Scalar Rayleigh Dark Matter

In collaboration with: Barducci, Buttazzo, Dondarini, Franceschini, Mescia, Panci

3rd ECFA workshop on $e^+e^−$ Higgs, Electroweak and Top Factories | 2024

Giulio Marino

(Università di Pisa, INFN)

Collider and Cosmological Probes, Present and Future

ECFA | 2024

Motivation

1

- Even if DM is neutral under EM \Rightarrow interactions with EW gauge bosons via higher dimensional operators
- From the DM-photon EFT classification in [1] we analyze effective interactions involving a real scalar $SU(2)_L$ singlet dark matter particle with SM EW gauge bosons

[1] *B. J. Kavanagh, P. Panci, and R. Ziegler JHEP 04 (2019) 089, [arXiv:1810.00033]*

First operators that appear

in the EFT expansion

$$
\mathcal{L}_{\phi} = C_{\mathcal{B}}^{\phi} \phi^{2} B_{\mu\nu} B^{\mu\nu} + C_{\mathcal{U}}^{\phi} \phi^{2} W
$$

$$
\mathcal{L}_{\phi} = \phi^{2} \left(\mathcal{C}_{\gamma\gamma}^{\phi} A_{\mu\nu} A^{\mu\nu} + \mathcal{C}_{ZZ}^{\phi} Z_{\mu\nu} Z^{\mu\nu} + \mathcal{C}_{\gamma Z}^{\phi} Z_{\mu\nu} \right)
$$

W^a μνWa,*μν* $\frac{\partial}{\partial Z} Z_{\mu\nu} A^{\mu\nu} + \mathcal{C}^{\phi}_{WW} W^{+}_{\mu\nu} W^{-,\mu\nu}\Big)$ Real scalar case

Motivation

ECFA | 2024

Elusive DM scenario for DD

 \Rightarrow no couplings with lighter dof (q, \mathscr{G})

 \Rightarrow Loop suppressed cross sections

Interesting target for Indirect Detection probes •DM annihilates with *γ* • FERMI works only up to $\mathcal{O}(500 \text{ GeV})$

FCCee - FCChh

Could provide additional information about model in the coming years.

How do we test this scenario at colliders?

ECFA | 2024

Elusive DM scenario for DD

 \Rightarrow no couplings with lighter dof (q, \mathscr{G})

 \Rightarrow Loop suppressed cross sections

Motivation

Interesting target for Indirect Detection probes

•DM annihilates with *γ*

• FERMI works only up to $\mathcal{O}(500 \text{ GeV})$

-
-

3

ECFA | 2024

4

1 LHC *@* $\sqrt{s} = 13$ TeV, *L* = 139/*fb* ELL-LHC $\sqrt{s} = 13$ TeV, *L* = 3 *ab*⁻¹

Drell-Yan processes + Fusion TBD

ECFA | 2024 ECFA | 2024

5

6

§q

ℒ*strong ϕ* $= \tilde{C}_{B}^{\phi}\phi^{2}B_{\mu\nu}B^{\mu\nu} + \tilde{C}_{W}^{\phi}\phi^{2}W_{\mu\nu}W^{\mu\nu}$

we require that $p_{T}^{\gamma} < \Lambda$

- Assume only statistical uncertainties and same selections of ATLAS analysis
- 95% CL bound with $\frac{N_S}{\sqrt{N}}$ rescaling the expected SM events by lumi ratio

- Recast the ATLAS analysis
- Work with LO Parton level for signal simulation

Validity of the EFT

Projections for high-lumi LHC

ℒ*strong ϕ* $= \tilde{C}_{B}^{\phi}\phi^{2}B_{\mu\nu}B^{\mu\nu} + \tilde{C}_{W}^{\phi}\phi^{2}W_{\mu\nu}W^{\mu\nu}$

we require that $p_{T}^{\gamma} < \Lambda$

Validity of the EFT

ECFA | 2024

ECFA | 2024

After LHC era

the control of the control of \bullet \bullet the contract of the contract of

-
-
-
-

DD and ID

6 **FERMI**

• 840 weeks of data (08/2008-07/2024) $0.7 \text{ GeV} < E_{\gamma} < 500 \text{ GeV}$

5 **Xenon and Darwin**

 m_T

• DM annihilation (*PPPC4MID Tool)* Line($\phi \phi \rightarrow \gamma \gamma, \gamma Z$) + Continuum(*ZZ*, *WW*, γZ)

 $2\mu^2_{\phi T}$ ν 2

dσSI

ECFA | 2024 ECFA | 2024

dER

=

 $\sigma_{SI}^n \widetilde{\mathcal{F}}_h$

-
-
-

128

128

10

"Near" Future Colliders (FCCee, HL-LHC):

- Will place more stringent bounds on this dark matter scenario;
- FCCee gives one of the most stringent bound, but only for small DM mass;
- HL-LHC bounds will not be significantly greater than current LHC ones .

