Status of studies in the GLOBal interpretation group

Jorge de Blas (U. Granada), Alexander Grohsjean (DESY), Sven Heinemeyer (IFT Madrid), Junping Tian (U. Tokyo), Marcel Vos (IFIC- CSIC/UV, Valencia)

ECFA Higgs/top/EW factory studies, Paris, October 2024

ECFA Higgs/top/EW factory studies '24

Global analysis

Snowmass studies: https://arxiv.org/pdf/2209.08078, https://arxiv.org/pdf/2209.11267

ECFA Higgs/top/EW factory studies '24

Global analysis of the Higgs sector

Global analysis is a moving target; this fit incluces Higgs/EW projections (and some top).

State-of-the-art machinery has moved on:

Higgs/EW/top, Ellis et al.

NLO predictions, SMEFiT

RGE evolution and mixing

New connections among Higgs/EW/top sectors

Physics briefing book of previous streategy update: https://arxiv.org/pdf/1910.11775

Global?

ZH production offers sensitivity to:

- Higgs self-coupling at NLO (McCullough, arXiv:1312.3322)
- other operators at LO (di Via et al., arXiv:1711.03978)
- many other operators at NLO (arXiv:2406.03557, arXiv:2409.11466)

Physics briefing book of previous streategy update: https://arxiv.org/pdf/1910.11775

Scope

Wednesday: SMEFT EW, top & Higgs

Thursday: non-standard Higgs, Higgs selfcoupling from ZH measurements, highenergy operation

	Searching for heavy neutr Junping Tian	Tracking for the modified	Beamstrahlung backgrou Daniel Jeans	First WWdiff results from <i>C</i>
	EFT Interactions of Dark Giulio Marino	Comprehensive Particle Identification Tool Uli Einhaus	The top quark EW couplings in the SMEFT Marcel vos	Performance of a Pixel 1 Projection Chamber Peter Kluit
15:00	Hints for New Higgs Boso Sumit Banik	Jet flavor tagging and part Dr Taikan Su	Precise measurements c Ø Xunwu Zuo	A straw tracker for FCC-ee Liang Guan
	SUSY Parameter determin Gudrid Moor	ML-based Particle Flow fo Gregor Krzm	Mapping the SMEFT at H Ø Jaco ter Hoeve	Advancing Particle Iden @
	Dark Matter searches in m JAYITA LAHIRI	Transformer-based Jet F 🥝 Sara Aumiller	Determination of large sys Michael Peskin	
16:00	The ARC compact RICH d Serena Pezz	Machine Learning Techn 🥝 Pantelis Kon		
11:00	Exploring the nature of he Jan Hajer	Status of the Sherpa 3.0 e Daniel Reich	Non-universal probes of H Ben Stefanek	R&D on Noble Liquid Cal Fares DJAMA
	Heavy Neutral Leptons Se Sofia Giappi	Investigating New Physics Francesco P	ZH angular measuremen Ø Andrea Sidd	Design and performance Michaela Ml
	Probing the nature of HN Krzysztof Me	WG2: Technical Benchmar Alan Price	Prospects for New Discov Dr Pier Paol	Estimation of the fluxes i Vincent BO
12:00	Searching for Heavy Neutr Dr Nicolò Valle	Bunch Structure Studies at C3 Lindsey Gray	Projections for Higgs self Bryan Bliewert	Challenges ahead of the I Adrian Irles
	Right-Handed Majorana N Jurina Nakaji	Luminosity Spectra (on zo Jürgen Reut	Sensitivity to detecting Ne Dr Johannes	Ruggero Turra
	Leptophilic Z' bosons at t José Zurita	Beam-Induced Backgroun Dimitris Ntou	Physics case for an e^+e^ Georg Weigl	Particle Flow Algorithm for Long Crystal Bar ECAL Yang Zhang

Addressing questions beyond previous work

Improving underlying projections: **any fit is as good as its inputs** Leonard Reichenbach (WW), Xunwu Zuo (ttbar), Andrea Maria (ZH), Bryan Bliewert (HH)

Advancing SMEFT: Global Higgs/EW/top fits at NLO and including RGE evolution Pier Paolo Giardino, Ben Stefanek, Michael Peskin, Jaco ter Hoeve, M.V.

