

Updates from the SMEFiT collaboration

towards the next ESPPU

Based on JHEP 09 (2024) 091

with E. Celada, T. Giani, L. Mantani, J. Rojo, A. N. Rossia, M. Thomas, E. Vryonidou

Jaco ter Hoeve 09/10/24

The high energy landscape

Lots of impressive cross-section measurements, but no clear deviation from the SM (yet) ...

... so we study their overall pattern!

[ATL-PHYS-PUB-2023-039]

Status: October 2023

Standard Model Production Cross Section Measurements

Jaco ter Hoeve - 3rd ECFA workshop - 09/10/24

Why global SMEFT fits?

- The SMEFT is our universal tool to search for BSM physics above the EW scale, with minimal assumptions on what it may look like
- Given the **cross-talk** between Higgs, top, diboson and EWPO (and flavour and low energy observables), a simultaneous fit is our only way forward
- Challenge: a large number of operators, with many datasets needed to break degeneracies

[2012.02779] Fitmaker collaboration

Anke Biekötter - HET seminar Brookhaven

►

The SMEFiT3.0 framework

E. Celada, T. Giani, L. Mantani, J. Rojo, A. Rossia, M. Thomas, E. Vryonidou , JtH

JHEP 09 (2024) 091 [2404.12809]

The SMEFiT timeline

SMEFiT3.0 in a nutshell

- SMEFiT2.0 extended with recent datasets in top, diboson and Higgs production based on the full Run II luminosity
- Full independent treatment of the EWPOs from LEP and SLD
- Dedicated projection module to extrapolate Run II data to HL-LHC
- ✓ FCC-ee and CEPC pseudodata from Snowmass predictions, updated to 4 IPs as per the FCC feasibility midterm report [2206.08326], CERN/3789/RA
- Both results in terms of Wilson coefficients and UVcomplete models
- Public code, data and theory: results are fully reproducible

lhcfitnikhef.github.io/smefit_release

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

"Spider plots / Antarctica plots"

SMEFiT under the hood

Full treatment of EWPOs

In the SMEFT, the SM couplings receive corrections from dim-6 operators

- SMEFiT2.0: assumed measurements at LEP were precise enough to set the coupling shifts to zero: 14 constraints, 16 d.o.f
- SMEFiT3.0: hardwired constraints get no longer imposed, EWPOs are treated on the same footing as (existing) LHC data: 14 extra d.o.f

Full treatment of EWPOs

In the SMEFT, the SM couplings receive corrections from dim-6 operators

- SMEFiT2.0: assumed measurements at LEP were precise enough to set the coupling shifts to zero: 14 constraints, 16 d.o.f
- SMEFiT3.0: hardwired constraints get no longer imposed, EWPOs are treated on the same footing as (existing) LHC data: 14 extra d.o.f

SMEFiT3.0 is simultaneously sensitive to 45 (50) Wilson coefficients at the linear (quadratic) level!

Dataset upgrade

We extended SMEFiT2.0 with recent Run II datasets from top, diboson and Higgs production

Catagory	Drocossos	[2105.00006] <i>n</i>	dat
Category	riocesses	SMEF1T2.0	SMEF1T3.0
	$tar{t}+X$	94	115
	$tar{t}Z,tar{t}W$	14	21
	$tar{t}\gamma$	-	2
Top quark production	single top (inclusive)	27	28
	tZ,tW	9	13
	$tar{t}tar{t}$, $tar{t}bar{b}$	6	12
	Total	150	189
	Run I signal strengths	22	22
Higgs production	Run II signal strengths	40	40
and decay	Run II, differential distributions & STXS	35	71
	Total	97	133
	LEP-2	40	40
Diboson production	LHC	30	41
	Total	70	81
Z-pole EWPOs	LEP-2	-	44
Baseline dataset	Total	317	449

Flavour assumption: $U(2)_q \times U(3)_d \times U(2)_u \times (U(1)_\ell \times U(1)_e)^3$

Result: HL-LHC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

- We project all RunII datasets from the SMEFiT 3.0 baseline: one for each process and final state see backup for details
- We see an improvement ranging from 20 to 70 % in the marginalised fit
- The EW operators only improve in the marginalised fit because of correlations

Result: FCC-ee

Dataset input

- ▶ EWPOs at the Z-pole
- Light fermion pair prediction
- Higgstrahlung and VBF
- Gauge boson pair production
- Top-quark pair production
- Optimal Observables

Enormy (1/2)	$\mathcal{L}_{\mathrm{int}}$ (Ru	in time)
Energy $(\sqrt{3})$	FCC-ee	CEPC
91 GeV (Z-pole)	$300 \text{ ab}^{-1} (4 \text{ years})$	$100 \text{ ab}^{-1} (2 \text{ years})$
161 GeV $(2 m_W)$	$20 \text{ ab}^{-1} (2 \text{ years})$	$6 \text{ ab}^{-1} (1 \text{ year})$
$240~{ m GeV}$	$10 \text{ ab}^{-1} (3 \text{ years})$	$20 \text{ ab}^{-1} (10 \text{ years})$
$350~{ m GeV}$	$0.4 \text{ ab}^{-1} (1 \text{ years})$	-
$365 { m ~GeV} (2 m_t)$	3 ab^{-1} (4 years)	1 ab^{-1} (5 years)

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Result: FCC-ee energy breakdown

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

- The FCC-ee plans to operate sequentially, hence we need to study the impact at the various energies
- Largest impact for Z-pole at 91 GeV plus the Higgs factory run at 240 GeV
- We can try other combinations too in order to find the most optimal run order for the SMEFT.

