Freya Blekman (DESY+UHH), Florencia Canelli (UZH), Alexandre De Moor (VUB), Kunal Gautam (VUB+UZH), Armin Ilg (UZH), Anna Macchiolo (UZH), Eduardo Ploerer (VUB+UZH) reference: arXiv:2406.08590 (under EPJC review)

based Newson Newsork

- Identification of hadronic final states is an essential to collider experiments
- Future lepton collider such as FCC-ee offer much cleaner environment than hadronic collisions (Initial state kinematics known, no PDFs, no QCD ISR, ...)
- Distinguishing features:
 - Differing colour factors for q vs g
 - Displaced SVs for b/c's
 - Kaon excess for s
 - Jet charge for up/down

 $C_A/C_F =$

$$Q_{\kappa} = \frac{1}{p_{T,jet}^{\kappa}} \Sigma_j q_j (p_T^j)$$

- Pythia8.303 for event generation
- Assuming FCC-ee style scenario on Z resonance (6 10e12 decays expected) 125 ab-1
- Delphes + IDEA detector
- FastJet-3.3.4 exclusive (N=2) e+e- kT algorithm
- Physics process:
 - ∘ Z->qqbar
 - \circ also use Z(->vv)H(->qqbar) for cross check/comparison to H performance
- Using 'MC truth' Z->qqbar quark flavour
 - Allows comparison to other taggers
 - Paper also discusses pros/cons ghost MC matching)

DeepJetTransformer is:

- Transformer-based architecture achieving state-of-the-art performance using an encoder-decoder architecture (=it's fast to train!)
 - Only 2 hours of training to converge after approximately
 50 epochs on an NVIDIA Tesla V100s GPU
- Self-attention allows dynamic assignment of weights to individual elements within the jet capturing intricate dependencies across the entirety of the jet structure (=it's efficient)
- More lightweight/still performant, 1M trainable weights, only 65k per encoder layer

Trained network with 10^6 Z ->qqbar jets (80%/20% train/validation), evenly split into b, c, s, u, d

Implemented in Pytorch (v1.10.1)

- 70 epochs w/ batch size of 4000 trained in ~2 hours
- No obvious overfitting/overtraining
- Categorical cross entropy as loss function

$$L(\mathbf{y}, \mathbf{p}) = -\Sigma_i^C y_i log(p_i)$$

 Using low-level information (particle flow) four vectors, track charges, PID flags) as is nowadays the norm for ML at LHC

- NN can make vector sums, etc, and decide which are good discriminators internally
- plus still includes secondary vertex information
- reconstructed with LCFIPlus (implemented in FCCSW)
- Includes VOs and SVs

Thomas anomas m.,... = 497.681 ± 0.001 Me FCC-ee Simulation (Delphes e*e'→ Z → jj, √s=91.2 GeV 0.9

400

Formanes b

- Already known that LHC tools are excellent at b and c identification
- Great impact parameter resolution from IDEA helps
- For LHC taggers, VOs are traditionally rejected
 - reason: no interest in lighter quarks typically
 - but we do see they help a little bit for b/c too!

2

Etomones Stange

 Strange tagging relevant for H->ssbar also interesting for FCNC, BSM searches and the rest of SM precision program

Clear separation of s jets

- main background: u, d
- separation from b,c (relatively) straightforward
- We focus on the Z resonance and are interested in exploring physics opportunities there
- Also likely Z runs will be first runs at any future e+e- machine, so will be the benchmark eventually

Forman and the second of the s

- Important to note that there also is separation power between up and down!
- Previous colliders full separation of each quark not available o physics potential/opportunity?
- gluon separation not really considered as we work on Z pole • with exclusive eekT, so gluons included in jet

- As expected (and confirmed by many other tagger studies): • Excellent performance: discrimination of b jets wrt light jets w/ 90%+ at bkg eff 0.1% gluon splitting to bbbar will be interesting challenge for H • How excellent is excellent enough?
- start genuine link to detector performance (previous talk) really great!

- For s-tagging, up and down jets
- discrimination
- hadron
 - efficiencies

- present by far most challenging
- background
- PID is central to this type of
- Charm and gluon jets present second
 - most challenging, likely due to
- Charm hadron decay to strange
- g->ss gluon splitting discrimination
 - becomes important at high

- most difficult challenge to disentangle
- still some separation: up jet vs down jet discrimination with sig eff ~15% and bkg eff 10%

What detector effects are important?

Variable	Class	Jet-level	Charged	Neutral	SV	\mathbf{V}^{0}
	$b \mathrm{vs} c$	2.4%	62.4%	2.2%	13.9%	0.1%
$\epsilon_{bkg} = 10\%$	c vs s	1.2%	65.7%	2.9%	29.6%	0.2%
	$s \mathrm{vs} ud$	7.6%	59.4%	21.8%	5.0%	16.4%
	$b \mathrm{vs} c$	6.6%	97.0%	8.0%	89.9%	0.6%
$\epsilon_{bkg} = 0.1\%$	c vs s	9.3%	96.1%	11.0%	77.9%	0.2%
	$s { m vs} ud$	35.9%	91.0%	57.3%	7.4%	43.8%

• Shuffle entire group of variables (e.g. Neutral RP variables) amongst different jets to estimate importance Consider % change in signal efficiency at fixed background efficiency of 10% for s vs ud, c vs s, b vs c

