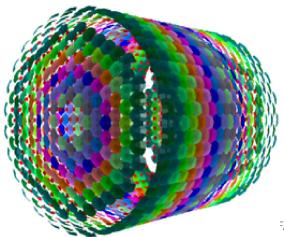
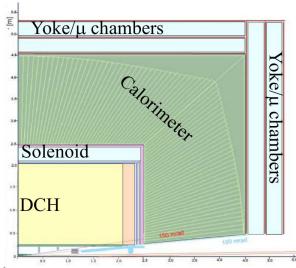
Detectors for HET Factories: Calorimeters and PID Systems

Nicolas Morange, IJCLab

ECFA Workshop on e⁺e⁻ HET Factories, 09/10/2024

Laboratoire de Physique des 2 Infinis


Calorimeters and PID Systems: Introduction


Calorimeters: central elements of Detector Concepts for HET factories

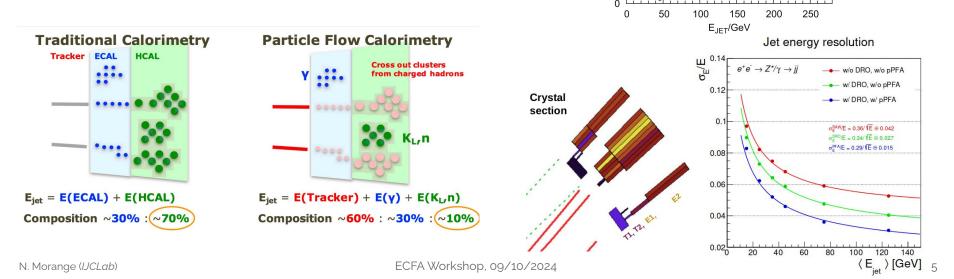
- Very active R&D programs ongoing to explore different technologies
- And cope with the challenges of HET Factories physics requirements

High-performance PID crucial for many measurements in HET physics program

- Use PID capabilities of detectors
- Build dedicated PID systems

Calorimeters

Calorimeters for HET factories


An extensive set of requirements

- Energy resolution: "only" for photons and neutral hadrons
 - But: ideally photons as low as 200 300 MeV
- Dynamic range: 200 MeV 180 GeV
 - vs LHC: 6 TeV jets !
- Granularity: PID, disentangle showers for PFlow
 - But: how granular exactly ?
- Hermeticity, uniformity, calibrability, stability
 - Low systematics for precision measurements
 - Complex system-level engineering questions
- No need to be particularly fast
 - But: can precise timing help in reconstructing showers more accurately?

A quest for ultimate jet energy resolution

PFlow PFlow PFlow

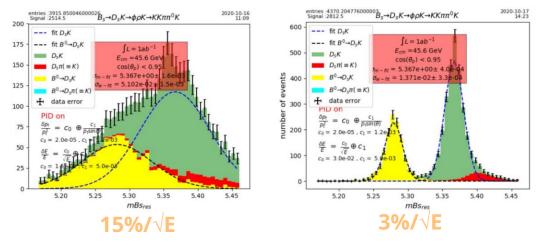
- Basic principles well known
- What granularity do we really need at HET Factories ?
- New calos concepts bring new ideas (crystals DR study)

- Total

3

:ms₉₀/E_{jet} [%]

---- Confusion


Other

---- Resolution ---- Leakage

EW factories unique challenges

FCC-ee: O(10¹¹) B and T at 45 GeV !!!

- Some physics channels require very high EM resolution
- τ physics: reconstructing the decays
 - Means π^0 reconstruction and ID
 - Count close-by π⁰
 - Granularity
- BSM, e.g ALP searches
 - Photon resolution, photon pointing

