Probing the nature of HNL at lepton colliders

K. Mękała^{1,2}, J. Reuter², A. F. Żarnecki¹

¹Faculty of Physics, University of Warsaw ²Theory Group, Deutsches Elektronen-Synchrotron DESY, Hamburg

3rd ECFA workshop on e+e- Higgs, Electroweak and Top Factories 10.10.2024

based on: [2202.06703] [2301.02602] [2312.05223] Some mysteries of the Standard Model:

- dark matter density
- baryon asymmetry
- neutrino masses, mass hierarchy and oscillations
- nature of neutrinos: Dirac or Majorana

can be addressed by introducing new species of neutrinos.

Heavy Neutral Leptons at lepton colliders

Let us assume that HNLs couple only to the SM gauge bosons and Higgs: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{W-N-\ell} + \mathcal{L}_{Z-N-\nu} + \mathcal{L}_{H-N-\nu}$

Heavy Neutral Leptons at lepton colliders

Let us assume that HNLs couple only to the SM gauge bosons and Higgs: $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{W-N-\ell} + \mathcal{L}_{Z-N-\nu} + \mathcal{L}_{H-N-\nu}$

At lepton colliders, single production with subsequent decay into qql is particularly interesting, as it allows for direct reconstruction of N.

Lepton colliders

NInternational UON Collider Collaboration

- model with a single <u>Dirac</u> or Majorana neutrino
- couplings:

$$|V_{eN}|^2 = |V_{\mu N}|^2 = |V_{\tau N}^2| \equiv V_{IN}^2$$

 $V_{IN}^2 = 0.0003$ is used for generation of reference sig. samples ullet masses:

$$m_N \ge 100 \text{ GeV}$$

widths:

above $\Gamma \sim \mathcal{O}(1 \text{ keV}) \rightarrow \text{prompt decays only (no LLP signature)},$ displaced vertices possible for masses $\mathcal{O}(10 \text{ GeV})$ and below

- $\ell^+\ell^-
 ightarrow N
 u
 ightarrow qq \ell
 u$ and "background"
- ILC at 250 GeV, 500 GeV and 1 TeV; CLIC at 3 TeV
- $\bullet\,$ parton shower and hadronisation with $\mathrm{Pythia}\,\, 6$
- beam spectra and polarisation included
- S/B $\sim 10^{-3}$, e.g. ILC500: $qql\nu$ background \sim 10 pb, signal \sim 10 fb

- $\ell^+\ell^- \rightarrow N \nu \rightarrow q q \ell \nu$ and "background"
- ILC at 250 GeV, 500 GeV and 1 TeV; CLIC at 3 TeV
- $\bullet\,$ parton shower and hadronisation with $\mathrm{Pythia}\,\, 6$
- beam spectra and polarisation included
- S/B $\sim 10^{-3},$ e.g. ILC500: $qql\nu$ background ~ 10 pb, signal ~ 10 fb
- Simulating detector response with DELPHES

- $\ell^+\ell^- \rightarrow N \nu \rightarrow q q \ell \nu$ and "background"
- ILC at 250 GeV, 500 GeV and 1 TeV; CLIC at 3 TeV
- $\bullet\,$ parton shower and hadronisation with $\mathrm{Pythia}\,\, 6$
- beam spectra and polarisation included
- S/B $\sim 10^{-3}$, e.g. ILC500: $qql\nu$ background \sim 10 pb, signal \sim 10 fb
- Simulating detector response with DELPHES
- Preselection of events matching required signal topology
 - cuts opt. to search for N: exactly 1 lepton and 2 jets in the final state

- $\ell^+\ell^- \rightarrow N \nu \rightarrow q q \ell \nu$ and "background"
- ILC at 250 GeV, 500 GeV and 1 TeV; CLIC at 3 TeV
- $\bullet\,$ parton shower and hadronisation with $\mathrm{Pythia}\,\, 6$
- beam spectra and polarisation included
- S/B $\sim 10^{-3}$, e.g. ILC500: $qql\nu$ background \sim 10 pb, signal \sim 10 fb
- Simulating detector response with DELPHES
- Preselection of events matching required signal topology
 - cuts opt. to search for N: exactly 1 lepton and 2 jets in the final state
- BDT training