LEP	$t\bar{t}$ 8 TeV	$tar{t}$ 13 TeV	$t\bar{t}\gamma$	$t\bar{t}W$	$t\bar{t}Z$	t 8 TeV	$t 13 \mathrm{TeV}$	tW	tZ	$t\bar{t}A_c$	W helicities	$t\bar{t}t\bar{t} + t\bar{t}b\bar{b}$	Higgs-run I	Higgs-run II	AA	$t\bar{t}$ 13 TeV HL-LHC	tīW HL-LHC	$t\bar{t}Z$ HL-LHC	t 13 TeV HL-LHC	tW HL-LHC	tZ HL-LHC	$t\bar{t} A_c$ HL-LHC	W helicities HL-LF	$t\bar{t}t\bar{t} + t\bar{t}b\bar{b}$ HL-LHC	Higgs HL-LHC	VV HL-LHC	FCC-ee 91 GeV	FCC-ee 161 GeV	FCC-ee 240 GeV	FCC-ee 365 GeV			10	00
			Ц	ſ	1	h-		~	in	<u>م</u>		14.0 15.1						ц				~		86.0 84.9				=7	\sim				- 10	10
			- 1 1		, (I		22,			ر م		18.1						••	Ľ-					81.9			•	•	.0	-6	C			
												14.1												85.9										
	0.4	8.4	0.2	1.6	1.3					9.1		0.0	0.0	0.1		22.7	7.9	6.3				41.7		0.1	0.1								ł	
	0.3	10.4								11.6		0.0				31.2						46.4		0.2										
	0.3	2.2	0.3	1.9	1.0	1.2	0.3			13.6		0.0	0.0	0.1		4.3	9.2	4.6	1.3			59.6		0.1	0.0									
	0.0	0.0				15.2	7.7		4.8	0.1		0.0		0.0		0.1			40.0		31.6	0.4		0.0	0.0									
	0.5	6.9	1.0	4.1	2.3					8.1		0.1	0.0	0.3		7.0	20.1	10.4				38.6		0.5	0.1									0
	0.2	10.1								12.3		0.0				29.1						48.2		0.1									- 80	,
	0.4	8.9	0.3		0.1					13.5		0.0	0.0	0.1		14.9		0.8				60.7		0.2	0.1									
	0.2	8.9								12.7		0.0				26.9						51.1		0.2										
	0.8	3.7	2.5		1.0					13.7		0.1	0.0	0.4		6.9		5.2				64.8		0.7	0.2									
	0.3	11.0								12.4		0.0				27.7						48.5		0.1										
	0.7	14.4	0.3		0.4					9.7		0.0	0.0	0.2		29.1		2.0				42.8		0.2	0.1									
	0.5	13.8	0.0		0.4					9.6		0.0	0.0	0.5		38.8		10.1				37.1		0.2	0.0									
	0.4	13.8	0.2		2.4					10.2		0.1	0.0	0.5		35.6		12.1				42.5		0.0	0.2									
	0.1	10.0								10.2		0.0	0.0	0.0		00.0						10.0		0.1	0.1				78.8	21.1				
													0.0	0.1											0.3				70.5	29.1			- 60	0
													0.5	3.9											16.9				53.6	25.1				
													0.0	0.1											0.0				78.7	21.2				
	1.8	1.3	0.1	0.0	0.1			0.0		0.0	0.0	0.1	1.3	9.1		7.5	0.1	0.9		0.0		0.0	0.0	0.4	39.9				25.4	11.9				
			0.0		0.0	0.0	0.0	0.0	0.0		1.9		2.3	12.5				0.0	0.1	0.0	0.0		4.1		41.8				26.1	10.9				
			0.0		0.0				0.0				2.5	13.3				0.0			0.0				44.6				27.9	11.6			Ī	
3.2				0.0	0.0	0.0	0.0		0.0				0.0	0.1	0.0		0.0	0.0	0.0		0.0				1.8	0.5	84.8	3.4	3.5	2.7				
1.8					0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0			0.0	0.0	0.0	0.0				0.0	0.0	98.1		0.0	0.0				
1.5					0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.3	0.0	82.2		14.5	1.5				
1.5					0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.0	0.0	80.7		16.1	1.6			- 40	0
3.8					0.0								0.0	0.1	0.0			0.0							1.1	0.0	95.1		0.0	0.0				
4.5					0.0								0.0	0.0	0.0			0.0							0.2	0.0	95.2		0.0	0.0				
1.0					11.2				0.1				0.3	1.8	0.0			74.8			0.5				6.2	0.0	40 F	0.0	3.6	1.5				
1.0													0.0	0.0	0.0										0.0	0.0	42.0	0.0	20.7	17				
3.1													0.0	0.0	0.0										0.0	0.0	81.4		13.9	1.7			ł	
0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0	3.1	4.2	79.6	12.9				
0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0	1.1	5.1	82.5	11.2				
2.4													0.0	0.0	0.0										0.0	0.0	68.5	6.7	16.2	6.3				
1.5													0.0	0.0	0.0										0.0	0.0	31.0	0.0	41.5	25.9				
4.3													0.0	0.0	0.0										0.0	0.0	78.6		15.4	1.7			- 20)
3.5													0.0	0.0	0.0										0.0	0.0	81.7		13.3	1.5				
0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.1	2.5	52.9	44.5				
													0.3	2.5											10.9				58.7	27.6				
													2.5	13.2											44.1				28.6	11.7				
													1.1	5.8											19.4				46.4	27.3				
0.0			0.0		0.0				0.0				0.0	0.0	0.0			0.0			0.0				0.1	0.0	0.0	0.0	88.6	11.1				
0.2									0.0						0.1						0.0					4.8		0.0	63.4	31.4				
													0.0	0.1											0.2				75.2	24 5		1		

Fisher information matrix

 The sensitivity of the EFT parameters to the Run II, HL-LHC and FCC-ee datasets is quantified by the fisher information

$$I_{ij} = \sum_{m=1}^{n_{\text{dat}}} \frac{\sigma_{m,i}^{(\text{eft})} \sigma_{m,j}^{(\text{eft})}}{\delta_{\exp,m}^2}$$

- The highest sensitivity in the 2FB and bosonic sectors comes in via the FCC-ee
- The FCC-ee run at 161 GeV is the least sensitive for the SMEFT