$\begin{array}{c} Recon \to \\ Gen \downarrow \end{array}$	$\pi^{\pm}\nu$	$\pi^{\pm} \pi^0 \nu$	$\pi^{\pm} 2\pi^0 \nu$	$\pi^{\pm} 3\pi^{0} \nu$	$\pi^{\pm} 4\pi^{0} \nu$					
$\pi^{\pm} \nu$	0.9560	0.0425	0.0010	0.0003	0.0002					
$\pi^{\pm} \pi^0 \nu$	0.0374	0.9020	0.0586	0.0016	0.0002					
$\pi^{\pm} 2\pi^{0} \nu$	0.0090	0.1277	0.7802	0.0808	0.0022					
$\pi^{\pm} 3\pi^{0} \nu$	0.0036	0.0372	0.2679	0.5972	0.0910					
Table: Each row shows the fraction of e.g. $ au o \pi^{\pm} u$ decays classified										
1 6.1										

as each of the considered channels

HET Factories calorimeters landscape: DRD6

Detector R&D (DRD) collaborations implement the ECFA Detector R&D Roadmap

- DRD6 on Calorimetry with 4 work packages and several transversal activities (TB, Materials, SW, ...)
 - First Collaboration meeting: April 9-11 at CERN
- Most DRD6 calo projects aim HET factories
 - WORKING Presenting only **selected examples GROUPS:** to highlight main R&D directions

Mission:

Bring a diverse set of calorimeter technologies to a level of maturity such that they can be considered for a technology selection of future experiments

MANAGEMENT:

WORK

PACKAGES:

aker and Publication

Bureau

WORK PACKAGE 1

Sandwich calorimeters with

fully embedded Electronics

Maturity demonstrated with **full-scale prototypes**

ECFA Workshop, 09/10/2024

Collaboration Board

Spokesperson

Technical Board

and Technological

Transfer

WORK PACKAGE 3

Optical calorimeters

Testbeam Facilities

WORK PACKAGE 2

Liquified Noble Gas

calorimeters

Photodetectors

Detector Physics

Simulation, Algorithm

and Software Tools

Resource Board

WORK PACKAGE 4

Electronics and DAQ

DRD6 Workpackages

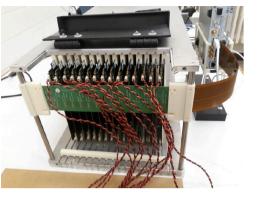
WP1: Sandwich calos with fully embedded electronics

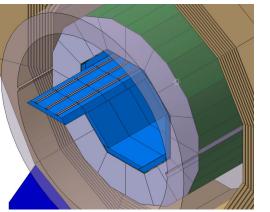
- Focus on hermeticity and compactness of designs
- Emphasis on system-level designs and challenges
- Adapting linear colliders designs to circular collider challenges
- Ultra-compact calos for lumi measurements

WP2: Liquified noble gas calorimeters

- Reviving R&D on noble liquid calos
- Scaling concepts to O(millions) readout cells

WP3: Optical calorimeters

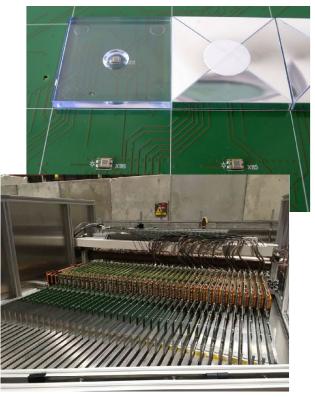

- Many calorimeter concepts based on scintillation / Cerenkov light
- Strong link with R&D on crystals / scintillating materials


WP1: SiW Ecal

Baseline Ecal in ILD, CLD

- 30 layers, 2.8 mm tungsten absorber, 24 X_o
- 0.5 mm thick silicon sensors with $5 \times 5 \text{ mm}^2$ granularity
- $O(10^8)$ cells
 - Super high granularity for PFlow reconstruction
 - Tight integration: compact and hermetic
- EM resolution ~17%/ \sqrt{E}
- Challenges:
 - Adaptation to FCC-ee (cooling, power)
 - Granularity re-optimisation?
 - Study addition of timing
 - System aspects: design engineering module

WP1: SiPM-on-Tile AHCAL

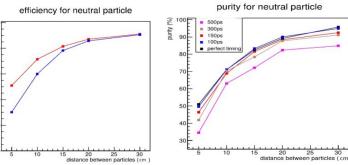

Baseline HCal in ILD, CLD. Same technology as used in CMS HGCal.

