Scalar Rayleigh Dark Matter

Collider and Cosmological Probes, Present and Future

Giulio Marino

(Università di Pisa, INFN)

In collaboration with: Barducci, Buttazzo, Dondarini, Franceschini, Mescia, Panci

3rd ECFA workshop on e^+e^- Higgs, Electroweak and Top Factories | 2024

Motivation

- Even if DM is neutral under EM \Rightarrow interactions with EW gauge bosons via higher dimensional operators
- From the DM-photon EFT classification in [1] we analyze effective interactions involving a real scalar $SU(2)_L$ singlet dark matter particle with SM EW gauge bosons

$$\mathscr{L}_{\phi} = C^{\phi}_{\mathscr{B}} \phi^{2} B_{\mu\nu} B^{\mu\nu} + C^{\phi}_{\mathscr{W}} \phi^{2} W$$
$$\mathscr{L}_{\phi} = \phi^{2} \left(\mathscr{C}^{\phi}_{\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + \mathscr{C}^{\phi}_{ZZ} Z_{\mu\nu} Z^{\mu\nu} + \mathscr{C}^{\phi}_{\gamma Z} Z_{\mu\nu} \right)$$

First operators that appear

in the EFT expansion

ECFA | 2024

[1] B. J. Kavanagh, P. Panci, and R. Ziegler JHEP 04 (2019) 089, [arXiv:1810.00033]

 $V^a_{\mu
u}W^{a,\mu
u}$ $_{\nu}A^{\mu\nu} + \mathscr{C}^{\phi}_{WW}W^{+}_{\mu\nu}W^{-,\mu\nu}$ Real scalar case

Motivation

Elusive DM scenario for DD

 \Rightarrow no couplings with lighter dof (q, \mathcal{G})

 \Rightarrow Loop suppressed cross sections

ECFA | 2024

Interesting target for Indirect Detection probes • DM annihilates with γ • FERMI works only up to $\mathcal{O}(500 \text{ GeV})$

										٠	•	•	•	•	
					6	•	•	•	•	•	•	•	•		
			a	÷	•	•	٠	٠	•	•	•	•	•	•	
		ů	0		•	•	•	•	•	•	•	•			
		ø	•	•	•	•	•	•	•	•	•	•	•		
		÷	•	•	٠	٠	•	•	•	•	•	•	•		
		•	a	•	•	•	•	•	•	•	•	•	•	•	
			٠	•	•	٠	•	•	•	•	•	•	•		
						•	Φ	•	•	•	•	•	•	•	

Motivation

Elusive DM scenario for DD

 \Rightarrow no couplings with lighter dof (q, \mathcal{G})

 \Rightarrow Loop suppressed cross sections

• DM annihilates with γ

• FERMI works only up to $\mathcal{O}(500 \text{ GeV})$

How do we test this scenario at colliders?

FCCee - FCChh

Could provide additional information about the model in the coming years.

ECFA | 2024

Interesting target for Indirect Detection probes

									٠	٠	•	•	•	
				•	•	•	•	•	•	•	•	•		
			•	•	•	•	•	•	•	•	•	•	•	
	ů	•	•	•	•	•	•	•	•	•	•			
	0		٠	•	•	•	•	•	•	•	•	•		
	0	•	•	٠	•	•	•	•	•	•	•	•		
	•		•	•	•	•	•	•	•	•	•	•	•	
		٠	•	•	•	•	•	•	•	•	•	•		
						0		•		•	•	•	•	

UV completion?

ECFA | 2024

3 FCC-hh @
$$\sqrt{s} = 80,100$$
 TeV, $L = 30/ab$

4
$$\mu C @ \sqrt{s} = 3,10 \text{ TeV}$$

- Xenon and Darwin
- FERMI

1

2

5

6

HL-LHC $\sqrt{s} = 13$ TeV, $L = 3 ab^{-1}$

Drell-Yan processes + Fusion TBD

ECFA | 2024

Fusion TBD

- Recast the ATLAS analysis
- Work with LO Parton level for signal simulation

- Assume only statistical uncertainties and same selections of ATLAS analysis
- 95% CL bound with <u>_____</u> rescaling the expected SM events by lumi ratio

Validity of the EFT

 $\mathscr{L}_{\phi}^{strong} = \tilde{C}_{B}^{\phi} \phi^2 B_{\mu\nu} B^{\mu\nu} + \tilde{C}_{W}^{\phi} \phi^2 W_{\mu\nu} W^{\mu\nu}$

we require that $p_T^{\gamma} < \Lambda$

.