LEP	$t\bar{t}$ 8 TeV	$t\bar{t}$ 13 TeV	$t\bar{t}\gamma$	$t\bar{t}W$	$t\bar{t}Z$	t 8 TeV	$t 13 \mathrm{TeV}$	$\int tW$	tZ	$t\bar{t} A_c$	W helicities	$t\bar{t}t\bar{t}+t\bar{t}b\bar{b}$	Higgs-run I	Higgs-run II	AA	$t\bar{t}$ 13 TeV HL-LHC	$t\bar{t}W$ HL-LHC	$t\bar{t}Z$ HL-LHC	t 13 TeV HL-LHC	tZ HL-LHC	$t\bar{t}A_c$ HL-LHC	W helicities HL-LH	$\left[t \bar{t} t \bar{t} + t \bar{t} b \bar{b} HL-LHC ight]$	Higgs HL-LHC	VV HL-LHC	FCC-ee 91 GeV	FCC-ee 161 GeV	FCC-ee 240 GeV	FCC-ee 365 GeV
2												14.0 15.1																	
2												18.1																	
												14.1																	
												14.0											86.0						
8 7	0.4	8.4	0.2	1.6	1.3					9.1		0.0	0.0	0.1		22.7	7.9	6.3			41.7	·	0.1	0.1					
	0.3	10.4	0.0	10	10	10				11.6		0.0		c	(3))	84.	8	3.4	3.	5	2.7	1.2						
, ,	0.3	2.2	0.3	1.9	1.0	1.2	0.3		4.8	13.6		0.0		C	φq	! -								0.0					
'	0.5	6.9	1.0	4.1	2.3	10.2			1.0	8.1		0.1		c'	(3) (1)		98.	1		0.0	0	0.0	0.5	1					
1	0.2	10.1								12.3		0.0		2	ρų _	1	02	2		14	5	15	0.1						
/	0.4	8.9	0.3		0.1					13.5		0.0		c_{φ}	bq'	′]	02.	2		14.	5	1.5	0.2	0.1					
	0.2	8.9								12.7		0.0		(-))	80.	7		16.	1	1.6	0.2		١				
,	0.8	3.7	2.5		1.0					13.7		0.1		c_q	οQ								0.7	0.2					
ι	0.3	11.0								12.4		0.0		c	(n)	,	95.	1		0.0	0	0.0	0.1						
ı	0.7	14.4	0.3		0.4					9.7		0.0			Ψu	Ĩ).2	0.1					
ı	0.5	13.8								9.6		0.0		c	φq	l	95.	2		0.0	0	0.0).2						
ı	1.5	8.7	0.2		2.4					9.4		0.1			•	1				31	8	15	1.8	0.2					
l	0.4	10.0								10.2		0.0		C	φ					0.0	,	1.5	2.1	0.1				78.8	21.1
<u> </u>														C,	~1		42.	5	0.0	28.	7	27.2	2	0.3				70.5	29.1
, —															$\rho \iota_1$								1	16.9				58.6	25.1
,														c_{c}	ol	,	78.	1		15.	6	1.7		0.0				78.1	21.2
,	1.8	1.3	0.1	0.0	0.1			0.0		0.0	0.0	0.1			r ° 2	-								39.9				25.4	11.9
,			0.0		0.0	0.0	0.0	0.0	0.0		1.9			c_{c}	φl_3	3	81.4	4		13.	9	1.5		4,8				26.1	11.9
:			0.0		0.0				0.0					((3)) 1	3 1		12	79	6	120		44.6				27.9	11.
3.2				0.0	0.0	0.0	0.0		0.0					c_{c}	φl_1	,	0.1		7.2	13.	0	12.0		1.8	0.5	84.8	3.4	3.5	2.7
1.8					0.0	0.0	0.0	0.0	0.0						(3))	1.1		5.1	82.	5	11.2	2	0.0	0.0	98.1		0.0	0.0
1.5					0.0				0.0					c_{c}	φl_2	2 -								0.3	0.0	82.2		14.5	1.5
3.8					0.0				0.0					c'	(3)		68.	5	6.7	16.	2	6.3		1.1	0.0	80.7		16.1	1.6
4.5					0.0										φl_3	3 -	~	•			-			0.2	0.0	95.2		0.0	0.0
					11.2				0.1					С	$\varphi \epsilon$	2	31.	0	0.0	41.	5	25.9	'	6.2				3.6	1.5
1.6														0		1	78	6		15	4	17		0.0	0.0	42.5	0.0	28.7	27.2
4.6														C	$\varphi \mu$	ι	/0.	Ŭ		10.	-	1.7		0.0	0.0	78.1		15.6	1.7
3.1														C		_	81.	7		13.	3	1.5		0.0	0.0	81.4		13.9	1.5
0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0					Ŭ	Ψι	' -								0.0	0.0	3.1	4.2		12.9
0.1			0.0	0.0	0.0	0.0	0.0	0.0	0.0						c_l	1	0.1		2.5	52.	9	44.5	;	0.0	0.0	1.1	5.1	82.5	11.2
2.4																				50	-	07.0		0.0	0.0	68.5	6.7	16.2	6.3
1.5														c_{ζ}	ρG	7				58.	1	27.6	'	0.0	0.0	31.0	0.0	41.5	25.9
4.3														c	-]				28	6	117		0.0	0.0	78.6		15.4	1.7
0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0					C_{ζ}	φĿ	3				20.	Ŭ			0.0	0.0	0.1	25	52.9	44.5
			0.0	0.0	0.0	0.0	0.0	0.0	0.0					C.	-14	7				46.	4	27.3	;	10.9	0.0	0.1	2.0	58.7	27.6
, ,														-4	200	′								44.1				28.6	11.7
													$C_{\prime\prime}$	эИ	VF	3	0.0)	0.0	88.	6	11.1		19.4				46.4	27.3
0.0			0.0		0.0				0.0				4		-	1								0.1	0.0	0.0	0.0	88.6	11.1
, 0.2									0.0				c_W	W	'W	7			0.0	63.	4	31.4			4.8		0.0	63.4	31.4
														c	-	_ 1				75	2	24 5		0.2				75.2	24.5
0.1			0.0		0.0				0.0					C_{ζ}	ρ]				13.	-	24.0		0.0	0.0	0.1	0.0	88.8	11.0
_														c	_		0 1		0.0	88	8	11.0					/		

Fisher information matrix

 The sensitivity of the EFT parameters to the Run II, HL-LHC and FCC-ee datasets is quantified by the fisher information

$$I_{ij} = \sum_{m=1}^{n_{\text{dat}}} \frac{\sigma_{m,i}^{(\text{eft})} \sigma_{m,j}^{(\text{eft})}}{\delta_{\exp,m}^2}$$

