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Motivation
1

• Even if DM is neutral under EM  interactions with EW gauge bosons via higher dimensional operators 

• From the DM-photon EFT classification in [1] we analyze  effective interactions involving a real scalar  singlet 
dark matter particle with SM EW gauge bosons

⇒
SU(2)L

[1] B. J. Kavanagh, P. Panci, and R. Ziegler JHEP 04 (2019) 089, [arXiv:1810.00033]

First operators that appear 

 in the EFT expansion

 ℒϕ = Cϕ
ℬϕ2BμνBμν + Cϕ

𝒲ϕ2Wa
μνWa,μν

ℒϕ = ϕ2 (𝒞ϕ
γγAμνAμν + 𝒞ϕ

ZZZμνZμν + 𝒞ϕ
γZZμνAμν + 𝒞ϕ

WWW+
μνW−,μν)

Real scalar case
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Elusive DM scenario for DD 
 no couplings with lighter dof ( ) 
 Loop suppressed cross sections  

⇒ q, 𝒢
⇒

Interesting target for Indirect Detection probes 
•DM annihilates with  
•FERMI works only up to 

γ
𝒪(500 GeV)
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FCCee - FCChh 
Could provide additional information about the 
model in the coming years.

How do we test this scenario at colliders?
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UV completion?
3

• Wilson coefficients are related to the scale where these operators are generated as 
• UV completion can be achieved through: 

Cϕ
ℬ,𝒲 =

cB,W

Λ2
B,W

Loop level:  ΛB,W =
4 2π

gY,2
Λloop

B,W

γ

γ

l

l

l

L

ϕ

ϕ

γ

γ

ϕ

ϕ

R

Tree level:  ΛB,W = Λtree
B,W
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Experiments
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Xenon and Darwin

1 LHC @  TeV, s = 13 L = 139/fb

2 Z-factory at FCC-ee ( )L = 120/ab
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4  @  TeVμC s = 3,10
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FERMI

FCC-hh @  TeV, s = 80,100 L = 30/ab
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Drell-Yan processes + Fusion TBD

e+

e−

q
q

V

q
q

ϕ

ϕV

5
E

CF
A

 |
 2

02
4

Forthcoming studies



Colliders
1 LHC and high-lumi LHC: mono-  analysis γ

6

§q

• DM is produced in association with a high  

• Recast the ATLAS analysis 
• Work with LO Parton level for signal simulation

pγ
T

Analysis selections

 GeV and  or Eγ
T > 150 |η | < 1.37 1.52 < |η | < 2.37

SRI1     SRI2     SRI3     SRI4     SRE1      SRE2     SRE3
> 200 > 250 > 300 > 375 200 − 250 250-300 300-350

7 SRs defined with increasing MET
Validity of the EFT

 

we require that   

ℒstrong
ϕ = C̃ϕ

Bϕ2BμνBμν + C̃ϕ
Wϕ2WμνWμν

pγ
T < Λ

Projections for high-lumi LHC
• Assume only statistical uncertainties and same selections of ATLAS analysis
• 95% CL bound with        rescaling the expected SM events by lumi ratioNS

NB

 TeVs = 13

L = 139 f b−1 − 3ab−1

ATLAS: 2011.05259
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HL-LHC will improve the bound by a factor ∼ 2.5



After LHC era
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Colliders
2 FCC-ee: DY process

10

• Z-pole running in Tera-Z mode to probe the scale  
• DM produced in association with an energetic photon 
• Strongest sensitivity from on-shell Z 

• The dominant bkg is  

• Baseline cuts:    and GeV.  

