3° ECFA workshop on e+e-Higgs, Top & ElectroWeak Factories

Searching for Heavy Neutral Leptons and measuring them with the IDEA detector at the FCC-ee

Giacomo Polesello *, Nicolò Valle*, on behalf of the PED-BSM Physics Group

* INFN, Sezione di PAVIA

A Higgs, top, EW and flavour factory, for tests of the Standard Model at an unprecedented level

Key words: **clean environment** and **high statistics**

Tera-Z run (5 orders of magnitude more than LEP)

- Huge gain in **sensitivity for feebly-coupled new particles** with mass in ∼ 1 91 GeV
- $\mathcal A$ Broad search program, mostly model-independent
- $\mathcal P$ Severe detector requirements

HNLs, a promising new physics channel

Open **key questions** on SM neutrinos (mass ordering, mass mechanism, Dirac/Majorana nature...)

Experimental point of view: **a heavy fermion with suppressed interactions**

Minimal scenario, production and decay are controlled by two model parameters: $(m_N, U_{\ell N})$

Small mixing $U_{\ell N}$ with SM leptons \rightarrow **suppressed production**, and **long decay path**

➢ **Exclusion limits**

In this talk:

➢ **Measurement of the parameters of the model in a realistic experiment**

- $\rho \triangleright N \overline{N}$ oscillations
- ➢ **Dirac / Majorana behaviour**

The simulation setup

Benchmark channel: N→μjj

One HNL flavour assumed \rightarrow two parameters, (m_N, U)

$$
\Gamma_N \simeq c_{dec} \frac{a}{96\pi^3} G_F^2 U^2 m_N^5
$$

 $N \rightarrow \mu i j$

Large branching fraction Visible final state allowing for **full reconstruction** of the kinematics

Displaced and prompt signatures are both accessible at the FCC-ee: severe requirements on the performance of the detector

Benchmark channel: N→μjj

Event reconstruction and selection (outline):

- At least three tracks, and **one single lepton** (muon), excluded from clusterization
- FASTJET **clusterization**, allowing for max 2 jets (exclusive k_T)
- $qq, \mu\mu, \tau\tau$ signatures suppressed by cuts on angular distributions, visible and invisible energy and mass
- Requiring **primary vertex** with good χ^2 and many contributors \rightarrow high heavy flavour rejection
- 4-leptons **irreducible background: purely prompt** topology
- HNL mass -and missing energy- from the sum of all **visible** 4-momenta
	- \checkmark Good mass resolution also from HNL vertex position and time-of-flight

Details in the backup slides

N→μjj sensitivity

Prompt vs **long-lived** separation [radial vertex position \leqslant 0.5 mm]

Selection for long-lived analysis reduced to minimal one, so to have **no background** in the long-lived regime

Two HNL states, with same mixing to SM and masses M-Δm/2 and M+Δm/2

Superposition of N, N during Z decay \rightarrow **oscillation** between lepton-number conserving (**LNC**) and lepton-number violating (**LNV**) processes

Definition of the model: [arXiv 2210.10738](https://arxiv.org/abs/2210.10738)

J. Hajer,

Exploring the nature of heavy neutral leptons in final state distributions

In what parameter space can we detect oscillations at FCC-ee ? Which features of the model can we measure?

Parameters chosen to have >5k HNLs with decay length **in between 0.5 mm [no SM after minimal cuts] and 2m [IDEA tracker extension]**

For each point: **3 values of** cr_{osc} : 1.5, 15 and 150 mm

Analysis efficiency ≳ 60%

Parameters chosen to have >5k HNLs with decay length **in between 0.5 mm [no SM after minimal cuts] and 2m [IDEA tracker extension]**

For each point: **3 values of** cr_{osc} : 1.5, 15 and 150 mm

Analysis efficiency ≳ 60%

Truth oscillation, as a function of the distance of the reconstructed vertex from the origin (d_{vert})

S. Antusch, J. Hajer, et al Poseudo-Dirac model [arXiv 2210.10738](https://arxiv.org/abs/2210.10738) Simulated samples in the $(M, \Delta m, \Gamma)$ space: phenomenology at the Z-pole: [arXiv 2408.01389](https://arxiv.org/abs/2408.01389)

S. Antusch, J. Hajer, et al

The analysis - oscillations

Main signature: production of **LNV final states**

One cannot detect whether N recoils against v or $\bar{v} \rightarrow$ use **angular asymmetry from Z polarization**

Forward/backward asymmetry

∼ 10% residual oscillation

$$
A_{\ell^{\mp}}^{FB}=\frac{P_{\ell^{\mp}}^{[\pi/2,0]}-P_{\ell^{\mp}}^{[\pi,\pi/2]}}{P_{\ell^{\mp}}^{[\pi/2,0]}+P_{\ell^{\mp}}^{[\pi,\pi/2]}}=A_{N,\bar{N}}^{FB}\,\Delta P_{osc}
$$

Potential capability to measure τ_{osc} at the percent level, depending on the value of the coupling

The analysis - oscillations

- Angle between muon and missing momentum (in the HNL rest frame)
- \checkmark Muon momentum (in the lab frame)

Error bars for full FCC-ee Z-pole statistics. Comparable analysing power.

