3° ECFA workshop on e+e-Higgs, Top & ElectroWeak Factories

Searching for Heavy Neutral Leptons and measuring them with the IDEA detector at the FCC-ee

Giacomo Polesello *, <u>Nicolò Valle</u>*, on behalf of the PED-BSM Physics Group

* INFN, Sezione di PAVIA

A Higgs, top, EW and flavour factory, for tests of the Standard Model at an unprecedented level

Key words: clean environment and high statistics

Tera-Z run (5 orders of magnitude more than LEP)

- \checkmark Huge gain in **sensitivity for feebly-coupled new particles** with mass in \sim 1 91 GeV
- Stroad search program, mostly model-independent

HNLs, a promising new physics channel

Open **key questions** on SM neutrinos (mass ordering, mass mechanism, Dirac/Majorana nature...)

Experimental point of view: a heavy fermion with suppressed interactions

Minimal scenario, production and decay are controlled by two model parameters: $(m_N, U_{\ell N})$

Small mixing $U_{\ell N}$ with SM leptons \rightarrow suppressed production, and long decay path

In this talk:

> Exclusion limits

Measurement of the parameters of the model in a realistic experiment

- $\succ N \overline{N}$ oscillations
- Dirac / Majorana behaviour

The simulation setup

Benchmark channel: N→µjj

One HNL flavour assumed \rightarrow two parameters, $(\boldsymbol{m}_N, \boldsymbol{U})$

$$\Gamma_N \simeq c_{dec} \frac{a}{96\pi^3} G_F^2 U^2 m_N^5$$
 (m_N < 80 GeV)

 $N \rightarrow \mu j j$

\checkmark Large branching fraction

Visible final state allowing for full
 reconstruction of the kinematics

Displaced and prompt signatures are both accessible at the FCC-ee: severe requirements on the performance of the detector

Benchmark channel: N→µjj

Event reconstruction and selection (outline):

- At least three tracks, and **one single lepton** (muon), excluded from clusterization
- FASTJET **clusterization**, allowing for max 2 jets (exclusive k_T)
- qq, $\mu\mu$, $\tau\tau$ signatures suppressed by cuts on angular distributions, visible and invisible energy and mass
- Requiring **primary vertex** with good χ^2 and many contributors \rightarrow high heavy flavour rejection
- 4-leptons irreducible background: purely prompt topology
- HNL mass -and missing energy- from the sum of all **visible** 4-momenta
 - ✓ Good mass resolution also from HNL vertex position and time-of-flight

N→µjj sensitivity

Prompt vs **long-lived** separation [radial vertex position ≤ 0.5 mm]

Selection for long-lived analysis reduced to minimal one, so to have **no background** in the long-lived regime **Two HNL states**, with same mixing to SM and masses M- Δ m/2 and M+ Δ m/2

Superposition of N, \overline{N} during Z decay \rightarrow oscillation between lepton-number conserving (LNC) and lepton-number violating (LNV) processes

Definition of the model: arXiv 2210.10738

J. Hajer,

Exploring the nature of heavy neutral leptons in final state distributions

In what parameter space can we detect oscillations at FCC-ee ? Which features of the model can we measure?

Parameters chosen to have >5k HNLs with decay length in between 0.5 mm [no SM after minimal cuts] and 2m [IDEA tracker extension]

For each point: **3 values of** $c\tau_{osc}$: 1.5, 15 and 150 mm

Analysis efficiency $\gtrsim 60\%$

Parameters chosen to have >5k HNLs with decay length in between 0.5 mm [no SM after minimal cuts] and 2m [IDEA tracker extension]

For each point: **3 values of** $c\tau_{osc}$: 1.5, 15 and 150 mm

Analysis efficiency $\gtrsim 60\%$

Truth oscillation, as a function of the distance of the reconstructed vertex from the origin (d_{vert})

Simulated samples in the $(M, \Delta m, \Gamma)$ space:

S. Antusch, J. Hajer, et al pseudo-Dirac model arXiv 2210.10738 phenomenology at the Z-pole: arXiv 2408.01389

The analysis - oscillations

Main signature: production of **LNV final states** One cannot detect whether N recoils against ν or $\bar{\nu} \rightarrow$ use **angular asymmetry from Z polarization**

Forward/backward asymmetry

 $\sim 10\%$ residual oscillation

$$A_{\ell^{\mp}}^{FB} = \frac{P_{\ell^{\mp}}^{[\pi/2,0]} - P_{\ell^{\mp}}^{[\pi,\pi/2]}}{P_{\ell^{\mp}}^{[\pi/2,0]} + P_{\ell^{\mp}}^{[\pi,\pi/2]}} = A_{N,\bar{N}}^{FB} \, \Delta P_{osc}$$

Potential capability to measure τ_{osc} at the percent level, depending on the value of the coupling

The analysis - oscillations

- Angle between muon and missing momentum (in the HNL rest frame)
- Muon momentum (in the lab frame) \checkmark

Error bars for full FCC-ee Z-pole statistics. Comparable analysing power.