Variable		$\ln(E_{\rm ch.})$	isPhoton	K^{\pm} ID	$m^{ m SV}$	p^{V^0}	z_0	D_0/σ_{D_0}
$\epsilon_{bkg} = 10\%$	b vs c	3.5%	0.3%	0.2%	3.0%	0.1%	7.8%	11.6%
	c vs s	23.8%	0.7%	0.5%	0.3%	0.2%	20.9%	39.1%
	$s \mathrm{vs} ud$	12.8%	16.6%	38.8%	0.0%	9.2%	23.3%	26.7%
$\epsilon_{bkg} = 0.1\%$	b vs c	13.8%	1.3%	0.9%	67.2%	0.8%	34.1%	45.0%
	c vs s	57.6%	0.9%	4.8%	7.0%	0.3%	56.2%	79.5%
	$s \mathrm{vs} ud$	35.0%	28.0%	59.0%	0.4%	34.7%	60.5%	80.1%
$\epsilon_{bkg} = 10\%$ $\epsilon_{bkg} = 0.1\%$	 b vs c c vs s s vs ud b vs c c vs s s vs ud 	3.5% 23.8% 12.8% 13.8% 57.6% 35.0%	$\begin{array}{r} 0.3\% \\ 0.7\% \\ 16.6\% \\ 1.3\% \\ 0.9\% \\ 28.0\% \end{array}$	0.2% 0.5% 38.8% 0.9% 4.8% 59.0%	3.0% 0.3% 0.0% 67.2% 7.0% 0.4%	0.1% 0.2% 9.2% 0.8% 0.3% 34.7%	7.8% $20.9%$ $23.3%$ $34.1%$ $56.2%$ $60.5%$	$ \begin{array}{r} 11.6\% \\ 39.1\% \\ 26.7\% \\ 45.0\% \\ 79.5\% \\ 80.1\% \\ \end{array} $

- Photon identificationon (pi0s) important for s vs ud
- charged Kaon identification important for s vs ud
- V0 measurements affect s vs ud
- impact parameter overall important (reason for impact s vs) ud related to b vs s vs ud separation)

S-controp Postelo LI

0%	20%	40%	60%	80%	90%	95%	100%
0%	10%	10%	10%	10%	10%	10%	0%

 s-tagging performance versus udjets is extremely sensitive to K⁺⁻ ID

 Further gains are possible through inclusion of V⁰ variables

and by momentain

• Very low momentum strange jets have low particle multiplicities overall, where a single reconstructed V⁰ becomes a distinguishing feature and can increase efficiency also impactful: lower K⁺⁻ multiplicities lead to reduced tagging efficiency

What is possible at the Z peak?

note: no background included but was also reducible to percent level at LEP...

low mass tails for heavy flavour more pronounced as neutrinos in b/c jets not measured

matter what

		Mistag Rate [%]	Efficiency [%]	N_{sig}
WP1	s vs bc	10	98.93 ± 0.03	$7.35 imes10^{11}$
	$s \mathrm{vs} ud$	10	40.03 ± 0.04	$1.45 imes 10^{11}$
WP2	$s \mathrm{vs} bc$	1	54.18 ± 0.04	$2.38 imes10^{11}$
	$s \mathrm{vs} ud$	10	39.28 ± 0.06	$5.10 imes10^{10}$
WP3	s vs bc	1	54.18 ± 0.04	$2.38 imes10^{11}$
	$s \mathrm{vs} ud$	1	10.05 ± 0.11	$1.12 imes 10^{10}$
WP4	s vs bc	0.1	17.96 ± 0.06	$3.23 imes10^{10}$
	$s \mathrm{vs} ud$	0.1	1.98 ± 0.33	$3.56 imes 10^8$

Set some typical working points definitely enough events available no

 N_{bkg} $1.35 imes 10^{12}$ 3.25×10^{10} 2.06×10^{11} 5.57×10^{9} 2.06×10^{11} 4.77×10^{8} 6.98×10^{9} 3.38×10^6

Expected: b,c tagging extremely efficient at separation u,d,s

Only b and c anti-tagging very strongly suppresses those flavours

Jet formence at the Z peak

After b,c tagging (1% mistag) and s vs u,d tagging (loose wp, 10% mistag)

possibility to have very pure peak for physics studies

and s vs u,d tagging (1% mistag)

possibility to have very pure peak for physics studies

After b,c tagging (1% mistag)

Q: How much luminosity is needed to reach canonical significance $Z \rightarrow ssbar$

A: Should be easy: 5σ significance can be reached with a luminosity of 60 nb-1, equivalent to **less than a second** of the FCC-ee run at the Z resonance!

• s tagging definitely possible – and maybe even u,d separation? • Physics potential at Z peak beyond partial BRs? • DeepJetTransformer is fast to train Good for detector performance studies Comparable performance to other tools • Still some room for improvement (simplified PID, DELPHES does not have fakes, older IDEA scenario) • to go beyond b,c tagging: V0s matter, K+-/pi+- separation matters • reference: arXiv:2406.08590 also follow full open science policies, so code already available, all performance curves will be to at publication https://github.com/Edler1/DeepJetFCC/tree/master/docs

Special thanks to F. Gaede, L. Gouskos, M. Selvaggi for their pre-submission feedback reference: arXiv:2406.08590 (under EPJC review, new version very soon)

University of Zurich^{UZH}