1) Toy models used to define variables separating Dirac/Majorana:

- Pure Dirac model
- Majorana model: two Majorana neutrinos with Δm mass split
- 2) Once the variables are definded:

study distributions of discriminant variables for SPSS model in parameter space defined by $(\Gamma, \Delta m)$

1) Toy models used to define variables separating Dirac/Majorana:

- Pure Dirac model
- Majorana model: two Majorana neutrinos with Δm mass split
- 2) Once the variables are definded:

arXiv 2408.01389

study distributions of discriminant variables for SPSS model in parameter space defined by $(Γ, Δm)$

1) Toy models used to define variables separating Dirac/Majorana:

- Pure Dirac model
- Majorana model: two Majorana neutrinos with Δm mass split
- 2) Once the variables are definded:

arXiv 2408.01389

study distributions of discriminant variables for SPSS model in parameter space defined by $(Γ, Δm)$

 $cos(\theta_u)$

Dirac behaviour for $\tau_{dec} \ll \tau_{osc}$ Majorana behaviour for $\tau_{dec} \sim \tau_{osc}$

 \rightarrow Bins with number of events weighted by $cos(\theta_{HNI})$

 $cos(\theta_u)$ (HNL rest frame)

> Dirac behaviour for $\tau_{dec} \ll \tau_{osc}$ Majorana behaviour for $\tau_{dec} \sim \tau_{osc}$

Summary

Great FCC-ee potential for direct searches of HNL signatures both in **prompt** and **long-lived** channels

Analyses prove high S/B ratio, especially for displaced events, and **sensitivity** down to small mixing angles

Benchmark of model parameters, at the moment based on parametrised performance of detectors

- Implemented in FCC software model of Antusch et al. yielding **striking signature of a N-N oscillation** inside the detector
- For an appropriate choice of parameters the **oscillation period is measurable** through forward/backward asymmetry
- Study of **Dirac/Majorana variables** can be used to assess parameter region of the model even when oscillations cannot be observed

Thank you

Extra material

Mass measurement through timing

$$
m_N = E_{cm} \sqrt{\frac{1 - \beta_N}{1 + \beta_N}} = E_{cm} F(\beta_N) \qquad \sigma(m_N) \sim E_{cm} F'(\beta_N) \sigma(\beta_N) \qquad \beta_N = \frac{\delta d_N}{\delta t_N}
$$

The **HNL mass** can be constrained by measuring its decay **timing and path**

Resolution controlled by the uncertainty on HNL decay time and on the **undetected interaction point** *

 $* \sigma_r = 5.96 \,\mu m$, $\sigma_v = 23.8 \,\text{nm}$, $\sigma_z = 0.397 \,\text{mm}$, $\sigma_z = 36.3 \,\text{ps}$

Measurement below the percent level is possible with plausible detector performance,

for sufficiently high masses

and long lifetimes

Mass measurement through timing

[arXiv:2406.05102](https://arxiv.org/abs/2406.05102)

Realistic conditions simulated in IDEA, using the $N \rightarrow \mu$ ji channel

- $\sigma(TOF)$ determined only by detector technology
- The HNL vertex is known and its flight distance is computed
- Iterative procedure set up to optimize the mass hypotheses, possibly spoiled by the long HNL flight distance
- Timing resolution roughly scaling with sqrt of number of tracks \triangleleft
- $200 \mu m \simeq \sigma(d_{\text{next}})$ dominated by the uncertainty on the interaction point
- Dependence on HNL yield vs (m_N, U) : evaluated with MC for the expected Z-pole run luminosity

Existing limits and projections

arXiv:1912.03058

The analysis

Sensitivity limits extracted over a **wide range** of parameter space

Working with the Z-pole run statistics: L_{int} = **205 ab-1**

Crucial role of both **energy resolution** and **vertexing capabilities,** to maximize signal yield over background

Prompt vs **long-lived** separation [radial vertex position ≤ 0.5 mm] so to have **no backgound** in the long-lived regime

Dependence on hadronic resolution

- Window for baseline study from DELPHES
- Assume signal efficiency unchanged after enlarging mass window according to resolution 2.
- Calculate number of background events for enlarged window and calculate significance 3.

Fig. 24 Curves at Significance $= 2$ for different values of the assumed hadronic resolution. Each line is a linear interpolation of Z vs. $log(U)$ at the value $Z = 2$.

Fig. 25 Ratio of the U^2 limit obtained with 20% and 30% resolutions with respect to the nominal resolution as a function of M_{N_1} .