Normalized Value

- The highest sensitivity in the 2FB and bosonic sectors comes in via the FCC-ee
- The FCC-ee run at 161 GeV is the least sensitive for the SMEFT

Impact of quadratics

The uncertainty due to the EFT truncation is small except for 4F

Ratio of Uncertainties to HL - LHC + FCC - ee, $\mathcal{O}(\Lambda^{-2})$, Marginalised

RGE effects

- Experimental input to global fits spans **a wide range of different energy** scales, from m_Z at LEP to $m_{t\bar{t}} \sim 3 \text{ TeV}$ in tails at LHC
- At FCC-ee this gap becomes **even more sizeable** due to an unprecedented indirect mass reach up $\mathcal{O}(100)$ TeV
- A consistent treatment that connects measurements across different scales thus becomes necessary and is provided by the Renormalisation Group Equations (RGEs)

RGE effects

Wilson Coefficients run and mix with energy under the RGEs, possibly resulting in higher sensitivity

Two competing effects:

- More operators enter the same observable
- An ill constrained operator could flow into a precisely determined observable

[1804.05033] Aebischer, Kumar, Straub

RGE effects in the UV

The 2HDM^{*} is seen to benefit from including RG effects, with bounds improving by around 20% *In the decoupling limit

Two competing effects:

- More operators enter the same observable
- An ill constrained operator could flow into a precisely determined observable

[1804.05033] Aebischer, Kumar, Straub

Marginalised 95 % C.L. intervals

Conclusion and outlook

- Presented SMEFiT3.0, a global fit of 50 Wilson coefficients to Higgs, top, diboson and EWPOs, including quadratic corrections
- We are becoming increasingly sensitive to possible new physics effects, both through the still expanding LHC datasets, as well as through future colliders
- The FCC-ee offers an unprecedented indirect mass reach on new heavy particles
- RGE effects are relevant to include to connect experiments at widely separated scales
- The inclusion of other proposed future colliders are WIP for the ESPPU

Conclusion and outlook

- Presented SMEFiT3.0, a global fit of 50 Wilson coefficients to Higgs, top, diboson and EWPOs, including quadratic corrections
- We are becoming increasingly sensitive to possible new physics effects, both through the still expanding LHC datasets, as well as through future colliders
- The FCC-ee offers an unprecedented indirect mass reach on new heavy particles
- RGE effects are relevant to include to connect experiments at widely separated scales
- The inclusion of other proposed future colliders are WIP for the ESPPU

Contact: jaco.ter.hoeve@ed.ac.uk

Thanks for your attention!

Backup

Theory input

We fit a total of **50 Wilson coefficients** simultaneously at quadratic order in the EFT