• We maximize the sensitivity   adding a cut on  

Λ

e+e− → γνν̄
|η | < 2.5 pγ

T > 5

NS

NB
Pγ

T
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L = 120 ab−1
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2 FCC-ee: DY process
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• Z-pole to probe  DM produced in association with an energetic photon 

•  is not not forward and this leads to a large    very clean search channel 

• The dominant bkg is  

• Analysis selections: we have taken   

• We maximize the sensitivity             adding a cut on  

ΛγZ ⇒

γ Pγ
T ⇒

e+e− → γνν̄
|η | < 2.5
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DD and ID
6 FERMI

11
5 Xenon and Darwin

• 840 weeks of data 
 (08/2008-07/2024) 
0.7 GeV < Eγ < 500 GeV

 
dσRay

dER
=

4mT

m2
ϕv2

cγγ

Λ4

Z4α2
em

π2b2(A)
ℱ2

ray

dσSI

dER
=

mT

2μ2
ϕTv2

σn
SIℱh

PRD 131,041003 and arxiv:1606.07001 •ROI41: Most profile independent 
• DM annihilation (PPPC4MID Tool) 
Line( ) + Continuum( ) ϕϕ → γγ, γZ ZZ, WW, γZ
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DD and ID
5 FERMI
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Loop Rescale 9

1 10 102 103 104
1

10

102

103

104

mDM [GeV]

Λ
[G
eV

]

CB = 0

1 10 102 103 104
1

10

102

103

104

mDM [GeV]
Λ
[G
eV

]

CW = 0

ΛB,W =
4 2π

gY,2
Λloop

B,W

γ

γ

l

l

l

L

ϕ

ϕ

LHC
HL-LHC

FCC-ee

Thermal Relic

Xenon

Darwin

Fermi

LHC
HL-LHC

FCC-ee

Thermal Relic

Xenon

Darwin

Fermi

lo
op

lo
op LEP BOUNDLEP BOUND

E
CF

A
 |

 2
02

4



Loop Rescale 9

1 10 102 103 104
1

10

102

103

104

mDM [GeV]

Λ
[G
eV

]

CB = 0

1 10 102 103 104
1

10

102

103

104

mDM [GeV]
Λ
[G
eV

]

CW = 0

ΛB,W =
4 2π

gY,2
Λloop

B,W

γ

γ

l

l

l

L

ϕ

ϕ

LHC
HL-LHC

FCC-ee

FCC-hh 100TeV

FCC-hh 80TeV

Thermal Relic

Xenon

Darwin

Fermi

LHC
HL-LHC

FCC-ee

FCC-hh 100TeV

FCC-hh 80TeV

Thermal Relic

Xenon

Darwin

Fermi

lo
op

lo
op LEP BOUNDLEP BOUND

E
CF

A
 |

 2
02

4

C 3 TeVμ

C 10 TeVμ

C 3 TeVμ

C 10 TeVμ



10

“Near” Future Colliders (FCCee, HL-LHC): 
• Will place more stringent bounds on this dark matter scenario; 
• FCCee gives one of the most stringent bound, but only for small DM mass; 
• HL-LHC bounds will not be significantly greater than current LHC ones . 

Indirect and Direct Detection: 
• Current bounds (e.g., FERMI) and future projections (e.g., Darwin) will remain competitive, if 

not stronger, than FCCee or HL-LHC. 
“Next” Future (FCChh): 
• Will be able to probe much higher energy scales; 
• Could provide crucial insights into this dark matter benchmark.
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10

• Z-pole to probe  DM produced in association with an energetic photon 
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DD and ID
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COLLIDERS, DD AND ID  



Yukawa model
ℒ = λlϕL̄PRl + h . c .

 is DM candidate EW singlet,  is RH SM lepton and  is a BSM  singlet with ϕ l L SU(2)L YL = 1
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 is DM candidate EW singlet,  and  are a BSM  singlets with ϕ F L SU(2)L YL = YF
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Yukawa model
ℒ = λlϕL̄PRl + h . c .

 is DM candidate EW singlet,  is RH SM lepton and  is a BSM  singlet with ϕ l L SU(2)L YL = 1

ℒ = λlϕL̄PRF + h . c .
 is DM candidate EW singlet,  and  are a BSM  singlets with ϕ F L SU(2)L YL = YF

mϕ ≪ mF ∼ mL

For this model the relevant bound is given by the agnostic search of an EW final state at LEP2 

 

 Projections for FCCee running @ 240 GeV can push the bound up to 

Λ ≳ 95 GeV
3

3
≃ 54 GeV

⇒ Λ ≳ 70GeV
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Spin-2 UV-completion