Higgs self coupling: the holy grail of HEP*

Johannes Braathen and Georg Weiglein on BSM effects, Bliewert, Giardino, M.V. (see also focus topic report by Junping Tian) -

*Georg Weiglein

ECFA Higgs/top/EW factory studies '24

n,

SMEFT fits

[Of determining the Higgs couplings]

The traditional κ parametrization is not up to the task. We suggest that a method based on SMEFT is more physical, complete, and model-independent. Michael Peskin's talk

Previous strategy update: Higgs coupling projections in the kappa and EFT framework. The next strategy update: EFT only, using fits with linear D6 dependence as baseline. (my proposal, up for discussion)

TeraZ potential vs. Top measurements

Composite Higgs scenarios where 3rd generation is special: t_R = composite

EW precision at the Z-pole offers stringent bounds [Allwicher, Cornella, Isidori, Ben Stefanek, 2311.00020]

The 4-top operator, tested in tttt production, also has two-loop impact on EWPO [Stefanek, 2407.09593]

SMEFiT results (Jaco ter Hoeve)

Higgs/EW/top fits on projections

Results beyond JHEP 09 (2024) 091

Linear-only bounds: quadratic is similar, except for qqtt operators

RGE evolution: small changes, except tttt operators

Todo: eett operators, different collider projects

[1804.05033] Aebischer, Kumar, Straub

ECFA Higgs/top/EW factory studies '24

Fit to the top sector

IFIT/C collaboration fits top and bottom operators

Excellent bounds on operators that affect EW interactions of the top quark

TO DO: finalize fits, compare to SMEFiT, write paper

HL-LHC on eett	operators:	e+e- colliders on eett operators:	
Quadratic global:	O(1)	Linear fit. circular machine:	O(1 TeV ⁻²)
Linear individual:	O(1-10 TeV ⁻²)	Linear fit, linear machine@1-3 TeV	O(10 ⁻² TeV ⁻²)
Linear global:	O(100 TeV ⁻²)		

All e+e- top data is good, high energy data are excellent

ECFA Higgs/top/EW factory studies '24

The Higgs self-coupling: HEP's next target

Key parameter of the SM, the experimental gateway to EW symmetry breaking, and a favourite spot to hide that elusive BSM physics.

 λ_{hhh} can deviate significantly from SM prediction (by up to a factor ~10), for otherwise theoretically and experimentally allowed points, due to mass-splitting effects in radiative corrections involving BSM scalars

Johannes Braathen, discussing Inert Doublet Models and Z2SSM

11

Towards a truly global analysis of Higgs self-coupling from ZH

Indirect model-dependent probe of the Higgs self-coupling

Matthew McCullough Phys. Rev. D 90, 015001 – Published 1 July 2014; Erratum Phys. Rev. D 92, 039903 (2015)

Pier Paolo Giardino: calculation of loop effects of top operators on ZH cross section, arXiv:2406.03557, arXiv:2409.11466

$\sigma_{\rm EFT,LO}^{(\sqrt{s}=240 \text{ GeV})}(\text{fb}) = \sigma_{\rm SM,LO}^{(\sqrt{s}=240 \text{ GeV})}$			
$+ 25.3 C_{\phi B} + 4.83 C_{\phi D} + 29.0 C_{\phi \Box} + 133 C_{\phi W}$			
$+ 645C_{\text{max}} - 177C_{\text{max}} [1, 1] + 220C^{+}[1, 1]$		$\sqrt{s} = 2$	$40 {\rm GeV}$
$+ 04.50_{\phi WB} - 1110_{\phi e}[1,1] + 2200_{\phi l}[1,1],$		Δ_i/Λ^2	$\bar{\Delta}_i/\Lambda^2$
$\frac{\sigma_{\rm NLO}}{\sigma_{\rm SM,NLO}} = 1 + \sum_{i} \frac{C_i(\mu)}{\Lambda^2} \left\{ \Delta_i + \bar{\Delta}_i \log \frac{\mu^2}{s} \right\} $	C_{ϕ}	$-7.22 \cdot 10^{-3}$	0
	$C_{uW}[3,3]$	$-1.63 \cdot 10^{-3}$	$4.01\cdot10^{\text{-}3}$
$\sigma_{\rm SM,NLO} \qquad \frac{2}{i} \Lambda^2 (\qquad \qquad s)$	NLO $\sum_{i} \Lambda^{2}$ (S) $C_{uB}[3,3] = 0.15 \cdot 10^{-3}$ -	$-2.22 \cdot 10^{-3}$	
	$C_u\phi[3,3]$	$0.32 \cdot 10^{-3}$	0
Impact of colf coupling Ch = 0.01	$C^{(1)}_{\phi q}[3,3]$	$-1.34 \cdot 10^{-3}$	$-4.10 \cdot 10^{-3}$
impact of sen-coupling Cq ~ 0.01	$C^{(3)}_{\phi q}[3,3]$	$0.51\cdot10^{-3}$	$4.12 \cdot 10^{-3}$
	$C_{\phi u}[3,3]$	$-0.54 \cdot 10^{-3}$	$3.49 \cdot 10^{-3}$
Impact of top operators is similar; need to be	$C_{eu}[1, 1, 3, 3]$	$0.01\cdot10^{-3}$	$-1.39 \cdot 10^{-2}$
constrained with auxiliary data	$C_{lu}[1, 1, 3, 3]$	$-0.02 \cdot 10^{-3}$	$1.73 \cdot 10^{-2}$
	$C_{lq}^{(1)}[1,1,3,3]$	$-0.37 \cdot 10^{-2}$	$-1.80 \cdot 10^{-2}$
	$C_{lq}^{(3)}[1,1,3,3]$	$-0.37 \cdot 10^{-2}$	$1.29 \cdot 10^{-2}$