)perato	r Coefficier	nt Definition	Operator	Coefficie	nt Definition	DoF	Definition (in W	arsaw basis notation)	DoF	Definition (in	Warsaw basis notation)
		3rd genera	tion quark	s		c_{QQ}^1	$2c_{qq}^{1(3333)} - \frac{2}{3}c_{qq}^{3(33)}$	33)	c_{QQ}^{8}	$8c_{qq}^{3(3333)}$	
$\mathcal{D}_{\varphi Q}^{(1)}$ $\mathcal{D}_{\varphi Q}^{(3)}$ $\mathcal{D}_{\varphi q}$ $\mathcal{D}_{\varphi t}$ $\mathcal{D}_{t \varphi}$ $\mathcal{D}_{t \varphi}$ $\mathcal{D}_{\varphi q}^{(1)}$ $\mathcal{D}_{\varphi q}^{(3)}$ $\mathcal{D}_{\varphi u}^{(3)}$	$c^{(1)}_{arphi Q}(*) \ c^{(3)}_{arphi Q} \ c_{arphi t} \ c_{t arphi} \ c_{arphi q} \ c_{arphi u}$	$\begin{split} i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{Q} \gamma^{\mu} Q) \\ i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{t} \gamma^{\mu} t) \\ (\varphi^{\dagger} \varphi) \bar{Q} t \tilde{\varphi} + \text{h.c.} \end{split}$ $\begin{split} \text{1st, 2nd gene} \\ \frac{\sum_{i=1,2} i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{q}_{i} \gamma^{\mu} q_{i})}{\sum_{i=1,2} i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{i})} \\ \sum_{i=1,2} i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u}_{i} \gamma^{\mu} u_{i}) \end{split}$	$ \begin{array}{c} \mathcal{O}_{tW} \\ \mathcal{O}_{tB} \\ \mathcal{O}_{tG} \\ \mathcal{O}_{b\varphi} \end{array} $ eration qua $ \begin{array}{c} \mathcal{O}_{\varphi d} \\ \mathcal{O}_{c\varphi} \end{array} $	c_{tW} c_{tB} (*) c_{tG} $c_{b\varphi}$ rks $c_{\varphi d}$ $c_{c\varphi}$	$\begin{split} &i(\bar{Q}\tau^{\mu\nu}\tau_{I}t)\tilde{\varphi}W^{I}_{\mu\nu}+\text{h.c.}\\ &i(\bar{Q}\tau^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}+\text{h.c.}\\ &ig_{s}(\bar{Q}\tau^{\mu\nu}T_{A}t)\tilde{\varphi}G^{A}_{\mu\nu}+\text{h.c.}\\ &\left(\varphi^{\dagger}\varphi\right)\bar{Q}b\varphi+\text{h.c.}\\ \end{split}$	c_{Qt}^1 $c_{Qq}^{1,8}$ $c_{Qq}^{3,8}$ c_{Qq}^8 c_{tq}^8 c_{tu}^8 c_{Qu}^8 c_{td}^8 c_{Qd}^8	$\begin{array}{c} c_{qu}^{1(333)} \\ c_{qq}^{1(i33i)} + 3c_{qq}^{3(i33i)} \\ c_{qq}^{1(i33i)} - c_{qq}^{3(i33i)} \\ c_{qu}^{1(i33i)} - c_{qq}^{3(i33i)} \\ c_{qu}^{8(i33i)} \\ c_{qu}^{8(i33i)} \\ c_{qu}^{8(33ij)} \\ c_{ud}^{8(33jj)} \\ c_{qd}^{8(33jj)} \\ \end{array}$	Purely k	$\begin{vmatrix} c_{Q_{t}}^{8} \\ c_{Qq}^{1,1} \\ c_{Qq}^{2,1} \\ c_{tq}^{1} \\ c_{tu}^{1} \\ c_{Qu}^{1} \\ c_{td}^{1} \\ c_{Qd}^{1} \\ c_{Qd}^{1} \\ \hline \\ $	$c_{qu}^{(3333)} = \frac{1}{6} c_{qq}^{(3333)} + \frac{1}{6} c_{qq}^{(i333)} + \frac{1}{6} c_{qq}^{(i33)} + \frac{1}{6} (c_{qq}^{1(i33)} + \frac{1}{6} (c_{qq}^{1(i33)} + \frac{1}{3} c_{uu}^{(i33)} + \frac{1}{3} c_{uu}^{(i33i)} + \frac{1}{3} c_{uu}^{(i33i)} + \frac{1}{3} c_{uu}^{(i33j)} + \frac{1}{3} c_{uu}^{(i33)} + \frac{1}{3} c_{uu}^{(i3$	$(33i) + \frac{1}{2}c_{qq}^{3(i33i)}$ $(i33i) - c_{qq}^{3(i33i)})$
		two-le	eptons				a		0		
$\mathcal{D}_{arphi \ell_i} \ \mathcal{D}_{arphi \ell_i}^{(3)} \ \mathcal{D}_{arphi e}$	$egin{array}{cc} c_{arphi \ell_i} \ c_{arphi \ell_i}^{(3)} \ c_{arphi e} \end{array}$	$ \begin{aligned} & \text{two-le} \\ & i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{\ell}_{i} \gamma^{\mu} \ell_{i}) \\ & i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi) (\bar{\ell}_{i} \gamma^{\mu} \tau^{I} \ell_{i}) \\ & i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{e} \gamma^{\mu} e) \end{aligned} $	$\left egin{array}{c} \mathcal{O}_{arphi\mu} \ \mathcal{O}_{arphi au} \ \mathcal{O}_{arphi au} \ \mathcal{O}_{ au arphi} \ \mathcal{O}_{ au arphi} \end{array} ight $	$c_{arphi\mu} \ c_{arphi au} \ c_{arphi au} \ c_{ au au}$	$ \begin{split} &i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) \left(\bar{\mu} \gamma^{\mu} \mu \right) \\ &i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) \left(\bar{\tau} \gamma^{\mu} \tau \right) \\ &\left(\varphi^{\dagger} \varphi \right) \bar{\ell_3} \tau \varphi + \mathrm{h.c.} \end{split} $	$\begin{array}{c} \hline \\ Operator \\ \hline \\ \mathcal{O}_{\varphi G} \\ \hline \\ \mathcal{O}_{\varphi B} \\ \hline \\ \mathcal{O}_{\varphi W} \end{array}$	Coefficient $c_{\varphi G}$ $c_{\varphi B}$	Definition $(\varphi^{\dagger}\varphi) G^{\mu\nu}_{A} G^{A}_{\mu\nu}$ $(\varphi^{\dagger}\varphi) B^{\mu\nu} B_{\mu\nu}$ $(\varphi^{\dagger}\varphi) W^{\mu\nu} W^{I}$	Operator $\mathcal{O}_{\varphi \Box}$ $\mathcal{O}_{\varphi D}$ \mathcal{O}_{W}	Coefficient $c_{\varphi \Box}$ $c_{\varphi D}$	$\begin{array}{c} \text{Definition} \\ \\ \partial_{\mu}(\varphi^{\dagger}\varphi)\partial^{\mu}(\varphi^{\dagger}\varphi) \\ (\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi) \\ \\ \epsilon_{\mu\nu\nu}W^{I} \ W^{J,\nu\rho}W^{K,\mu} \end{array}$
$\mathcal{D}_{arphi\ell_i} \ \mathcal{D}_{arphi\ell_i}^{(3)} \ \mathcal{D}_{arphi}$	$egin{array}{ccc} c_{arphi l_i} \ c_{arphi l_i}^{(3)} \ c_{arphi e} \end{array}$	two-le $i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{\ell}_{i} \gamma^{\mu} \ell_{i})$ $i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \varphi)(\bar{\ell}_{i} \gamma^{\mu} \tau^{I} \ell_{i})$ $i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{e} \gamma^{\mu} e)$ Four lepton of four left on the second secon	eptons $ \begin{array}{c} \mathcal{O}_{\varphi\mu} \\ \mathcal{O}_{\varphi\tau} \\ \mathcal{O}_{\tau\varphi} \end{array} $ Operat	$c_{\varphi\mu}$ $c_{\varphi\tau}$ $c_{\tau\varphi}$ Ors	$egin{aligned} &i(arphi^{\dagger} \overleftrightarrow{D}_{\mu} arphi) \left(ar{\mu} \gamma^{\mu} \mu ight) \ &i(arphi^{\dagger} \overleftrightarrow{D}_{\mu} arphi) \left(ar{ au} \gamma^{\mu} au ight) \ &(arphi^{\dagger} arphi) ar{\ell_3} au arphi + ext{h.c.} \end{aligned}$	$egin{array}{c} Operator \ & \mathcal{O}_{arphi G} \ & \mathcal{O}_{arphi B} \ & \mathcal{O}_{arphi W} \ & \mathcal{O}_{arphi W B} \end{array}$	Coefficient $c_{\varphi G}$ $c_{\varphi B}$ $c_{\varphi W}$ $c_{\varphi W B}$	Definition $ \begin{array}{c} \left(\varphi^{\dagger}\varphi\right)G_{A}^{\mu\nu}G_{\mu\nu}^{A} \\ \left(\varphi^{\dagger}\varphi\right)B^{\mu\nu}B_{\mu\nu} \\ \left(\varphi^{\dagger}\varphi\right)W_{I}^{\mu\nu}W_{\mu\nu}^{I} \\ \left(\varphi^{\dagger}\tau_{I}\varphi\right)B^{\mu\nu}W_{\mu\nu}^{I} \\ \end{array} $	$egin{array}{c} Operator \ \mathcal{O}_{arphi \square} \ \mathcal{O}_{arphi D} \ \mathcal{O}_{arphi D} \ \mathcal{O}_W \end{array}$	Coefficient $c_{\varphi \Box}$ $c_{\varphi D}$ c_{WWW}	Definition $\partial_{\mu}(\varphi^{\dagger}\varphi)\partial^{\mu}(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$ $\epsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$