Validity of the EFT

 $\mathscr{L}_{\phi}^{strong} = \tilde{C}_{B}^{\phi} \phi^2 B_{\mu\nu} B^{\mu\nu} + \tilde{C}_{W}^{\phi} \phi^2 W_{\mu\nu} W^{\mu\nu}$

we require that $p_T^{\gamma} < \Lambda$

After LHC era

- Strongest sensitivity from on-shell Z
- The dominant bkg is $e^+e^- \rightarrow \gamma \nu \bar{\nu}$
- Baseline cuts: $|\eta| < 2.5$ and $p_T^{\gamma} > 5$ GeV.

. We maximize the sensitivity $rac{N_S}{\sqrt{N_B}}$ adding a cut on P_T^γ

Ι	DY at $e^+e^ $	$\sqrt{s}=m_Z~~ ilde{\mathcal{C}}_{\mathcal{W}}$	y = 0	
	$\mathcal{L} = 16$	ab^{-1}	$\mathcal{L} = 120 \mathrm{ab}^{-1}$	-1
$m_{\phi}[{ m GeV}]$	$p_{T,\mathrm{min}}^{\gamma}[\mathrm{GeV}]$	$\Lambda_{sc}[GeV]$	$\Lambda_{ m sc}[{ m GeV}]$	
1	→37.5	3043	5036	
10	→32.5	2524	4176	
20	→22.5	1715	2839	
30	$\longrightarrow 15$	910	1505	

DD and ID

5

Xenon and Darwin

 $\frac{d\sigma^{Ray}}{dE_R} = \frac{4m_T}{m_{\phi}^2 v^2} \frac{c_{\gamma\gamma}}{\Lambda^4} \frac{Z^4 \alpha_{em}^2}{\pi^2 b^2(A)} \mathcal{F}_{ray}^2$

ECFA | 2024

• 840 weeks of data (08/2008-07/2024) $0.7 \, GeV < E_{\gamma} < 500 \, GeV$

• ROI41: Most profile independent • DM annihilation (PPPC4MID Tool) Line($\phi \phi \rightarrow \gamma \gamma, \gamma Z$) + Continuum(ZZ, WW, γZ)

DD and ID

ECFA | 2024

DD and ID

ECFA | 2024

$$\Lambda_{B,W} = \frac{4\sqrt{2}\pi}{g_{Y,2}} \Lambda_{B,W}^{loop}$$

Conclusions

"Near" Future Colliders (FCCee, HL-LHC):

- Will place more stringent bounds on this dark matter scenario;
- FCCee gives one of the most stringent bound, but only for small DM mass;
- HL-LHC bounds will not be significantly greater than current LHC ones.

Indirect and Direct Detection:

Current bounds (e.g., FERMI) and future projections (e.g., Darwin) will remain competitive, if not stronger, than FCCee or HL-LHC.

"Next" Future (FCChh):

- Will be able to probe much higher energy scales;
- Could provide crucial insights into this dark matter benchmark. \bullet

THANK YOU

		٠	•	•	٠	•	•		•	•								
٥	0	٠	٠	•	٠	٠	٠	•	•	•				٠				
v		٠	•	٠	٠	•	•	•	•	•	•							
9	•	٠	٠	٠	٠	٠	•	•	•	•	٠							
٠		٠	•	٠	٠	•	•	•	•	•	•	•						
	٥	٠	٠	٠	٠	٠	•	•	•	•	•		•			٠	•	
				•	0	٠	٠	•	•	•	•	•	٠	٠				

									٠	٠	٠	٠	•	•	•	•	•	•
				e		٠	٠	٠	•	٠	•	•						
			•		•	٠	•	٠	•	•	•	•	•					
	ŵ	0	0	٠	•	٠	٠	٠	•	•	•			•				
	0		٠	٠	•	٠	•	•	•	•	•	•						
	٠		•	٠	•	•	•	•	•	•	•	•						
	ę		٠		•	٠	•	٠	•	•	•	•	•					

Backup Slides

.

