The SHERPA 3 event generator 3rd ECFA workshop on e^+e^- Higgs, Top & ElectroWeak Factories, Paris, 10 October 2024

Daniel Reichelt

Funded by the European Union

The SHERPA framework

- ME generators for hard process
 - Comix, Amegic
 - + interfaces to loop libraries
 (OpenLoops, Recola, MCFM)
- Parton Showers
 - CSShower, Dire
- Underlying Event/MPI model
- Hadronisation
 - Cluster Fragmentation, + interface to Pythia
- QED radiation via YFS resummation

SHERPA 3 — multi-purpose event generation

- (Selected) Features:
 - Fixed Order
 - NLO QCD+EW,
 - **NNLO** QCD (selected \bullet processes)
 - Automated NLO (QCD) matching in S-MC@NLO
 - UN2LOPS matching to NNLO QCD
 - multi-jet merging in CKKW-L
 - Approximate **EW**corrections in matching & merging (EWvirt/EWSud)
 - **Photoproduction @ NLO** QCD + PS

radiation

- radiation from final state leptons
- initial state radiation at
- extended by $\gamma \to ff$ splittings
- Polarised
 - beams
 - intermediate particles
- MPI/MinBias and fragmentation modelling, including color reconnection

bold - added/significantly updated in Sherpa 3 development, some back-ported to Sherpa 2

YFS resummation of photon

 e^+e^- colliders

- **External Interfaces:**
 - HepMC 3
 - UFO 2 (including form factors)
 - RIVET 3/4
 - LHAPDF + several explicit pdf interfaces including various photon pdfs
 - OpenLoops/ Recola/MCFM/ MadLoops/ BlackHat
 - Pythia 8 (string fragmentation)

NLO EW corrections and tetujo

- current theory successes at LHC, traditional focus of SHERPA

- via YFS module [Krauss, Schönherr '08]
- avaliait multi shoton emissions

Photoproduction

- New: Photoproduction protection protection
- photon spectrum in effective photon approximation
- photon either directly takes part in hard process or is
 "resolved" into quarks/hadrons
- photon pdf (i.e. partons in the photon) limit precision

MC/Data

QCD at lepton colliders

 10^{-3}

 10^{-7}

10

MC/Data

- not only important as prc'
- understand jet/event (suk $\int_{10^{-1}}^{\infty} 10^{-1}$ e.g. in $H \rightarrow$ hadrons
- example strategy: [Knobbe, Kratiss, DR, Schumann '22]
 - tune Sherpa 3(α/β) to $\sqrt{s} \approx M_Z$
 - replica tunes to gau
 uncertainty of cluster
 fragmentation tune
 - analyse Higgs decays in $e^+e^- \rightarrow ZH$ at $\sqrt{s} = 240 \text{ GeV}$

Outlook: automated resummation

- accesible precise resummed calculations important
 - predictions for experiments
 - references for parton showers
- CAESAR formalism provides convenient framework event/jet shape-type observables [Banfi, Salam, Zanderighi '04]
- CAESAR implementation in Sherpa [Gerwick, Höche, Marzani, Schumann '15] [Baberuxki, Preuss, DR, Schumann '19]
 - several studies already for LEP/ LHC/RHIC/FCC-ee (future lepton collider)

Example: event shapes in $H \rightarrow gg$ and and $H \rightarrow q\bar{q}$ decays using E Evident adaming Eonution with Sherpa+CAESAR Gehrmann-de Ridder, Preuss, DR, Schumann [24] NLL to Diff.

Durham Three-Jet Resolution

								5		1.1		
IJЧ́Г		_					I	I			Ι	
\mathcal{V}	o o -	-	ъτ	т	\frown		т	1				-

Outlook: performance updates/

- MC event generation uses significant+increasing resources
- (HL-)LHC measurements in danger of being limited by MC statistics
- Explore reduction of CPU footprint for heaviest use cases, e.g. ATLAS default setup Z + 0.1.2j @ NLO + 3.4.5j @ LO
 - 1. LHAPDF improvement
 - Z + 0,1,2j@NLO + 3,4,5j@LO 2. (LC)-MC@NLO: reduce matching accuracy to leading colour, neglect spin correlations, i.e. S-MC@NLO → MC@NLO also useful to reduce negative event fractions [Danziger, Höche, Siegert 2110.15211]
- (LC)
 3. pilot run: minimal setup until PS point accepted, then rerun full setup
 - 4. (LC)-MC@NLO-CSS: defer MC@NLO emission until after unweighting
 - 5. use analytical loop library where available
- (LC) here: OPENLOOPS → MCFM via interface [Campbell, Höche, Preuss 2107.04472]
 - 6. pilot scale definition in pilot run that requires no clustering small weight spread by correction to correct scale
- all new developments part of Sherpa 2.2.13 or later

run time [CPU h]

proportion of total run time

- - NB: several technical improvements:

set up beams for LHC run 2 **BEAMS:** 2212 **BEAM_ENERGIES:** 6500

matrix-element calculation ME_GENERATORS: [Comix]

7-point variations SCALE_VARIATIONS: 4.0*

pp -> Z[ee] **PROCESSES:** - 93 93 -> 11 -11: **Order: {QCD:** 0, **EW:** 2}

SELECTORS:

– [Mass, 11, –11, 66, E_CMS]

- Input based on standardised YAML format
- Improved input error handling with settings report and flagging of unused settings
- Build system based on CMake
- New <u>manual</u> based on sphinx
- many topics not covered (in detail) here, see forthcoming publication

SHERPA 3 available <u>https://sherpa-team.gitlab.io/</u>

- \$ cd sherpa-<VERSION>/ \$ cmake -S . -B <builddir> \$ cmake --build <builddir>
- \$ cmake --install <builddir>

EW Sudakov logarithms

- Corrections due to soft/coll. EW gauge bosons coupled to external legs in high-energy limit (e.g. $p_T \gtrsim 1 \text{ TeV} \rightarrow \mathcal{O}(10\%)$ corrections)
- Corrections worked out in full generality [Denner, Pozzorini (2001) hep-ph/0010201]
- partial implementation in ALPGEN [Chiesa et al 1305.6837]
- In SHERPA fully automated as universal ME-level corrections applicable in all setups for any process, including MEPS@NLO predictions

[EB, Napoletano 2006.14635], [EB et al. 2111.13453]

- EW_{virt} for \mathcal{S} events, EW_{sud} for \mathcal{H} and LO events
- YFS resummation for QED FSR
- Example: application to MEPS@NLO diboson production $pp \rightarrow 0.1j@NLO + 2.3j@LO$ [EB et al. 2111.13453]
- similar implementations in development for MadGraph5_aMC@NLO and OpenLoops [Pagani, Vitos, Zaro 2309.00452], [Recent talks by OpenLoops]

14