
ML-based pattern
recognition for CLD/IDEA
Dolores Garcia, Andrea de Vita, Brieuc Francois, Michele Selvaggi

Objective: adaptive reconstruction
● Tracking has two stages: finding and fitting

○ Track finding requires to identify groups of hits that form a track

○ Challenging because:

■ Different geometries

■ Varying number of hits

■ Missing hits in trajectory, one or multiple sub detectors

■ Abrupt changes in direction

● Classic pattern recognition methods use combinatorial optimization such as

Kalman Filters

● Detector dependent and long development cycles

● The IDEA detector is particular due to the left right ambiguity in the drift →

classic algorithms are not directly applicable

CLD

Goal
● Track finding algorithm that can cope with multiple sub-detectors and input geometries

● Is not dependent on the geometry definition and material specification
● Does not rely on analytical parametrization of the trajectories

Classical tracking approaches

● Seeding and track following:

○ ACTS: seeding finds triplets of points likely to belong to the same track then

uses a Combinatorial Kalman Filter and takes into account material

(geometry)

○ Conformal Tracking + Cellular automaton (CA) (CLD baseline) [2],

coordinate transformation (circles transformed to straight lines)

■ Deviations from the circular path e.g displaced tracks are taken into

account by CA

■ Creating seed cells and extrapolating along the cell direction

● Drawbacks of these methods:

○ Computationally demanding (CKF)

○ Geometry dependent

○ Do not take into account different input (hit) geometries

CLD

ACTS seeing approach [1]

https://cds.cern.ch/record/2684496/files/CLICdp-Pub-2019-003.pdf
https://acts.readthedocs.io/en/latest/tracking.html

Dataset
● Generated events of Z→qqbar 91GeV without background using Pythia + ddsim with

CLD_02_v05 (key4hep 2024-05-09) + digitizer

● Store hits from

● CLD: Vertex Barrel, Vertex Endcap, Inner Tracker Barrel, Inner Tracker Endcap, Outer

Tracker Barrel, Outer Tracker Endcap

● IDEA: Digitizer-Distance along the wire and distance to the wire → left right hit

coordinates

For validation store MC association using “TrackerHitRelations”

IDEA IDEA CLD CLD

Sense wire

Field wire

[1]

https://link.springer.com/article/10.1140/epjc/s10052-024-12711-y

Algorithm

The algorithm is independent of the detector geometry (same pipeline for IDEA)

● Embedding of raw hits
● Graph neural network
● Clustering step → outputs are Track candidates (collection of hits)

Performance for complex events CLD: tracking efficiency
Definitions from CLD paper

Track hit purity: is the ratio of the number of hits in the track
that belong to the MC particle and the total number of hits of the
reconstructed track

Track hit efficiency: is the ratio of the number of hits in the
track that belong to the MC particle and the total number of hits
this particle left in the detector

Reconstructable particle: stable at generator level, pT>100
MeV, |cosθ|<0.99 and at least 4 unique hits

Compare with SiTracks_Refitted

Fakes: no MC is assigned to the reconstructed track

The fakes can not be evaluated per pT bin since the track is not
reconstructed but the total number of fakes is:

● ML: 4.2%
● Conformal: 4.4%

Work in
progress Work in

progress

Work in
progress

https://arxiv.org/pdf/1911.12230

Performance for complex events CLD: tracking efficiency

Definitions from CLD paper

Efficiency def 1. Percentage of reconstructable
particles with track hit purity >75% (track segments)

Efficiency def 2. Percentage of reconstructable
particles with track hit purity >50% and track hit
efficiency > 50%

Work in
progress

Work in
progress

https://arxiv.org/pdf/1911.12230

Performance for complex events CLD: tracking efficiency

Efficiency as a function of particle proximity:

ΔMC =

Efficiency as a function of production vertex radius

Work in
progress

Work in
progress

Performance for complex events IDEA: tracking efficiency

Tracking efficiency def 2)

Tracking efficiency vs ΔMC

Track hit efficiency

Work in
progress

Work in
progress

Work in
progress

Performance for complex events IDEA vs CLD

Track hit purity (THP) Track hit efficiency (THE)

● Good: THP>50 % THE >50 %
● Split : THP>50 % THE <50 % (only a fraction of

the track is reconstructed)
● Multiple: : THP<50 % THE >50 %
● Bad: THP<50 % THE <50 %

Overall, more splitted tracks are recovered using the
TGNN method

Z→ 𝛕𝛕→(3μ)(3μ)

● Force pythia decay
● Same data for CLD (02_v06)
● Performance comparison

Efficiency for Z→ 𝛕𝛕→(3μ)(3μ)

● Tracking efficiency defined as hit purity>75%
● Improved efficiency for CLD CT ‘out of the box’
● However, optimization of our model done without

background (next steps)
Work in
progress

Key4hep algorithm implementation

● Pattern recognition is implemented as a Gaudi::functional (key4hep, v0) [Repo]
○ Returns a track collection given a collection of hits from all subdetectors
○ Model is trained in pytorch an exported as ONNX

■ Inference session in the initialize()
■ Execution phase operator()

○ DBSCAN algorithm in C++ performs the clustering
● Implementation of an evaluation step that returns a quick estimate of tracking efficiency and a table

of parameters to calculate tracking efficiency as a function of particle properties (such as , etc…)
○ Soon merged in key4hep, more details Andreas’ talk

Full pipeline in key4hep (simulation to evaluation):

1. Idea detector simulation (IDEA_o1_v02.xml)
2. Digitizer v01 (moving to Digitizer v02)
3. Generalised geometric track finding algorithm
4. Evaluation step (tracking efficiency)

https://github.com/andread3vita/k4RecTracker
https://indico.cern.ch/event/1450376/?print=1&view=nicecompact

Summary and next steps

● Performance is improved in terms of efficiency compared to the Conformal tracking ‘out of the
box’

○ The purity is lower as the tracks include more hits but remains high
○ Next steps: we need to evaluate the algorithm with background (as this could explain the

difference with CLD)
○ Next steps: We will update the model with the new geometry (v3) and new digitizer will be

updated to take into account ‘circular’ ambiguity
● Key4hep implementation is ready for IDEA. Next steps: a similar pipeline is available in key4hep

for IDEA so it could be adaptable for CLD
● Next steps: the effect on the track fit still needs to be evaluated
● Next steps: evaluate and improve inference time (important for evaluation at Z pole)