ł,

HL-LHC projections

 The central values of the pseudo data are fluctuated around the SM

$$\mathcal{O}_i^{(\text{exp})} = \mathcal{O}_i^{(\text{th})} \left(1 + r_i \delta_i^{(\text{stat})} + \sum_{k=1}^{n_{\text{sys}}} r_{k,i} \delta_{k,i}^{(\text{sys})} \right)$$

 Statistical uncertainties we rescale according to the improved luminosity

$$\delta_i^{(\text{stat})} = \tilde{\delta}_i^{(\text{stat})} \sqrt{\frac{\mathcal{L}_{\text{Run2}}}{\mathcal{L}_{\text{HLLHC}}}}$$

 While systematics are rescaled by an overall factor, namely 1/2 for all datasets

$$\delta_{k,i}^{(\mathrm{sys})} = \tilde{\delta}_{k,i}^{(\mathrm{sys})} \times f_{\mathrm{red}}^{(k)} \qquad k = 1, \dots, n_{\mathrm{sys}}$$

+ flexible framework that can project any Run II dataset

- + SMEFT predictions can be recycled
 - No additional bins in the tails

Without statistical noise = L0

With statistical noise = L1

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

Jaco ter Hoeve - 3rd ECFA workshop - 09/10/24

FCC-ee and CEPC

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

Fit residuals (pulls) are largely **consistent** with the SM

$$P_i \equiv rac{\langle c_i
angle - c_i^{(\mathrm{SM})}}{\left[c_i^{\min}, c_i^{\max}
ight]^{68\% \ \mathrm{CI}}}$$

Large correlations in linear fit get lifted in the quadratic fit

Correlation: NLO $\mathcal{O}(\Lambda^{-2})$

Fit residuals (pulls) are largely **consistent** with the SM

$$P_i \equiv rac{\langle c_i
angle - c_i^{(\mathrm{SM})}}{\left[c_i^{\mathrm{min}}, c_i^{\mathrm{max}}
ight]^{68\% \ \mathrm{CI}}}$$

Large correlations in linear fit get lifted in the quadratic fit

Correlation: NLO $\mathcal{O}\left(\Lambda^{-4}\right)$

Building the likelihood

From (differential) cross sections ...

To a combined likelihood ready for optimisation ...

$$-2\log \mathscr{L} = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} \left(\sigma_{i,\text{SMEFT}}(c) - \sigma_{i,\text{exp}} \right) \left(\text{cov}^{-1} \right)_{ij} \left(\sigma_{j,\text{SMEFT}}(c) - \sigma_{j,\text{exp}} \right)$$

Theory (pdf + scale) and experimental uncertainties (stat + systematics): $cov^{(tot)}_{ij} = cov^{(th)}_{ij} + cov^{(exp)}_{ij}$

1-loop & multi-particle matching

SM predictions

Category	Process	\mathbf{SM}	Code/Ref	SMEFT
	$t\bar{t}$ (incl)	NNLO QCD	MG5_aMC NLO + NNLO K-fact	NLO QCD
	$t\bar{t} + V$	NLO QCD	MG5_aMC NLO	LO QCD + NLO SM <i>K</i> -fact
Top quark production	single- t (incl)	NNLO QCD	MG5_aMC NLO + NNLO K-fact	NLO QCD
	t + V	NLO QCD	MG5_aMC NLO	LO QCD $+$ NLO SM K -fact
	$t\bar{t}t\bar{t}$, $t\bar{b}t\bar{b}$	NLO QCD	MG5_aMC NLO	LO QCD $+$ NLO SM K -fact
	gg ightarrow h	NNLO QCD + NLO EW	HXSWG	NLO QCD
	VBF	NNLO QCD + NLO EW	HXSWG	LO QCD
Higgs production and decay	h + V	NNLO QCD + NLO EW	HXSWG	NLO QCD
	$htar{t}$	NNLO QCD + NLO EW	HXSWG	NLO QCD
	$h \to X$	NNLO QCD + NLO EW	HXSWG	NLO QCD $(X = b\bar{b})$ LO QCD $(X \neq b\bar{b})$
Diboson	$e^+e^- \rightarrow W^+W^-$	NNLO QCD + NLO EW	LEP EWWG	LO QCD
production	$pp \to VV'$	NNLO QCD	MATRIX	NLO QCD

HL-LHC projected datasets

Dataset	\mathcal{L} (fb ⁻¹)	Info	Observables	$ $ $n_{\rm dat}$	Ref.
ATLAS_STXS_RunII_13TeV_2022	139	ggF , VBF, Vh , $t\bar{t}h$, th	$egin{array}{c} d\sigma/dp^h_T \ d\sigma/dm_{jj} \ d\sigma/dp^V_T \end{array}$	36	[55]
CMS_ggF_aa_13TeV	77.4	gg F, $h \rightarrow \gamma \gamma$	$\sigma_{gg\mathrm{F}}(p_T^h,N_{\mathrm{jets}})$	6	[83]
ATLAS_ggF_ZZ_13TeV	79.8	gg F, $h \rightarrow ZZ$	$\sigma_{ggF}(p_T^h, N_{ m jets})$	6	[84]
ATLAS_ggF_13TeV_2015	36.1	$gg{\rm F},h\to ZZ,h\to\gamma\gamma$	$d\sigma(gg{ m F})/dp_T^h$	9	[85]
ATLAS_WH_Hbb_13TeV	79.8	$Wh, h ightarrow bar{b}$	$d\sigma^{(\rm fid)}/dp_T^W$ (stage 1 STXS)	2	[86]
ATLAS_ZH_Hbb_13TeV	79.8	$Zh,h ightarrow bar{b}$	$d\sigma^{(\rm fid)}/dp_T^Z$ (stage 1 STXS)	2	[86]
CMS_H_13TeV_2015_pTH	35.9	$h \to b\bar{b}, h \to \gamma\gamma, h \to ZZ$	$d\sigma/dp_T^h$	9	[87]
ATLAS_WW_13TeV_2016_memu	36.1	fully leptonic	$d\sigma^{ m (fid)}/dm_{e\mu}$	13	[88]
ATLAS_WZ_13TeV_2016_mTWZ	36.1	fully leptonic	$d\sigma^{ m (fid)}/dm_T^{WZ}$	6	[89]
CMS_WZ_13TeV_2016_pTZ	35.9	fully leptonic	$d\sigma^{ m (fid)}/dp_T^Z$	11	[90]
CMS_WZ_13TeV_2022_pTZ	137	fully leptonic	$d\sigma/dp_T^Z$	11	[56]

