_h^2}}$$

- The physical Higgs boson h and the scalar s mix with a mixing angle sin $\boldsymbol{\theta}$
- The scalar inherits its couplings to the SM particles from the Higgs

$$\Gamma(s \to X_{\rm SM} X_{\rm SM}) = \sin^2 \theta \Gamma(h(m_s) \to X_{\rm SM} X_{\rm SM})$$

- For sufficiently small mixing, the scalar can be long-lived
 - $c\tau \sim meters if \theta < 1e-6 \rightarrow LLP signature$

Long-lived scalars are already a hot topic!

Existing limits from several LHC experiments

- Searches at ATLAS, CMS and LHCb
 - Exotic Higgs decay to a pair of long-lived scalars in the mass range 30-40 GeV
- For shorter LLP lifetimes the LHC backgrounds are high
 - → The parameter space at shorter distances, $c\tau < 1$ m, is an interesting target for future lepton colliders!

Cepeda M, et al. 2022 Annu. Rev. Nucl. Part. Sci. 72:119–49

Reference: Exotic Higgs Decays DOI: 10.1146/annurev-nucl-102319-024147

LLPs from exotic Higgs decays @ FCC-ee

- Targeting the ZH stage of FCC-ee: 240 GeV c.o.m and L = 7.2 ab⁻¹
- Signal process: $e^+e^- \rightarrow ZH$ with $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$ and $H \rightarrow ss \rightarrow 4b$
- Experimental signature:
 - A reconstructed Z boson from the e⁺e⁻ or $\mu^+\mu^-$ pairs
 - Displaced vertices (DVs) from the long-lived scalar decays

Main SM backgrounds from WW, ZZ and ZH processes with heavy-flavor and tau decays

Simulation and analysis of long-lived scalars @ FCC-ee

- The scalars can be simulated with the MadGraph5 HAHM model (arXiv:1312.4992, arXiv:1412.0018)
- Simulation of background processes
 - SM processes in the Winter2023 campaign
 - Centrally produced samples within the FCCAnalyses framework
 - Sample generation with Pythia8 or Pythia6 + Wizard
 - 37.107 raw WW events, 56.106 raw ZZ events and 32.106 raw ZH events (all with inclusive decays)

Detector simulation

The IDEA detector

- Current detector design consists of e.g:
 - Silicon vertex detector (VXD)
 - 1.2-31.5 cm: 5 cylindrical barrel layers and 6 endcap discs (3 on each side)
 - An ultralight drift chamber (DCH)
 - 35-200 cm: 112 layers of wires
 - → Many tracking layers!
- The full geometry of the detector is simulated in DELPHES

Generated signals

- Parameter choices:
 - m_s = 20-60 GeV
 - sin θ = 10⁻⁵-10⁻⁷ corresponding to mean proper lifetimes cτ of O(1 mm – 10 m)
 - κ = 7e-4, s.t we have less than 1% addition to the Higgs width

$$BR(h \to ss) = \frac{\kappa^2 v_h^2}{32\pi m_h \Gamma_h} \sqrt{1 - 4\frac{m_s^2}{m_h^2}}$$

$$\Gamma_{s} = \sin^{2}\theta \frac{3}{0.9 \times 8\pi} \frac{m_{s}m_{b}^{2}}{v_{h}^{2}} \left(1 - \frac{4m_{b}^{2}}{m_{s}^{2}}\right)^{3/2}$$

20 mm

particles /

Generated

 10^{7}

10^b

√s = 240.0 GeV

_ = 7.2 ab⁻¹

sin θ : Mixing angle

Mass of Scalar $m_S \; [\text{GeV}]$	$\begin{array}{c} \text{Mixing angle} \\ \sin \theta \end{array}$	Width of Scalar $\Gamma_s \; [\text{GeV}]$	Branching Ratio $BR(h \rightarrow ss)$	Mean proper lifetime $c\tau \text{ [mm]}$
$20 \\ 20 \\ 20 \\ 40 \\ 40 \\ 40 \\ 60 \\ 60 \\ 60 \\ 60 \\ 6$	$ \begin{array}{r} 1 \times 10^{-5} \\ 1 \times 10^{-6} \\ 1 \times 10^{-7} \\ 1 \times 10^{-5} \\ 1 \times 10^{-6} \\ 1 \times 10^{-7} \\ 1 \times 10^{-5} \\ 1 \times 10^{-6} \\ 1 \times 10^{-7} \\ 1 \times 10^{-7} \\ \end{array} $	5.779×10^{-14} 5.779×10^{-16} 5.779×10^{-18} 1.445×10^{-13} 1.445×10^{-15} $1.445e \times 10^{-17}$ 2.252×10^{-13} 2.252×10^{-15} 2.252×10^{-17}	$6.98 \times 10^{-4} 6.98 \times 10^{-4} 6.98 \times 10^{-4} 5.66 \times 10^{-4} 5.66 \times 10^{-4} 5.66 \times 10^{-4} 2.06 \times 10^{-4} $	$\begin{array}{r} 3.4\\ 341.7\\ 34167.0\\ 1.4\\ 136.6\\ 13662.8\\ 0.9\\ 87.7\\ 8769.1\end{array}$

