Transformer-based Jet Flavor Tagging in Full Simulation for CLD at FCC-ee

3rd ECFA workshop on e⁺e⁻ Higgs, Top & ElectroWeak Factories 9. October 2024 <u>Sara Aumiller</u>, Dolores Garcia, Michele Selvaggi

Jet-Flavor Tagging explained

Why jet-flavor tagging?

Future Colliders = Higgs factories for precious measurements

 \rightarrow Study Higgs decay modes

Event signature: N jets (here: 2)

Jet-flavor tagging set-up

Jet description in fast & full simulation at CLD

Fast simulation*: provides time & computational efficient early-stage feasibility studies **Full simulation**: more realistic description of detector concept and reconstruction algorithms

Jet-description observables**:

Kinematics (3)	Identification (7)	Track displacements (23)
log E_{rel} , $ heta_{rel}$, ϕ_{rel}	reco PID, charge, PID flags	d_0 , z_0 , covariance matrix c_{ij} , SIP in 2D, 3D (& significance), Jet-track distance d_{3D} (& sig.)

*IDEA fast sim with silicon tracker, here referred to as "CLD fast sim" **see IDEA fast sim tagging

Jet description in fast & full simulation at CLD

Fast simulation*: provides time & computational efficient early-stage feasibility studies **Full simulation**: more realistic description of detector concept and reconstruction algorithms

 \rightarrow Comparison of jet description shows mostly good agreement.

Two major differences when moving to full simulation:

- 1. Fake neutrals
- 2. Lost tracks

*IDEA fast sim with silicon tracker, here referred to as "CLD fast sim"

(1) Fake neutrals in full sim

- More neutral hadrons in full than in fast simulation
- Relative angle ϕ of neutral jet constituents shows discrepancy
- Peaks at $\pm \frac{\pi}{2}$ indicate high-energy charged particles (at MC level) which are wrongly reconstructed

(2) Lost tracks in full simulation

Some charged particles are wrongly reconstructed as neutrals in full sim.

 \rightarrow problematic as tracks are crucial for jet flavor tagging

cluster associated

MC charged hadrons $(H \rightarrow b\overline{b})$

FUTURE CIRCULAR COLLIDER

Full vs. fast simulation

Loss in performance when moving from fast to full simulation

e.g. misidentification probability of 10^{-2} for *c* vs. *ud*: 82% (fast sim) / 61% (full sim)

Full vs. fast simulation

Loss in performance when moving from fast to full simulation

e.g. misidentification probability of 10^{-2} for *b* vs. *ud*: 97% (fast sim) / 88% (full sim)

Improving full sim tagging?

- Improve input data to neural network
- Use all tracks available!
- Ignore fake neutrals

Idea:

Instead of PFOs (particle flow objects) use

- Tracks for charged particles
- PFOs for neutral particles but check MC PID to avoid double counting

Large improvement:

e.g. misidentification probability of 10^{-2} for *c* vs. *ud*: Improves from 61% to 69% (fast sim: 82%)

Improving full sim tagging?

- Improve input data to neural network
- Use all tracks available!
- Ignore fake neutrals

Idea:

Instead of PFOs (particle flow objects) use

- Tracks for charged particles
- PFOs for neutral particles but check MC PID to avoid double counting

Large improvement:

e.g. misidentification probability of 10^{-2} for *b* vs. *ud*: Improves from 88% to 94% (fast sim: 97%)

Adding vertex information

- Use V⁰s and secondary vertices
- Add vertex position and invariant mass as input to neural network

Adding vertex information

- → performance does not improve
- \rightarrow network learns information by itself e.g.
 - vertex positions through track displacements
 - invariant mass at vertices through track kinematics

CLD Jet Flavor Tagging | sara.aumiller@cern.ch

15

Summary

- Full vs. fast sim jet description in good agreement but
 - Fake neutrals in full sim
 - Lost tracks in full sim
- First implementation of jet flavor tagging in full sim at CLD
- Possible improvement of full sim tagging through better reconstruction
- Adding vertex information does not improve tagging performance

Backup

Full sim jet flavor tagging

CLD Jet Flavor Tagging | sara.aumiller@cern.ch

Input parameters to network

Table 1. Set of input variables		
Variable	Description	
Kinematics		
$E_{\rm const}/E_{\rm jet}$	energy of the jet constituent divided by the jet energy	
$ heta_{ m rel}$	polar angle of the constituent with respect to the jet momentum	
$\phi_{ m rel}$	azimuthal angle of the constituent with respect to the jet momentum	
Displacement		
d_{xy}	transverse impact parameter of the track	
d_z	longitudinal impact parameter of the track	
SIP_{2D}	signed 2D impact parameter of the track	
$\mathrm{SIP}_{\mathrm{2D}}/\sigma_{\mathrm{2D}}$	signed 2D impact parameter significance of the track	
SIP_{3D}	signed 3D impact parameter of the track	
$\mathrm{SIP}_{\mathrm{3D}}/\sigma_{\mathrm{3D}}$	signed 3D impact parameter significance of the track	
$d_{ m 3D}$	jet track distance at their point of closest approach	
$d_{ m 3D}/\sigma_{d_{ m 3D}}$	jet track distance significance at their point of closest approach	
$C_{ m ij}$	covariance matrix of the track parameters	
Identification		
q	electric charge of the particle	
-m _{t.o.f.}	-m _{t.o.f.} mass calculated from time-of-flight	
-dN/dx	-dN/dx number of primary ionisation clusters along track	
isMuon	if the particle is identified as a muon	
isElectron	if the particle is identified as an electron	
isPhoton	if the particle is identified as a photon	
isChargedHadron	if the particle is identified as a charged hadron	
isNeutralHadron	if the particle is identified as a neutral hadron	

from IDEA fast sim tagging

From ϕ_{rel} to fake neutrons

- If constituents and jet have similar ϕ, θ then $\phi_{rel} \rightarrow \pm \frac{\pi}{2}$
- High energetic charged particle dominate jet kinematics
- Fake neutron similar angles as charged particle, so also similar angles to jet → peaks in distribution

Fast sim CLD* vs. IDEA

CLD Jet Flavor Tagging | sara.aumiller@cern.ch

*"CLD fast sim" is IDEA fast sim with silicon tracker

Fast sim CLD* vs. IDEA

Multiplicities

CLD Jet Flavor Tagging | sara.aumiller@cern.ch