• • •

COMPLEX INTERPLAY BETWEEN COLLIDERS, DD AND ID

Yukawa model

 $\mathscr{L} = \lambda_l \phi \bar{L} P_R l + h \, . \, c \, .$

 ϕ is DM candidate EW singlet, l is RH SM lepton and L is a BSM $SU(2)_L$ singlet with $Y_L = 1$

Yukawa model

$$\mathscr{L} = \lambda_l \phi \bar{L} P_R l + h$$

 ϕ is DM candidate EW singlet, l is RH SM lepton and L is a BSM $SU(2)_L$ singlet with $Y_L = 1$

$\mathscr{L} = \lambda_l \phi \overline{L} P_R F + h \cdot c \,.$

 ϕ is DM candidate EW singlet, F and L are a BSM $SU(2)_L$ singlets with $Y_L = Y_F$

 $m_{\phi} \ll m_F \sim m_L$

- *. C .*

Yukawa model

$$\mathscr{L} = \lambda_l \phi \bar{L} P_R l + h$$

 ϕ is DM candidate EW singlet, l is RH SM lepton and L is a BSM $SU(2)_L$ singlet with $Y_L = 1$

$$\mathscr{L} = \lambda_l \phi \bar{L} P_R F + h$$

 ϕ is DM candidate EW singlet, F and L are a BSM $SU(2)_L$ singlets with $Y_L = Y_F$

$$m_{\phi} \ll m_F \sim m_L$$

For this model the relevant bound is given by the agnostic

$$\Lambda \gtrsim 95 \text{ GeV} \frac{\sqrt{3}}{3} \simeq 54 \text{ GeV}$$

 \Rightarrow Projections for FCCee running @ 240 GeV can push

- . C .
- *l*.*C*.

search of an EW final state at LEP2	
eV	and the second second
the bound up to $\Lambda\gtrsim70{\rm GeV}$	

 $\mathscr{L} \supset c_{\gamma\gamma} \phi^2 F^2$

Bound for the production of the massive spin 2 particle [2] rescaling the branching ratio $R \rightarrow \gamma \gamma$

[2] D. d'Enterria, M. A. Tamlihat, L. Schoeffel, H.-S. Shao, and Y. Tayalati Phys. Lett. B 846 (2023) 138237

 $\mathscr{L} \supset -\frac{1}{2\Lambda_{\mu\nu}} R_{\mu\nu} \left[c_1 T^{(F)}_{\mu\nu} + c_2 T^{(\phi)}_{\mu\nu} \right]$

Future Colliders Landscape

FCC-hh: DY process - @ 80/100 TeV with $L = 30 ab^{-1}$

- Process assumed to be qualitatively the same as ATLAS mono- γ
- Hard photon \Rightarrow different analysis wrt the soft photon analysis already dor
- The $pp \rightarrow Z\gamma, Z \rightarrow \nu \bar{\nu}$ channel is the dominant bkg
- $\Rightarrow \sim 60\%$ of the total yield $(bkg)_{\nu}^{ATLAS}/(bkg)_{tot}^{ATLAS}$
- LO simulation with MadGraph for ν channel in the fiducial regions given by ATLAS
 - We find that the LO $Z\gamma$ simulation accounts for $\sim 80\%$ of the experimental $Z\gamma$ ATLAS background and hence $\sim 50 \,\%\,$ of the total experimental background \Rightarrow this is constant in all the ATLAS signal regions;
 - We estimate the total SM bkg multiplying by a factor 2 the dominant $Z\gamma$ bkg computed using MadGraph;
- Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

Future Colliders Landscape

FCC-hh: DY process - @ 80/100 TeV with $L = 30 ab^{-1}$

- Process assumed to be qualitatively the same as ATLAS mono- γ
- We recast the ATLAS analysis in order to estimate the total experimental bkg at FCChh
- Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