FCC-ee Simulation (Delphes)

 ${}^{+}e^{-} \rightarrow ZH, Z \rightarrow I^{+}I^{-}, H \rightarrow ss \rightarrow b \ \overline{b} \ b \ \overline{b}$

 $m_s = 20 \text{ GeV}, \sin \theta = 1e-5$

$$\begin{split} m_S &= 20 \text{ GeV}, \, \sin\theta = 1\text{e-6} \\ m_S &= 20 \text{ GeV}, \, \sin\theta = 1\text{e-7} \\ m_S &= 60 \text{ GeV}, \, \sin\theta = 1\text{e-5} \end{split}$$

DV reconstruction

- Using current tools in the FCCAnalyses framework
- Secondary vertex finder of the LCFI+ algorithm (<u>arXiv:1506.08371</u>), see more in <u>backup</u>
 - Designed for ILC/CLIC and primarily used for flavour-tagging jets
 - Added track selection: non-primary, pT > 1 GeV and |d0| > 2 mm

10

LLP

d0

PV

DV

Reconstruction of the Z-boson

- Require exactly 2 oppositely charged isolated electrons or muons
- Tag the Z-boson with the e^+e^- or $\mu^+\mu^-$ invariant mass
 - Pre-selection: set a mass window between 70-110 GeV

Discriminating variables of the DVs

- The number of tracks per DV, the charged invariant mass of the DVs and the radius are three efficient variables to separate signal from background!
- Event pre-selection applied in all, following requirements on DVs applied
 - N tracks > 2 (in the middle and right plot)
 - M_{inv} > 2 GeV (in the right plot)

Vertex and event selection

- Vertex selection:
 - At least 3 tracks
 - Min (charged) invariant mass of 2 GeV
 - Distance between the DV and PV between 4 mm and 2000 mm
- Event selection:
 - Pre-selection Two oppositely charged isolated leptons with invariant mass in the range 70-110 GeV
 - At least 2 DVs passing the full vertex selection

Results - sensitivity analysis

SM background free with sensitivity to part of the generated parameter space!

• Given zero background, signal points with at least 3 expected events can be excluded to CL 95%

	Before selection	Exactly 2 oppositely charged leptons	Pre-selection	Pre-selection + Full DV-selection
$ZH, H \rightarrow SM$	$938,\!471\pm527$	$74{,}931\pm 66$	$65{,}085\pm62$	$0(\leq 62)$
WW	$118{,}357{,}200\pm 3{,}668$	$3{,}324{,}881 \pm 1{,}059$	$746{,}175\pm502$	$0(\le 502)$
ZZ	$9{,}784{,}728 \pm 429{.}730$	$1,\!319,\!337\pm426$	$883{,}991\pm 348$	$0(\le 349)$
Total Background	$129{,}080{,}399 \pm 4{,}625$	$4{,}719{,}149 \pm 1{,}551$	$1{,}695{,}251 \pm 912$	$0(\le 912)$
$ms20GeV_sine-5$	55.195 ± 0.041	38.300 ± 0.460	36.964 ± 0.452	0.077 ± 0.021
$ms20GeV_sine-6$	55.195 ± 0.041	38.919 ± 0.464	37.621 ± 0.456	10.739 ± 0.243
$ms20GeV_sin3e-6$	55.195 ± 0.041	37.713 ± 0.456	36.350 ± 0.448	3.262 ± 0.134
$ms20GeV_sine-7$	55.195 ± 0.041	48.307 ± 0.516	47.026 ± 0.509	0.215 ± 0.034
ms40GeV_sine-5	44.770 ± 0.030	29.382 ± 0.363	28.357 ± 0.356	0.031 ± 0.012
ms40GeV_sine-6	44.770 ± 0.030	29.504 ± 0.364	28.510 ± 0.357	9.169 ± 0.203
$ms40GeV_sine-7$	44.770 ± 0.030	37.942 ± 0.412	36.827 ± 0.406	1.280 ± 0.076
$ms50GeV_sine-6$	34.963 ± 0.021	22.858 ± 0.283	22.060 ± 0.278	5.649 ± 0.141
$ms60GeV_sine-5$	16.322 ± 0.007	10.425 ± 0.130	10.105 ± 0.128	$0(\le 0.128)$
$ms60GeV_sine-6$	16.322 ± 0.007	10.518 ± 0.131	10.172 ± 0.129	1.961 ± 0.057
$ms60GeV_sine-7$	16.322 ± 0.007	12.615 ± 0.144	12.282 ± 0.142	2.344 ± 0.062

• Applied event selections from left to right, results given in number of expected events and uncertainties are only statistical

Comparison to existing limits

Complementary to the LHC searches!