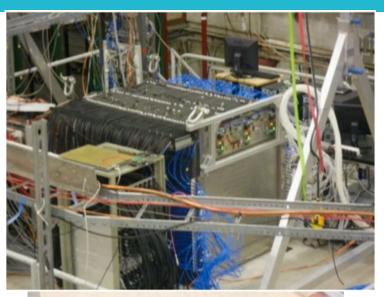
SiPM-on-tile / steel HCAL

- Builds on CALICE AHCAL prototype
- Wrapped scintillator tiles directly read by SiPM

Main R&D topics

- Adaptation of detector concept to circular colliders with continuous readout
 - Data rates, cooling
- Corresponding hardware developments: ASICs, readout, thermal and mechanical designs, scintillator geometry


WP1: T-SDHCAL

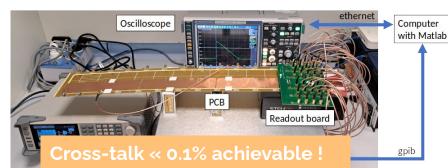

Tanguy Pasquier's Poster

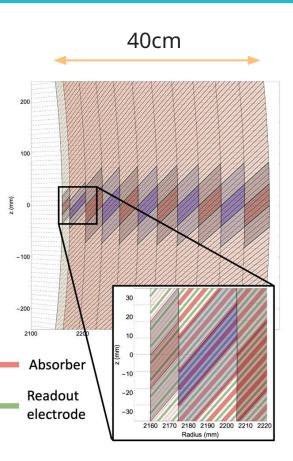
- A RPC-based semi-digital HCAL with timing capability → MRPC
 - Builds on CALICE SDHCAL technological prototype, but reaching 100 ps resolution
 - Use of more eco-friendly gases (HFO)

• Main R&D directions

- Simulation studies extending to time information
- Study and development of cooling and cassette concepts
- Fast timing electronics, DAQ system
- Aim to conclude initial R&D to propose a concept by 2026

WP2: ALLEGRO ECal

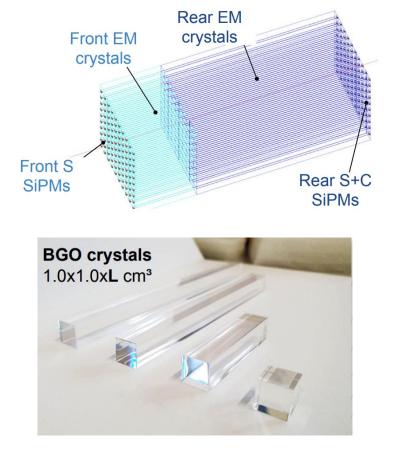

Ecal for ALLEGRO Detector Concept


High granularity (O(10⁶) cells) noble liquid (LAr/LKr) Ecal using straight readout electrodes

• Good compromise for granularity, resolution (5-8%/ \sqrt{E}), stability, uniformity

Main R&D topics

- Optimise design for performance based on simulations
- R&D on electrodes and absorbers
- Mechanical design
- Cold and warm frontend electronics
- Aim: testbeam module in 2028


WP3: MAXICC / CalVision

Ecal for IDEA detector concept

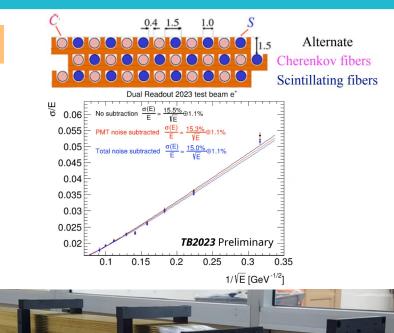
- Homogeneous EM calorimeter based on segmented crystals with dual-readout
 - High density scintillating crystals with good cherenkov yield
 - Dedicated optical filters and SiPMs to readout S and C from same active element
 - Promise $3\%/\sqrt{E}$ + DR capability
 - Synergies within Calvision, IDEA and CERN Crystal Clear collaborations

Main R&D Topics

- Identification of optimal crystals, optical filters and SiPM candidates
- Proof-of-concept with lab measurements and prototypes
- EM scale prototype for beam test