Muon Collider: DY process $\sqrt{s} = 3,10$ TeV with I

- Same mono-photon search of FCC-ee
- Signal selection: $|\eta^{\gamma}| < 2.5$ and $p_T^{\gamma} > 5$ GeV and we optimize on the MET requirement
- <u>Preliminary results</u>: The EFT validity is under threat

$$L = 0.9, 10 \, ab^{-1}$$

Colliders

• Signal selection: $|\eta| < 2.37$ and we optimize on the MET requirement

Colliders

mono $-\gamma$ DY at FCC-hh $\sqrt{s}=80{ m TeV}$ ${\cal L}=$									
	No EFT	validity	EI						
$m_{\phi}[{ m GeV}]$	$p_{T,\mathrm{min}}^{\gamma}\left[\mathrm{GeV} ight]$	$\Lambda_{ m sc}[{ m GeV}]$	$\mid p_{T,\mathrm{min}}^{\gamma} \left[\mathrm{GeV} ight]$						
100	5500	7780	4000						
1000	6000	7350	4000						
2000	6500	6640	3500						
5000	8500	4490	200						
	I		I						
		_							

mono $-\gamma$ DY at FCC-hh	$\sqrt{s} = 100 \mathrm{TeV}$	$\mathcal{L} =$
-----------------------------	-------------------------------	-----------------

	No EFT	validity	EF
$m_{\phi}[{ m GeV}]$	$p_{T,\mathrm{min}}^{\gamma}\left[\mathrm{GeV} ight]$	$\Lambda_{ m sc}[{ m GeV}]$	$\mid p_{T,\mathrm{min}}^{\gamma} \left[\mathrm{GeV} ight]$
100	7000	9150	4500
1000	7500	8800	5000
2000	8000	8160	4500
7000	11000	4850	300
	1		'

	Process assu
	Hard photor
	The $pp \rightarrow Z$
=	$\Rightarrow ~ 60\%$ of
	LO simulatio
	- We find t
	backgrou
	\Rightarrow this is co
	- We estimation
	using Mac
•	Signal select

2

FCC

Kickoff Meeting | 2024

Kickoff Meeting | 2024

Га _ 2 10 шат $C_W = 0$).7 0.70.6 0.6 vv background).5 0.5 $m_{\rm DM} = 1 {\rm ~GeV}$ $m_{\rm DM} = 750 \; {\rm GeV}$ ECFA | 2024 0.4 0.4 $m_{\rm DM} = 1250 \; {\rm GeV}$ $m_{\rm DM} = 1450 \ {\rm GeV}$ 0.3 0.3 0.2 0.2 0.10.10.0 0.0400 600 800 1000 1200 1400 200 0 0 $P_{\perp}(\gamma)$

	$\sqrt{s} = 3,10 { m TeV}$ $L = 0.9,10 ab^{-1}$	С	ollid	.ers
4		m	ono $-\gamma$ DY a	at $\mu \mathrm{C} \ ilde{\mathcal{C}}_{\mathcal{W}}$
• Same	$\sqrt{s} =$	$3 \text{ TeV} \mathcal{L}=0.9$	ab^{-1}	\sqrt{s}
• Gen.	$m_{\phi}[{ m GeV}]$	$p_{T,\mathrm{min}}^{\gamma}\left[\mathrm{GeV} ight]$	$\Lambda_{sc}[{\rm GeV}]$	$m_{\phi}[{ m GeV}$
• ν bac	100	900	3310	200
	500	700	2515	1000
	1000	400	1140	2000
	1300	150	368	4000

EFT APPROACH FAILS S Λ_{SC}

Forthcoming studies

VBF Analysis

FCChh

- VBF is a relevant process \Rightarrow different kinematics
- We would like to perform a forward production analysis

 \Rightarrow For FCC-hh No clean environment!

Muon Collider

- Forward muons: $|\eta| < 7, \ \Delta R_{\mu\pm} < 0.4, \ E_{\mu^{\pm}} > 500 \, {\rm GeV}$
- We optimize over the MIM = $\sqrt{\Delta p_{\mu} \Delta p^{\mu}}$
- We have considered a $\mu\mu\nu\bar{\nu}$, but also other bkg channels are relevant, they will relax the bound by a 30% coefficient.

- Kinematics: forward muons
- Background channels: $\mu\mu\bar{\nu}\nu$, $\mu\mu\gamma$, $\mu\mu WW$, $\mu\mu ff$
- As a proxy for the momentum exchanged in the vertex we used the Missing Invariant Mass (MIM)

$$MIM = \sqrt{\Delta p_{\mu} \Delta p^{\mu}}$$

 \rightarrow MIM to check the EFT validity!