Indirect and Direct Detection:

- Will be able to probe much higher energy scales;
- Could provide crucial insights into this dark matter benchmark.

• Current bounds (e.g., FERMI) and future projections (e.g., Darwin) will remain competitive, if not stronger, than FCCee or HL-LHC.

"Next" Future (FCChh):

Conclusions

THANK YOU

Backup Slides

Service

 $\begin{array}{ccccccccccccccccc} \bullet & \bullet & \bullet & \cdot & \cdot \end{array}$ the contract of the contract of contracts and contracts are a strained and contracts are a strained as a strained and strained and strained and

 \bullet \bullet

Contract Contract Contract

. . .

R

Yukawa model

 $\mathscr{L} = \lambda_l \phi \bar{L} P_R l + h \cdot c$.

 ϕ is DM candidate EW singlet, *l* is RH SM lepton and *L* is a BSM $SU(2)_L$ singlet with $Y_L = 1$

the contract of the contract of

Yukawa model

$$
\mathcal{L} = \lambda_l \phi \bar{L} P_R l + h \cdot c \, .
$$

 ϕ is DM candidate EW singlet, *l* is RH SM lepton and *L* is a BSM $SU(2)_L$ singlet with $Y_L = 1$

$\mathscr{L} = \lambda_l \phi \bar{L} P_R F + h \cdot c$.

 ϕ is DM candidate EW singlet, F and L are a BSM $SU(2)_L$ singlets with $Y_L = Y_F$

 $m_φ$ ≪ m_F ∼ m_L

-
-
-
-

Yukawa model

$$
\mathcal{L} = \lambda_l \phi \bar{L} P_R l + h \cdot c \, .
$$

 ϕ is DM candidate EW singlet, *l* is RH SM lepton and *L* is a BSM $SU(2)_L$ singlet with $Y_L = 1$

$$
\mathcal{L} = \lambda_l \phi \bar{L} P_R F + h
$$

 ϕ is DM candidate EW singlet, F and L are a BSM $SU(2)_L$ singlets with $Y_L = Y_F$

-
-
- ι , ι
-

$$
m_{\phi} \ll m_F \sim m_L
$$

For this model the relevant bound is given by the *agnostic*

$$
\Lambda \gtrsim 95 \text{ GeV } \frac{\sqrt{3}}{3} \simeq 54 \text{ GeV}
$$

 \Rightarrow Projections for FCCee running @ 240 GeV can push the bound up to $\Lambda \gtrsim 70$ GeV

Bound for the production of the massive spin 2 particle [2] rescaling the branching ratio $R \rightarrow \gamma \gamma$

[2] *D. d'Enterria, M. A. Tamlihat, L. Schoeffel, H.-S. Shao, and Y. Tayalati Phys. Lett. B 846 (2023) 138237*

 \mathscr{L} ⊃ $c_{\gamma\gamma}\phi^2F^2$

 F^2 c $\frac{1}{2\Delta}$ $\frac{1}{2\Delta}$ $2\Lambda_{IR}$ $R_{\mu\nu}\left[c_1T_{\mu\nu}^{(F)}+c_2T_{\mu\nu}^{(\phi)}\right]$

Future Colliders Landscape

FCC-hh: DY process - @ 80/100 TeV with $L = 30$ ab^{-1}

- Process assumed to be qualitatively the same as ATLAS mono-γ
- Hard photon \Rightarrow different analysis wrt the soft photon analysis already dor
- The $pp \rightarrow Z\gamma$, $Z \rightarrow \nu\bar{\nu}$ channel is the dominant bkg
- \Rightarrow ∼ 60% of the total yield $(bkg)^{ATLAS}_{\nu}/(bkg)^{ATLAS}_{tot}$ *tot*
-
- LO simulation with MadGraph for ν channel in the fiducial regions given by ATLAS - We find that the LO $Z\gamma$ simulation accounts for $\sim 80\,\%$ of the experimental $Z\gamma$ ATLAS background and hence $\sim 50\,\%$ of the total experimental background \Rightarrow this is constant in all the ATLAS signal regions;
	- We estimate the total SM bkg multiplying by a factor 2 the dominant $Z_γ$ bkg computed using MadGraph;
- Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