WP3: Dual Readout calorimeter

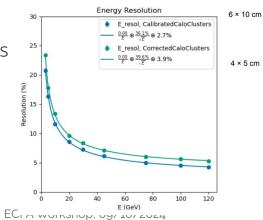
Ruggero Turra's Talk

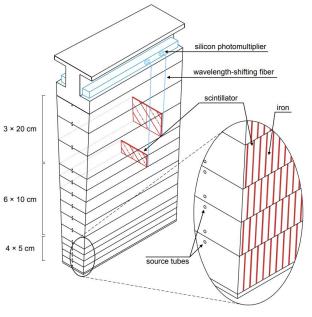

Main / Hcal calorimeter for IDEA detector concept

- Longitudinally unsegmented dual-readout sampling calorimeter
 - Scintillation and Cherenkov fibres inside an absorber groove
 - Reaches $30\%/\sqrt{E}$ for single hadrons \Rightarrow ultimate resolution for jets
 - O(130 M) fibers for O(15 M) channels

N. Morange (IJCLab)

- Develop scalable readout electronics: analog/digital SiPM ?
- Optimize metal matrix mechanics for large production
- Develop mechanical model of full system with services
- Testbeam with Hidra2 prototype

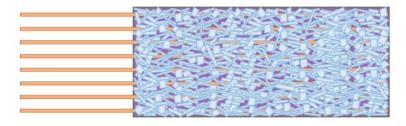

WP3: TileCal

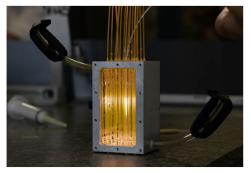

Used in ALLEGRO concept

- High-granularity version of ATLAS TileCal hadronic calorimeter
 - 5mm steel absorber plates alternating with 3mm Scint.: 8 - 9.5λ
 - SiPM readout through WLS
 - Cost-effective solution

Main R&D topics

- Exploration of scintillators
- Optimisation of WLS and SiPMs for readout efficiency
- Build testbeam module

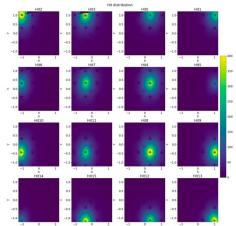




WP3: GRAINITA

A novel type of calorimeter ~ next-gen shashlik

- Use grains of inorganic scintillating crystal readout by wavelength shifting fibers
 - Light spatially confined by refraction/reflections



- Excellent expected EM resolution: $2-3\%/\sqrt{E}$

 - Using BGO or ZnWO₄ crystals 16-channel prototype tested with cosmics
 - First test beam of small proto at CERN

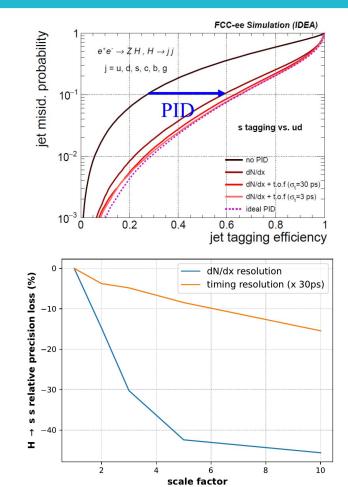
Main R&D topics

- R&D on crystal grains
- Aim for larger prototype to validate on testbeam

Confirmation of light confinement

PID Systems

Why PID?


A must-have to complete the full HET programme

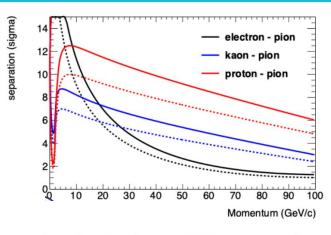
- Higgs physics
 - $H \rightarrow$ ss sensitivity driven by strange-tagging perf, depends a lot on PID performance
 - Flavour violating modes, e.g $H \rightarrow bs$
- SM parameters
 - Also depend on K identification / strange tagging
 - See <u>Uli Einhaus' talk</u>: V_{ts}, V_{bs}

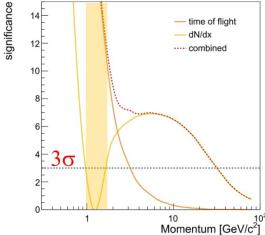
• B physics

$$\circ \quad B^{0}_{s} \to D^{\pm}_{s} K^{\mp}, B \to K^{*} v v, B_{s} \to \varphi v v, ..$$