Dataset	$\mathcal{L}\left(fb^{-1}\right)$	Info	Observables	n_{dat}	Ref.
ATLAS_tt_13TeV_1jets_2016_Mtt	36.1	ℓ+jets	$d\sigma/dm_{t\bar{t}}$	7	[91]
CMS_tt_13TeV_dilep_2016_Mtt	35.9	dilepton	$d\sigma/dm_{t\bar{t}}$	7	[92]
CMS_tt_13TeV_Mtt	137	ℓ +jets	$1/\sigma d\sigma/dm_{t\bar{t}}$	14	[57]
CMS_tt_13TeV_ljets_inc	137	$\ell + jets$	$\sigma(t\bar{t})$	1	[57]
ATLAS_tt_13TeV_asy_2022	139	ℓ + jets	A_C	5	[59]
CMS_tt_13TeV_asy	138	ℓ + jets	A_C	3	[58]
ATLAS_Whel_13TeV	139	W-helicity fraction	F_0, F_L	2	[60]
ATLAS_ttbb_13TeV_2016	36.1	lepton + jets	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[93]
CMS_ttbb_13TeV_2016	35.9	all-jets	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[94]
CMS_ttbb_13TeV_dilepton_inc	35.9	dilepton	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[<mark>68</mark>]
CMS_ttbb_13TeV_ljets_inc	35.9	lepton + jets	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[68]
ATLAS_tttt_13TeV_run2	139	multi-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[95]
CMS_tttt_13TeV_run2	137	same-sign or multi-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[<mark>96</mark>]
ATLAS_tttt_13TeV_slep_inc	139	single-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[64]
CMS_tttt_13TeV_slep_inc	35.8	single-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[65]
ATLAS_tttt_13TeV_2023	139	multi-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[<mark>66</mark>]
CMS_tttt_13TeV_2023	139	same-sign or multi-lepton	$\sigma_{tot}(t\bar{t}t\bar{t})$	1	[67]
CMS_ttZ_13TeV_pTZ	77.5	$t\bar{t}Z$	$d\sigma(t\bar{t}Z)/dp_T^Z$	4	[97]
ATLAS_ttZ_13TeV_pTZ	139	$t\bar{t}Z$	$d\sigma(t\bar{t}Z)/dp_T^Z$	7	[61]
ATLAS_ttW_13TeV_2016	36.1	$t\bar{t}W$	$\sigma_{tot}(t\bar{t}W)$	1	[98]
CMS_ttW_13TeV	35.9	$t\bar{t}W$	$\sigma_{\rm tot}(t\bar{t}W)$	1	[99]
ATLAS_t_tch_13TeV_inc	3.2	t-channel	$\sigma_{\rm tot}(tq), \sigma_{\rm tot}(\bar{t}q)$	2	[100]
CMS_t_tch_13TeV_2019_diff_Yt	35.9	t-channel	$d\sigma/d y_t $	5	[101]
ATLAS_t_sch_13TeV_inc	139	s-channel	$\sigma(t + \bar{t})$	1	[<mark>69</mark>]
ATLAS_tW_13TeV_inc	3.2	multi-lepton	$\sigma_{tot}(tW)$	1	[102]
CMS_tW_13TeV_inc	35.9	multi-lepton	$\sigma_{tot}(tW)$	1	[103]
CMS_tW_13TeV_slep_inc	36	single-lepton	$\sigma_{\rm tot}(tW)$	1	[71]
ATLAS_tZ_13TeV_run2_inc	139	multi-lepton + jets	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[104]
CMS_tZ_13TeV_pTt	138	multi-lepton + jets	$d\sigma_{\rm fid}(tZj)/dp_T^t$	3	[70]

FCC-ee and CEPC datasets

Zh and VBF ($h\nu\nu$)

EWPOs

	pole EWPOs ($\sqrt{s} = 91.2 \text{ GeV}$)						
	δ/Δ	\mathcal{O}_i					
	FCC-ee	CEPC					
$lpha(m_Z)^{-1}(imes 10^3)$	$\Delta=2.7~(1.2)$	$\Delta = 17.8$					
$\Gamma_W ~({ m MeV})$	$\Delta=0.85~(0.3)$	$\Delta=1.8~(0.9)$					
Γ_Z (MeV)	$\Delta = 0.0028~(0.025)$	$\Delta = 0.005~(0.025)$					
$A_e \left(\times 10^5 \right)$	$\Delta = 0.5~(2)$	$\Delta = 1.5$					
$A_{\mu} \left(imes 10^5 ight)$	$\Delta=1.6~(2.2)$	$\Delta=3.0~(1.8)$					
$A_{ au} \left(imes 10^5 ight)$	$\Delta=0.35~(20)$	$\Delta = 1.2~(6.9)$					
$A_b \left(imes 10^5 ight)$	$\Delta = 1.7~(21)$	$\Delta = 3 \ (21)$					
$A_c (imes 10^5)$	$\Delta = 14~(15)$	$\Delta=6~(30)$					
$\sigma_{ m had}^0~({ m pb})$	$\Delta=0.025~(4)$	$\Delta = 0.05~(2)$					
$R_e (imes 10^3)$	$\delta = 0.0028~(0.3)$	$\delta = 0.003 \; (0.2)$					
$R_{\mu}(imes 10^3)$	$\delta = 0.0021 \; (0.05)$	$\delta = 0.003 \; (0.1)$					
$R_{ au} (imes 10^3)$	$\delta = 0.0021 \; (0.1)$	$\delta = 0.003 \; (0.1)$					
$R_b (imes 10^3)$	$\delta=0.001~(0.3)$	$\delta = 0.005 \; (0.2)$					
$R_c(imes 10^3)$	$\delta = 0.011 \; (1.5)$	$\delta=0.02~(1)$					

