

Long-lived particle searches with the ILD experiment

3rd ECFA Workshop on Higgs/top/EW factories 10 October 2024, Paris

D. Jeans⁽¹⁾, <u>J. Klamka⁽²⁾</u>, A. F. Żarnecki⁽²⁾ ⁽¹⁾KEK, ⁽²⁾University of Warsaw

arXiv:2409.13492

jan.klamka@fuw.edu.pl

Motivation

Particles with macroscopic lifetimes naturally appear in numerous BSM models

Three main mechanisms are responsible for that...

Multiple LLP searches at the LHC, sensitive to high masses and couplings

- <u>complementary region</u> could be probed at e⁺e⁻ colliders (small masses, couplings, mass splittings)
- typical properties of feebly interacting massive particles (FIMPs) \rightarrow challenging for hadron colliders

International Large Detector (ILD)

- Multi-purpose detector for an e⁺e⁻ Higgs Factory (HF)
- Example: the International Linear Collider (ILC), with baseline c.m.s. energy $\underline{250}$ -500 GeV
- Possible operation at other HF proposals now under study (link1, link2)

this study

International Large Detector (ILD)

- Nearly 4π angular coverage, optimised for particle flow
- Time projection chamber (TPC) as the main tracker allows for continuous tracking and dE/dx PID
- High granularity calorimeter with minimal material in front of it inside 3.5 T solenoid

ILD especially promising with a $\underline{\mathsf{TPC}}$ as the main tracker

- \rightarrow we want to investigate experimental aspects
- \rightarrow study based on full simulation
- Study such challenging signatures from the experimental perspective
 - → experimental/kinematic properties, not points in a model parameter space
- Focus on a generic (and most challenging) case two tracks from a displaced vertex
- No other assumptions about the final state, approach as general as possible

Framework and signatures

 $\sqrt{s} = 250 \,\mathrm{GeV}$

As a challenging case (<u>small boost, low-pT final state</u>) we considered:

ightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^*
ightarrow \mu\mu$

Framework and signatures

 $\sqrt{s} = 250 \,\mathrm{GeV}$

As a challenging case (small boost, low-pT final state) we considered:

 \rightarrow heavy scalar LLP (A) and DM (H) pair-production with small mass splitting, $Z^* \rightarrow \mu \mu$

The opposite extreme case, (<u>large boost, high-pT final state</u>)

 \rightarrow light pseudoscalar LLP $a \rightarrow \mu \mu$

Very simple vertex finding (inside the TPC) based on a distance between track pairs

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BX) at ILC250, produced are: e^+e^- Pairs

- 1.55 γγ → low-p_T hadrons events
- **O(10⁵) incoherent e⁺e⁻ pairs**, only a small fraction enters tracker

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BX) at ILC250, produced are:

- 1.55 $\gamma \gamma \rightarrow \text{low-p}_T$ hadrons events
- O(10⁵) incoherent e⁺e⁻ pairs, only a small fraction enters tracker

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

- $\sim 10^{11}$ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
 - \rightarrow many secondary vertices (mostly fake, also V⁰s and photon conversions)
 - → significant background

5

10

Λ

p^{vtx} [GeV]

10

Overlay events background

At linear e^+e^- colliders beams are strongly focused and radiate photons, so $\gamma\gamma$ interactions also occur in detector. On average, in each bunch-crossing (BX) at ILC250, produced are: e^+e^- Pairs

- 1.55 γγ → low-p_T hadrons events
- O(10⁵) incoherent e⁺e⁻ pairs, only a small fraction enters tracker

These events are soft, usually important because they **overlay** on physical events

...but can also look like signal on their own

- ~10¹¹ BXs per year at ILC \rightarrow overwhelming number of overlay events
- Similar kinematics to the signal considered and can be busy
 - \rightarrow many secondary vertices (mostly fake, also V^os and photon conversions)
 - \rightarrow significant background
 - Can be suppressed using cuts on the track pair geometry and $p_{_{\rm T}}^{_{_{\rm VIX}}}>1.9~\text{GeV}$
 - Total expected reduction factor at the level of $\sim 10^{-10}$

Background from high-p_T events

The following survive overlay selection in the hard e^+e^- processes:

- Decays of kaons, lambdas, photon conversions
- Secondary tracks from interactions with detector material

Backg. sources occur mainly inside jets, so we consider (hard) e^+e^- and $\gamma\gamma$ processes with jets in final state

→ Additional cuts on invariant mass are applied, with two working points: **standard** and **tight** (tight involving also **isolation** criterium)

$\operatorname{sgn}(\operatorname{P}(\operatorname{e}^{-}), \operatorname{P}(\operatorname{e}^{+}))$	(-,+)	(+, -)	(-, -)	(+,+)		
channel	σ [fb]					
qq	$127,\!966$	$70,\!417$	0	0		
qqqq	$28,\!660$	970	0	0		
$\overline{\mathrm{q}}\mathrm{q}\ell u$	29,043	261	191	191		
${ m ZZ} ightarrow { m qq} \ell \ell, { m qq} u u$	838	467	0	0		
$Z\nu_e\nu_e o qq\nu_e\nu_e$	454	131	0	0		
$Zee \rightarrow qqee$	$1,\!423$	$1,\!219$	$1,\!156$	$1,\!157$		
process	BB	BW	WB	WW		
hard $\gamma^{B/W}\gamma^{B/W}$	42,150	$90,\!338$	90,120	71,506		