- $\ell^+\ell^-
 ightarrow N
 u
 ightarrow qq \ell
 u$ and "background"
- ILC at 250 GeV, 500 GeV and 1 TeV; CLIC at 3 TeV
- $\bullet\,$ parton shower and hadronisation with $\mathrm{Pythia}\,\, 6$
- beam spectra and polarisation included
- S/B $\sim 10^{-3},$ e.g. ILC500: $qql\nu$ background \sim 10 pb, signal \sim 10 fb
- Simulating detector response with DELPHES
- Preselection of events matching required signal topology
 - cuts opt. to search for N: exactly 1 lepton and 2 jets in the final state
- BDT training
- OLs method to get final results

qql invariant mass

Boosted Decision Trees

BDT trained with 8 input variables

ILC 500 GeV, (-80%, +30%), m_N = 300 GeV, μ in the final state

CLs method

BDT response is used to build a model in $\operatorname{ROOSTATS}$ to use the CL_s method (combining both channels, normalisation uncertainties).

9/17

Results for e^+e^- colliders

The cross-section limits can be translated into limits on the V_{IN}^2 parameter.

Dirac vs. Majorana

Exclusion limits are very similar for the Dirac- and Majorana-neutrino hypotheses

Are there any discriminant variables?

Lepton emission angle in the N rest frame:

CLIC 3 TeV

Are there any discriminant variables?

Lepton emission angle in the N rest frame:

CLIC 3 TeV

More sophisticated variables...

Lepton and dijet LAB angle relative to the electron (positron) beam multiplied by the lepton charge q_1 :

ILC 250 GeV, $m_N = 150$ GeV

HNLs at e^+e^- colliders

1 2 (independent) BDT trainings:

- LNV vs. (α_{BDT} · LNC + Background)
- LNC vs. ($\alpha_{BDT} \cdot \text{LNV} + \text{Background}$)

Statistical test:

 $T \ge \chi^2_{crit}(\text{DOF}) \Rightarrow \text{hypotheses distinguishable}$

Krzysztof Mękała (FUW/DESY)

HNLs at e^+e^- colliders

10.10.2024

$$T'
ightarrow T'(lpha_{lim}) = \sum_{bins} rac{lpha_{lim}^2 (D-M)^2}{B + lpha_{lim} \cdot rac{D+M}{2}}$$

and we search for α_{lim} , for which:

$$T \rightarrow T(\alpha_{lim}) \equiv \chi^2_{crit}(DOF).$$

Krzysztof Mękała (FUW/DESY)

HNLs at e^+e^- colliders

10.10.2024

Dirac vs. Majorana - results

- Lepton colliders are an excellent tool for discovering and discriminating HNLs.
- Hadron colliders reach high masses, but lepton colliders reach (much) lower couplings.
- Combination of charge & angular information allows access on the Dirac vs. Majorana nature (discrimination almost always possible if HNLs discovered!).

• effective extension of the Standard Model

[HeavyN FeynRules]

- widely analysed for searches at hadron colliders
 e.g. [arXiv:1411.7305], [arXiv:2008.01092], [arXiv:2011.02547]
- 3 new heavy neutrinos Majorana or Dirac particles: N1, N2, N3
- 12 free parameters:
 - 3 masses ($\sim 10^2-10^3$ GeV)
 - 9 mixing parameters (3x3 mixing matrix for e, μ,τ and N1, N2, N3)

BACKUP: Running scenarios

ILC:

- 500 GeV: total luminosity of 4000 $\rm fb^{-1}$
 - $\bullet~2 \times 1600~fb^{-1}$ for LR and RL beam polarisations
 - $\bullet~2 \times 400~fb^{-1}$ for LL and RR beam polarisations

assuming polarisation of $\pm 80\%$ for electrons and $\pm 30\%$ for positrons

- 1 TeV: total luminosity of 8000 $\rm fb^{-1}$
 - $\bullet~2\times3200~fb^{-1}$ for LR and RL beam polarisations
 - $2 \times 800 \text{ fb}^{-1}$ for LL and RR beam polarisations

assuming polarisation of $\pm 80\%$ for electrons and $\pm 20\%$ for positrons C

CLIC:

- 3 TeV: total luminosity of 5000 fb^{-1}
 - ${\scriptstyle \bullet}~$ 4000 fb $^{-1}$ for negative electron beam polarisation
 - 1000 fb^{-1} for positive electron beam polarisation

assuming polarisation of $\pm 80\%$ for electrons

Muon Collider:

- 3 TeV: total luminosity of 1000 fb^{-1}
- 10 TeV: total luminosity of 10,000 $\rm fb^{-1}$

2/4

BACKUP: Neutrino width

BACKUP: Results for the Muon Collider