- The sensitive signal points probes BRs ~ $4-7\cdot10^{-4}$ and span the mean proper lifetimes of ~ 40-400 mm
- Reaching slightly shorter lifetimes compared to the best existing limits
 - LHC: BR ~ 10⁻³ for lifetimes 1-10m
- About two orders better sensitivity at similar lifetimes
 - I HC: BR ~ 2.10⁻² for lifetimes 1mm 1m

Cepeda M, et al. 2022 R Annu. Rev. Nucl. Part. Sci. 72:119–49

 $c\tau \text{ [mm]}$

341.7

38.0

136.6

106.6

 $m_s, \sin \theta$

20 GeV, 1e-6

20 GeV, 3e-6

40 GeV, 1e-6

50 GeV, 1e-6

Magdalena Vande Voorde | 3rd ECFA workshop - Paris | 10th October 2024

16

Summary

Exotic Higgs decays to long-lived scalars can be targeted at FCC-ee!

- Analysis and simulation within the FCCAnalyses framework with the IDEA detector DELPHES simulation
 - Signal process: $e^+e^- \rightarrow ZH$ with $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$ and $H \rightarrow ss \rightarrow 4b$
 - Signal points: $m_s = 20 60$ GeV with lifetimes $c\tau$ of order 1mm 10m
- Reconstruction of the DVs using the LCFI+ SV finder
 - Custom track selection: pT > 1 GeV and |d0| > 2mm
- Sensitivity analysis
 - Vertex selection: N tracks > 2, M_{inv} > 2 GeV and 4mm < r < 2000mm
 - Event selection: tagging the Z boson and requiring at least 2 DVs

Backgrounds efficiently suppressed to zero! Sensitivity for signals with cτ ~ 0.04 - 0.4m Thank you for your attention!

Backup slides

Model parameters and calculations

• Width of scalar and branching ratios for s from <u>arXiv:1312.4992</u>

$$\Gamma_s = \frac{\Gamma(s \to b\bar{b})}{BR(s \to b\bar{b})} = \sin^2\theta \frac{N_c m_s m_b^2}{0.9 \times 8\pi v^2} \left(1 - \frac{m_b^2}{m_s^2}\right)^{3/2}$$

Approximate the number of events with

 $N = N_{ZH} \times BR(h \to ss) \times BR(s \to b\bar{b})^2 \times BR(Z \to l^+l^-)$

• The branching ratio for Higgs to s (arXiv:2111.12751)

$$BR(h \to ss) = \frac{\kappa^2 v^2}{32\pi m_h \Gamma_h} \sqrt{1 - 4\frac{m_s^2}{m_h^2}}$$

- We set $\kappa = 7e-4$ s.t $BR(h \to ss) = O(10^{-4})$
- $BR(s \rightarrow b\bar{b})^2 = 0.9^2$, from plot
- $N_{ZH} = 1.45e6$, from midterm report

Vertex reconstruction

- More details in thesis: DiVA
- LCFIPlus: A Framework for Jet Analysis in Linear Collider Studies: arXiv:1506.08371
- FCCAnalyses framework vertex reconstruction: <u>GitHub</u>

Previous studies: exotic Higgs decays FCC-ee sensitivity

Long Live the Higgs Factory: Higgs Decays to Long-Lived Particles at Future Lepton Colliders <u>arXiv</u>: <u>1812.05588</u>

Invariant mass cut to retain sensitivity to shorter decay lengths

Cuts optimised for longer decay lengths

 Projected 95% h → XX branching ratio limits as a function of proper decay length for a variety of X masses.

- The solid line corresponds to the 'large mass' analysis, using an invariant mass cut to retain sensitivity to shorter decay lengths.
- The dashed line corresponds to the 'long lifetime' analysis and depends on longer decay lengths to reduce SM backgrounds
- Realistic tracker-based search strategy involving the reconstruction of displaced secondary vertices and the imposition of selection cuts appropriate for eliminating the largest irreducible SM backgrounds.

Plot from: <u>arXiv:2203.05502</u> Results from: <u>arXiv:1812.05588</u>