Vertex finding results

- Efficiency = (correct / decays within TPC acceptance), "correct" if distance to the true vtx < 30 mm
- Signal selection depends strongly on the mass splitting (Z* virtuality) and mass of a (final state boost)
- A dedicated approach could enhance sensitivity for $\Delta m_{\text{AH}}=1$ GeV and $m_{\text{a}}=300$ MeV scenarios

10 October 2024

HIVERS,

Cross section limits

- Tight selection: dashed line, standard selection: solid line
- A wide range of models with heavy scalars with small mass splittings, or light pseudo scalar particles, can be excluded down to 0.1 fb arXiv:2409.13492

10 October 2024

Jan Klamka, LLP searches with the ILD experiment

Exotic Higgs decays

10 October 2024

Jan Klamka, LLP searches with the ILD experiment

Higgs decays to LLPs

Higgsstrahlung with H(125) decay to two long-lived scalars

Generated using the Triple Real Singlet Higgs model with fixed lifetimes of s

Generated scenarios:

$$m_s = 400 \text{ MeV}, c\tau = 10 \text{ mm}$$
$$m_s = 2 \text{ GeV}, c\tau = 10 \text{ mm}$$
$$m_s = 50 \text{ GeV}, c\tau = 1 \text{ m}$$
$$m_s = 60 \text{ GeV}, c\tau = 1 \text{ m}$$

 $Z \rightarrow \nu\nu$, s $\rightarrow \mu\mu$ decays used to simplify the simulation

Higgs decays to LLPs

Higgsstrahlung with H(125) decay to two long-lived scalars

Generated using the Triple Real Singlet Higgs model with fixed lifetimes of s

Generated scenarios:

$$m_s = 400 \text{ MeV}, c\tau = 10 \text{ mm}$$
$$m_s = 2 \text{ GeV}, c\tau = 10 \text{ mm}$$
$$m_s = 50 \text{ GeV}, c\tau = 1 \text{ m}$$
$$m_s = 60 \text{ GeV}, c\tau = 1 \text{ m}$$

 $Z \rightarrow \nu \nu$, s $\rightarrow \mu \mu$ decays used to simplify the simulation

Use the <u>same analysis procedure</u>, but further <u>optimise for this channel</u> by requiring: \rightarrow no additional prompt tracks with $p_T > 2$ GeV \rightarrow total $p_T^{vtx} > 10$ GeV of tracks forming a vertex (to neglect the overlay)

- ILD can improve the current constraints and probe higher lifetimes already @ ILC250 thanks to higher TPC acceptance
- The limits could be further improved by dedicated searches using vertex detector and by more data at higher energy stages

SHIV

Conclusions

- ILD has a good potential to study long-lived particles, considering the model-independent approach and extreme signatures tested
- TPC plays the key role by enhancing the acceptance, allowing to probe very high lifetimes
- Additional selection utilizing features of a given signature can greatly improve sensitivity
- Presented expected limits on SM-like Higgs decays to LLPs would improve current constraints by order of magnitude or probe longer lifetimes

Thank you!

BACKUP

10 October 2024

Jan Klamka, LLP searches with the ILD experiment

Vertex finding results $(h \rightarrow ss)$

m _s	0.4 GeV	2 GeV	50 GeV	60 GeV
Efficiency (standard)	7.8%	52.2%	34.6%	18.5%
Efficiency (tight)	0%	52.2%	34.3%	18.1%

• Efficiency = (correct / decays within TPC acceptance), "correct" if distance to the true vtx < 30 mm

 Tight selection cut on invariant mass assuming tracks are pions/electrons, M > 700 MeV, "kills" the 400 MeV scenario, the rest of scenarios remain almost intact

Alternative all-silicon ILD design

<u>Alternative ILD design</u> implemented for tests

- **TPC replaced** by the **silicon Outer Tracker**, modified from the CLICdet
- One **barrel layer** added and **endcap layers spacing** increased w.r.t. CLICdet
- Conformal tracking algorithm (designed for CLICdet) used for reconstruction at all-silicon ILD

 \rightarrow Check how the **results** for <u>heavy scalars</u> are influenced by a **change of tracker** design

Heavy scalars at all-silicon ILD

- <u>Vertex reconstruction</u> driven by **track reconstruction efficiency**
- Performance similar to baseline design (TPC) <u>near</u> <u>the beam axis</u>
- Smaller number of hits available → efficiency drops faster with vertex displacement
- At least 4 hits required for track reconstruction
 → limited reach
- For large decay lengths, efficiency significantly higher for "standard" ILD with TPC

Vertex finding strategy

Approach as simple and general as possible:

- Consider tracks in pairs
- As the TPC is not sensitive to track direction:
 - \rightarrow use both track direction (charge) hypothesis for vertex finding
 - \rightarrow consider opposite-charge track pairs only
 - \rightarrow select pair with closest starting points
- Reconstruct vertex in between points of closest approach of helices
 - \rightarrow Require distance < 25 mm