10

1) Toy models used to define variables separating Dirac/Majorana:

- Pure Dirac model
- Majorana model: two Majorana neutrinos with Δm mass split
- 2) Once the variables are definded:

• study distributions of discriminant variables for SPSS model in parameter space defined by $(\Gamma, \Delta m)$

1) Toy models used to define variables separating Dirac/Majorana:

- Pure Dirac model
- Majorana model: two Majorana neutrinos with Δm mass split
- 2) Once the variables are definded:

<u>arXiv 2408.01389</u>

• study distributions of discriminant variables for SPSS model in parameter space defined by $(\Gamma, \Delta m)$

1) Toy models used to define variables separating Dirac/Majorana:

- Pure Dirac model
- Majorana model: two Majorana neutrinos with Δm mass split
- 2) Once the variables are definded:

arXiv 2408.01389

• study distributions of discriminant variables for SPSS model in parameter space defined by $(\Gamma, \Delta m)$

Majorana behaviour for $\tau_{dec} \sim \tau_{osc}$ Dirac behaviour for $\tau_{dec} \ll \tau_{osc}$

Summary

Great FCC-ee potential for direct searches of HNL signatures both in **prompt** and **long-lived** channels

Analyses prove high S/B ratio, especially for displaced events, and **sensitivity** down to small mixing angles

Benchmark of model parameters, at the moment based on parametrised performance of detectors

- Implemented in FCC software model of Antusch et al. yielding striking signature of a N-N
 oscillation inside the detector
- For an appropriate choice of parameters the **oscillation period is measurable** through forward/backward asymmetry
- Study of **Dirac/Majorana variables** can be used to assess parameter region of the model even when oscillations cannot be observed

Thank you

Extra material

Mass measurement through timing

$$m_N = E_{cm} \sqrt{\frac{1 - \beta_N}{1 + \beta_N}} = E_{cm} F(\beta_N) \qquad \qquad \sigma(m_N) \sim E_{cm} F'(\beta_N) \sigma(\beta_N) \qquad \qquad \beta_N = \frac{\delta d}{\delta t_N}$$

The HNL mass can be constrained by measuring its decay timing and path

Resolution controlled by the uncertainty on HNL decay time and on the **undetected interaction point** *

* σ_x = 5.96 µm, σ_y = 23.8 nm, σ_z = 0.397 mm, σ_z = 36.3 ps

Measurement below the percent level is possible with plausible detector performance,

for sufficiently high masses

and long lifetimes

Mass measurement through timing

arXiv:2406.05102

Realistic conditions simulated in IDEA, using the $N \rightarrow \mu j j$ channel

- \triangleleft $\sigma(\text{TOF})$ determined only by detector technology
- \checkmark The HNL vertex is known and its flight distance is computed
- arpropto Iterative procedure set up to optimize the mass hypotheses, possibly spoiled by the long HNL flight distance
- \checkmark Timing resolution roughly scaling with sqrt of number of tracks
- < 200 $\mu m \simeq \sigma(d_{vert})$ dominated by the uncertainty on the interaction point
- \checkmark Dependence on HNL yield vs (m_N, U): evaluated with MC for the expected Z-pole run luminosity

Existing limits and projections

arXiv:1912.03058

The analysis

Sensitivity limits extracted over a **wide range** of parameter space

Working with the Z-pole run statistics: $L_{int} = 205 \text{ ab}^{-1}$

Crucial role of both **energy resolution** and **vertexing capabilities,** to maximize signal yield over background

Prompt vs **long-lived** separation [radial vertex position ≤ 0.5 mm] so to have **no backgound** in the long-lived regime

Dependence on hadronic resolution

- I. Window for baseline study from DELPHES
- 2. Assume signal efficiency unchanged after enlarging mass window according to resolution
- 3. Calculate number of background events for enlarged window and calculate significance

Fig. 24 Curves at Significance = 2 for different values of the assumed hadronic resolution. Each line is a linear interpolation of Z vs. $\log(U)$ at the value Z = 2.

Fig. 25 Ratio of the U^2 limit obtained with 20% and 30% resolutions with respect to the nominal resolution as a function of M_{N_1} .