Future Colliders Landscape

FCC-hh: DY process - @ 80/100 TeV with $L = 30$ ab^{-1}

- Process assumed to be qualitatively the same as ATLAS mono-γ
- We recast the ATLAS analysis in order to estimate the total experimental bkg at FCChh
- Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

Muon Collider: DY process $\sqrt{s} = 3,10$ TeV with *l*

 γ, Z

$$
L = 0.9, 10 \, ab^{-1}
$$

- Same mono-photon search of FCC-ee
- Signal selection: $|\eta^{\gamma}| < 2.5$ and $p_T^{\gamma} > 5$ GeV and we optimize on the MET requirement
- Preliminary results: The EFT validity is under threat

Colliders

2 **FCC-hh**: DY process - @ 80/100 TeV with *L* = 30 *ab*−¹ • Process assumed to • Hard photon \Rightarrow different and some photon and some photon and some photon and some \Rightarrow • The $pp \rightarrow Z\gamma$, $Z \rightarrow S$ of the to $\frac{1}{N}$ 2000 • LO simulation with $\mathcal{C}^{\mathfrak{a}}$ and $\mathcal{C}^{\mathfrak{a}}$ and $\mathcal{C}^{\mathfrak{a}}$ and $\mathcal{C}^{\mathfrak{a}}$ - We find that the LO simulation accounts for of the experimental ATLAS background and \Rightarrow this is constant $\qquad 500$ - We estimate the $\frac{500}{200}$ $\frac{1000}{2000}$ $\frac{10^{4}}{2000}$ $\frac{2000}{2000}$ $\frac{200}{200}$ using MadGraph $pp \rightarrow Z\gamma$, $Z \rightarrow \sum$ ⇒ ∼ 60 % of the to<mark>N</mark> 2000 *ATLAS ^ν* /(*bkg*) *ATLAS tot ν* $\frac{1}{2}$ *Zγ Zγ Zγ* \overline{z} 500 1000 500 $|1000\rangle$ 5000 $\rho_{\mathcal{\mathcal{T}}}^{\scriptscriptstyle{V}}$ [GeV] $\boldsymbol{\varpi}$ $-1/2$ [GeV] $CW=0$

• Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

7

Colliders

• Signal selecti

Kickoff Meeting | 2024 Kickoff Meeting | 2024

 C_0 C_0 \sqrt{s} = 2,10 m_{c} *L* = 0.9,10 *ab*−¹ 0.7 $C_W = 0$ 0.7 $\overline{\mathbf{A}}$ Muon Colliders: $\overline{\mathbf{A}}$ **Muon Colliders:** $\overline{\mathbf{A}}$ **D** $0.6\lceil$ 0.6 νν background \mathbf{s} same mono mechanism mono mechanis $0.5\vert$ \mathbf{b} .5 $m_{\text{DM}} = 1 \text{ GeV}$ $m_{DM} = 750 \text{ GeV}$ ECFA | 2024 ECFA | 2024 $0.4\vert$ 0.4 $m_{\text{DM}} = 1250 \text{ GeV}$ $\mathbf{P}^{\mathbf{A}^{\mathbf{a}}}$ background channel cha *ν* $m_{\text{DM}} = 1450 \text{ GeV}$ $\mathbf{D} \cdot 3$ 0.3 \mathbf{D} .2 $|0.2|$ 0.1 0.1 0.0 $|0.0|$ 0 200 400 600 800 1000 1200 1400 $P_{\perp}(\gamma)$

EFT APPROACH FAILS Λ_{SC}

Forthcoming studies

VBF Analysis

Muon Collider

- Forward muons: $|\eta\,| < 7,\ \Delta R_{\mu\pm} < 0.4,\ E_{\mu^\pm} > 500$ GeV
- We optimize over the MIM $= \sqrt{\Delta p_{\mu} \Delta p^{\mu}}$
- We have considered a $\mu\mu\nu\bar{\nu}$, but also other bkg channels are relevant, they will relax the bound by a 30% coefficient.
- VBF is a relevant process \Rightarrow different kinematics
- We would like to perform a forward production analysis

⇒For FCC-hh No clean environment!

FCChh

- Kinematics: forward muons
- Background channels: $\mu\mu\bar{\nu}\nu$, $\mu\mu\gamma$, $\mu\mu WW$, $\mu\mu ff$
- As a proxy for the momentum exchanged in the vertex we used the Missing Invariant Mass (MIM)

$$
MIM = \sqrt{\Delta p_{\mu} \Delta p^{\mu}}
$$

 \rightarrow MIM to check the EFT validity!