		$e^+e^- \to Zh$		
	$\sqrt{s} = 24$	40 GeV	$\sqrt{s} = 36$	35 GeV
O_i	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\delta_{\exp} \mathcal{O}_i$ (CEPC)	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\delta_{\exp} \mathcal{O}_i$ (CEPC)
σ_{Zh}	0.0035	0.0026	0.0064	0.014
$\sigma_{Zh} \times \mathrm{BR}_{b\bar{b}}$	0.0021	0.0014	0.0035	0.009
$\sigma_{Zh} \times \mathrm{BR}_{c\bar{c}}$	0.0156	0.0202	0.046	0.088
$\sigma_{Zh} \times \mathrm{BR}_{gg}$	0.0134	0.0081	0.0247	0.034
$\sigma_{Zh} \times BR_{ZZ}$	0.0311	0.0417	0.0849	0.2
$\sigma_{Zh} \times \mathrm{BR}_{WW}$	0.0085	0.0053	0.0184	0.028
$\sigma_{Zh} \times \mathrm{BR}_{\tau^+\tau^-}$	0.0064	0.0042	0.0127	0.021
$\sigma_{Zh} \times \mathrm{BR}_{\gamma\gamma}$	0.0636	0.0302	0.127	0.11
$\sigma_{Zh} \times \mathrm{BR}_{\gamma Z}$	0.12	0.085	-	-
		$e^+e^- \to h \nu \nu$		
	$\sqrt{s} = 24$	40 GeV	$\sqrt{s} = 36$	$35 { m GeV}$
\mathcal{O}_i	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\delta_{\exp} \mathcal{O}_i$ (CEPC)	$\delta_{\exp} \mathcal{O}_i$ (FCC-ee)	$\delta_{\exp} \mathcal{O}_i$ (CEPC)
$\sigma_{h\nu\nu} \times \mathrm{BR}_{b\bar{b}}$	0.0219	0.0159	0.0064	0.011
$\sigma_{h\nu\nu} \times \mathrm{BR}_{c\bar{c}}$	-	-	0.0707	0.16
$\sigma_{h\nu\nu} \times \mathrm{BR}_{gg}$	-	-	0.0318	0.045
$\sigma_{h\nu\nu}\times \mathrm{BR}_{ZZ}$	-	-	0.0707	0.21
$\sigma_{h\nu\nu} \times \mathrm{BR}_{WW}$	-	-	0.0255	0.044
$\sigma_{h\nu\nu} \times \mathrm{BR}_{\tau^+\tau^-}$	-	-	0.0566	0.042
$\sigma_{h\nu\nu}\times \mathrm{BR}_{\gamma\gamma}$	-	-	0.156	0.16

FCC-ee and CEPC datasets

		$e^+e^- ightarrow far{f}$								
			$\sqrt{s} = 24$	0 G	eV	\sqrt{s}	5 = 36	$65 { m GeV}$		
\mathcal{O}_i		$\left \ \Delta_{\exp} \mathcal{O}_i ight.$	(FCC-ee)	Δ_{ϵ}	$_{\mathrm{exp}}\mathcal{O}_i \; (\mathrm{CEPC}) \; \Big $	$\Delta_{\exp} \mathcal{O}_i$ (FCC	-ee)	$\mid \Delta_{\exp} \mathcal{O}_i \mid$	CEPC)	
$\sigma_{\rm tot}(e^+e^-)$	[fb]	2.29		1.6	62	2.74		4.68		
$A_{ m FB}(e^+e^-)$)	9.79 \cdot 10	-6	6.9	$92 \cdot 10^{-6}$	$2.83\cdot 10^{-5}$		$4.83 \cdot 10^{-1}$	5	
$\sigma_{\rm tot}(\mu^+\mu^-)$) [fb]	0.405		0.2	287	0.48		0.82		
$A_{ m FB}(\mu^+\mu^-$	-)	$1.98 \cdot 10$	-4	1.3	$397 \cdot 10^{-4}$	$5.69\cdot 10^{-4}$		$9.7\cdot10^{-4}$		
$\sigma_{ m tot}(au^+ au^-)$) [fb]	0.374		0.2	264	0.443		0.756		
$A_{\rm FB}(au^+ au^-$)	$2.17 \cdot 10^{-4}$		1.5	$53 \cdot 10^{-4}$	$6.24\cdot 10^{-4}$		0.00106		
$\sigma_{ m tot}(car{c})$ [fb)]	0.088		0.0)62	0.102		0.175		
$A_{ m FB}(car{c})$		0.000813	3	5.7	$74 \cdot 10^{-4}$	0.00238		0.00405		
$\sigma_{ m tot}(bar{b})$ [fb)]	0.151		0.1	107	0.171		0.29		
$A_{ m FB}(bar{b})$		$4.86 \cdot 10$	-4	3.4	$44 \cdot 10^{-4}$	0.00142		0.00243		
					$e^+e^- \rightarrow W^+W$	·				
0		$\sqrt{s} = 16$	$61~{ m GeV}$		$\sqrt{s} = 24$	$40 { m GeV}$		$\sqrt{s} = 36$	$65~{ m GeV}$	
\cup_i	$\delta_{ m exp}$	(FCC-ee)	δ_{exp} (CEP	C)	$\delta_{\rm exp}$ (FCC-ee)	δ_{exp} (CEPC)	$\delta_{ ext{exp}}$	(FCC-ee)	δ_{exp} (CEP)	
σ_{WW}	1.3	$6 \cdot 10^{-4}$	$2.48 \cdot 10^{-1}$	-4	$1.22\cdot 10^{-4}$	$8.63 \cdot 10^{-5}$	2.8	$81 \cdot 10^{-4}$	$4.87 \cdot 10^{-4}$	
$\mathrm{BR}_{W \to \ell_i \nu_i}$	$_{\nu_i} \left \begin{array}{c} 2.72 \cdot 10^{-4} \\ 4.95 \cdot 10^{-4} \end{array} \right $			0^{-4} 2.44 · 10^{-4} 1.73 · 10^{-4} 5.63 · 10^{-4}					$9.75 \cdot 10^{-4}$	

Light fermion production

Jaco ter Hoeve - 3rd ECFA workshop - 09/10/24