ℒ ⊃ cγγϕ2F2 ℒ ⊃ −
1

2ΛIR
Rμν[c1T (F)

μν + c2T
(ϕ)
μν ]

EFT MATCHING

Bound for the production of the massive spin 2 particle [2] rescaling the branching ratio R → γγ

[2] D. d’Enterria, M. A. Tamlihat, L. Schoeffel, H.-S. Shao, and Y. Tayalati Phys. Lett. B 846 (2023) 138237
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Future Colliders Landscape
FCC-hh: DY process - @ 80/100 TeV with  L = 30 ab−1

• Process assumed to be qualitatively the same as ATLAS mono-   

• Hard photon  different analysis wrt the soft photon analysis already done 

• The ,  channel is the dominant bkg 

  of the total yield   

• LO simulation with MadGraph for  channel in the fiducial regions given by ATLAS 

- We find that the LO  simulation accounts for of the experimental  ATLAS 
background and hence  of the total experimental background  
 this is constant in all the ATLAS signal regions; 

- We estimate the total SM bkg multiplying by a factor 2 the dominant  bkg computed 
using MadGraph; 

• Signal selection:  and we optimize on the MET requirement

γ
⇒

pp → Zγ Z → νν̄

⇒ ∼ 60 % (bkg)ATLAS
ν /(bkg)ATLAS

tot

ν
Zγ ∼ 80 % Zγ

∼ 50 %
⇒

Zγ

|η | < 2.37
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Future Colliders Landscape
FCC-hh: DY process - @ 80/100 TeV with  L = 30 ab−1

• Process assumed to be qualitatively the same as ATLAS mono-   
• We recast the ATLAS analysis in order to estimate the total experimental bkg at FCChh 

• Signal selection:  and we optimize on the MET requirement
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Muon Collider: DY process  TeV with s = 3,10 L = 0.9,10 ab−1

μ

μ

• Same mono-photon search of FCC-ee 

• Signal selection:  and  GeV and we optimize on the MET requirement 

• Preliminary results: The EFT validity is under threat

|ηγ | < 2.5 pγ
T > 5
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Colliders
2 FCC-hh: DY process - @ 80/100 TeV with  L = 30 ab−1
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• Projections Assumed to be qualitatively the same as ATLAS mono-   

• Hard Photon  different analysis wrt the usual soft photon analysis 
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- We find that the LO  simulation accounts for of the experimental  
background and hence  of the total experimental background  this is 
constant in all the ATLAS signal regions; 
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Colliders
4 Muon Collider: DY process

• Same mono  mechanism 

• Gen. level cuts:  and  GeV 

•  background channel
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Colliders
4 Muon Collider: DY process

10

• Same mono  mechanism 

• Gen. level cuts:  and  GeV 

•  background channel

γ
|ηγ | < 2.5 pγ

T > 5
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EFT APPROACH FAILS 

s > Λsc



Forthcoming studies
VBF Analysis

Muon Collider 
• Forward muons:  

• We optimize over the  

• We have considered a , but also other bkg channels are 
relevant, they will relax the bound by a 30% coefficient.

|η | < 7, ΔRμ± < 0.4, Eμ± > 500 GeV

MIM = ΔpμΔpμ

μμνν̄

FCChh 
• VBF is a relevant process  different kinematics 
• We would like to perform a forward production analysis 

For FCC-hh No clean environment!

⇒

⇒
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Colliders
Muon Collider: VBS

• Kinematics: forward muons 

• Background channels: μμν̄ν, μμγ, μμWW, μμf f̄

 TeVs = 3,10
L = 0.9,10 ab−1

μ

V ϕ

ϕ
μ

μ

μ

V

Gen. level cuts: 

 , GeV; 

 , sign( )<0.

|η | < 7 Eμ± > 500

ΔR(μ+μ−) > 0.4 ημ+ημ−

• As a proxy for the momentum exchanged in the vertex we 
used the Missing Invariant Mass (MIM) 

 

 MIM to check the EFT validity!

MIM = ΔpμΔpμ

→
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