 $C_{qe}[3,3,1,1] = 0.30 \cdot 10^{-2} = 1.45 \cdot 10^{-2}$

A preliminary answer

Junping Tian, this WORKshop: slight degradation, after FCCee top data are added

(iv) first look at the global fit with NLO eett for $\Delta\lambda_{HHH}$

[ongoing work by: Yong Du, Jiayin Gu, JT]

- based on a fitting program for last ESU: 23 (Higgs + WW + EWPO) + 5 (eett) operators
- take directly covariance matrix as eett bounds (from Victor Miralles)
- reproduced (almost) the NLO calculation about eett in ZH

extra uncertainty induced by eett on σ_{ZH}

 $\delta\sigma_{ZH}\sim0.3\%$ (1.5%) for 240 (365) GeV

a test fit for 5000 fb⁻¹ (240) + 1500 fb⁻¹ (365)

 $\delta\lambda_{HHH}$ mildly degraded from 57% to 77%

[warning: this is very preliminary, many things to be done, e.g. include NLO eett in other observables as well.] 16

If this is confirmed, the 365 GeV run is required for Higgs self-coupling determination

The Higgs self-coupling from di-Higgs production: addressing the experimental challenges

LHC experiments are deploying a huge effort to observe pair production; more aggressive HL-LHC projections are appearing (ESPPU '19: 50% precision)

Bottlenecks in the ZHH a	nalysis	Universität Hamburg DER FORSCHUNG DER BLANE DER BLANE	
jet pairing and jet misclustering improve di-jet mass resolution	ng: "perfect" jet clustering $ ightarrow 40$	% improvement	
removal of γγ overlay: 15% in important to tackle initial state radiation	nprovement expected n (ISR)	are relative	
▶ flavor tagging: 11% improvem important as $H \rightarrow b\overline{b}$ is the dominant H	ent expected from 5% eff. increa	ase with newer LCFIPlus	
> adding $Z \rightarrow \tau \tau$ channel: 8% in include a yet unaccounted decay channel	nprovement expected nel		
more modern ML architecture improvement expected when transition	es for signal/background selections for BDTs to (e.g.) transformer-based r	DN nodels etc.	
separation of ZHH diagrams w would directly improve the sensitivity or	vith/without the self-coupling λ (lower sensitivity factor)	Expected improvements from DESY-Thesis-16-027	
>	< 20 %!!!		
Hij	ggs self-coupling measurement at ILD via the ZHH Process at m	Iltiple COM energies 3rd ECFA Workshop on e+e- Higgs/EW/T	op Factories 2024/10/10 Paris Bryan Bliewert

FCChh can eventually measure the self-coupling to 5%

ECFA Higgs/top/EW factory studies '24

Inputs for report expected from :

Jorge de Blas, Junping Tian, and others, Higgs boson self-coupling

SMEFiT collaboration, SMEFT fit Higgs/EW/top (+recent paper)

IFIT/C collaboration, SMEFT analysis of top sector (+future paper)

KIT team, Vts from $e+e- \rightarrow$ ttbar data (+ FCC notes)

CERN/Iran on top properties from threshold scan (+future paper)

Progress beyond 2019 physics briefing book in all these areas

Comparison of projections

Conclusion

People are suprisingly passionate about top loops!

Thanks to all speakers and attendants for a very lively "global interpretation" session