Variable		$\ln(E_{\rm ch.})$	isPhoton	K^{\pm} ID	m^{SV}	p^{V^0}	z_0	D_0/σ_{D_0}
$\epsilon_{bkg} = 10\%$	b vs c	3.5%	0.3%	0.2%	3.0%	0.1%	7.8%	11.6%
	c vs s	23.8%	0.7%	0.5%	0.3%	0.2%	20.9%	39.1%
	s vs ud	12.8%	16.6%	38.8%	0.0%	9.2%	23.3%	26.7%
$\epsilon_{bkg}=0.1\%$	b vs c	13.8%	1.3%	0.9%	67.2%	0.8%	34.1%	45.0%
	c vs s	57.6%	0.9%	4.8%	7.0%	0.3%	56.2%	79.5%
	s vs ud	35.0%	28.0%	59.0%	0.4%	34.7%	60.5%	80.1%
		<u> </u>	eva Blekr	<u>nan's T</u>	alk			

ECFA Workshop, 09/10/2024

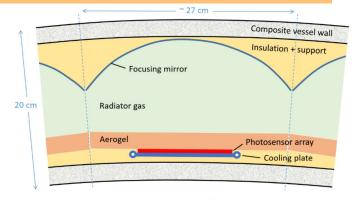

PID embedded in trackers

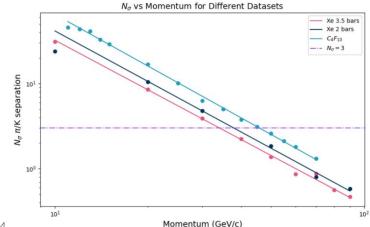

• Gaseous detectors

- dE/dx or cluster counting measurements
- Good progress shown in studies of <u>TPC</u>, <u>Straw</u> <u>Tracker</u>, <u>Drift chamber</u>
- Need dedicated electronics / signal processing

• Fast detectors for time-of-flight measurements

- Using e.g LGAD technologies
- few ps 10 ps resolution
- Used in "silicon wrapper" layers after gaseous tracker, in front of calorimeter
- Great complementarity between two measurements
 - o p/K/π separation over large momentum range




The ARC (Array of Rich Cells) concept

<u>Serena Pezzulo's Talk</u>

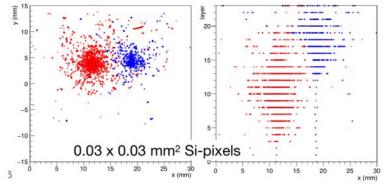
Dedicated RICH detector, developed for the CLD Detector Concept (Silicon main tracker)

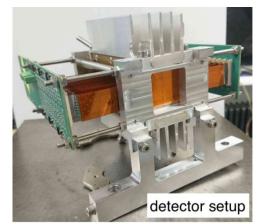
- Detector = array of independent RICH cells
 - 20cm depth between main tracker and Ecal
 - Cerenkov light from radiators focused by a mirror on a SiPM array
- New detector concept
 - R&D part of DRD4
 - Aim to build first prototype cell within 3 years
- Very promising expected PID performance
 - 3σ K/ π separation up to 45 GeV
 - Study ongoing to evaluate performance of replacing HFC with greenhouse-friendly gases (pressurized Xe)

ECFA Workshop, 09/10/2024

Conclusions

• Large diversity of calorimeter concepts for HET Factories


- Some building on proven technologies
 - Pushing those technologies to their limits
- Some coming to fruition after years of R&D
 - e.g Challenge for calorimeters tailored for ILC: adaptation to FCC-ee conditions
- Some brand new ideas
- In all cases:
 - Long road ahead to get to large scale prototypes
 - System-level concerns and engineering challenges are numerous
- Good PID is mandatory for various physics cases
 - Can be achieved as a additional measurements in tracking detectors
 - Or with new concepts of Cerenkov detectors



DECAL – Digital ECAL based on MAPS

- A MAPS-based digital Silicon-Tungsten ECAL, building on current DECAL and EPICAL projects
- Fully digital (no energy measurement / cell)

 30×30 µm² Si pixels
- Main R&D topics
 - Establish requirements of a sensor dedicated for digital calorimetry
 - Design of next-generation sensor with calorimeter-specific optimisation and evaluation of sensor design
 - Aim for small-scale digital ECAL prototype in 2026

