Simulation of Higgs, Electroweak and Top Factories detectors

Alvaro Tolosa-Delgado (CERN)

Third ECFA Workshop on e+e- Higgs, Electroweak and Top Factories, Paris (France) Oct. 10th, 2024

• Introduction to detector families

- Software for simulation of detectors at future colliders
- Review of subdetectors

• Outlook

• The 2020 update of the European strategy for particle physics has identified an electron–positron Higgs factory as the highest priority collider after LHC

- The 2020 update of the European strategy for particle physics has identified an electron–positron Higgs factory as the highest priority collider after LHC
- Several accelerators are proposed: ILC, CLIC, CEPC, FCC, IMCC...

- The 2020 update of the European strategy for particle physics has identified an electron–positron Higgs factory as the highest priority collider after LHC
- Several accelerators are proposed: ILC, CLIC, CEPC, FCC, IMCC...
- Different detector concepts are being developed, where simulation is the key to identify the ones that maximize physics performance
 - Simulation involves a chain of steps, including Monte Carlo (MC) particle
 generation, physics processes simulation, event reconstruction, and data analysis

- The 2020 update of the European strategy for particle physics has identified an electron–positron Higgs factory as the highest priority collider after LHC
- Several accelerators are proposed: ILC, CLIC, CEPC, FCC, IMCC...
- Different detector concepts are being developed, where simulation is the key to identify the ones that maximize physics performance
 - Simulation involves a chain of steps, including Monte Carlo (MC) particle
 generation, physics processes simulation, event reconstruction, and data analysis
- The ECFA Report will provide more details in its Simulation section

Introduction to the detector families

Introduction to the detector families

The arrows show the historical evolution of some detector concepts

Simulation of future collider detectors alvaro.tolosa.delgado@cern.ch

Introduction to the detector families

The arrows show the historical evolution of some detector concepts

Simulation of future collider detectors

alvaro.tolosa.delgado@cern.ch

• **Key4hep** is a collaborative, community-maintained software. See J. Smiesko talk [link]

- **Key4hep** is a collaborative, community-maintained software. See J. Smiesko talk [link]
- There are two types of simulation based on the level of detail in the physics modeling:
 - Parametrized simulation (mainly Delphes-based)
 - Detector responses are summarized in "Delphes cards," available for FCC, CLIC, ILC, and MuonCollider detectors [link]
 - > Allows for quick estimates of physics reach and helps set detector requirements
 - Seamless generation of samples for many different detector scenarios
 - Recently extended to include more acurate tracking, cluster counting, and time-offlight, useful for example for machine learning-based flavor tagging
 - Full simulation (Geant4-based)

- **Key4hep** is a collaborative, community-maintained software. See J. Smiesko talk [link]
- There are two types of simulation based on the level of detail in the physics modeling:
 - Parametrized simulation (mainly Delphes-based)
 - Detector responses are summarized in "Delphes cards," available for FCC, CLIC, ILC, and MuonCollider detectors [link]
 - > Allows for quick estimates of physics reach and helps set detector requirements
 - · Seamless generation of samples for many different detector scenarios
 - Recently extended to include more acurate tracking, cluster counting, and time-offlight, useful for example for machine learning-based flavor tagging
 - Full simulation (Geant4-based)

This talk will focus on Full Simulation (where most of the work ahead lies)

The main software packages used to **perform physics simulations** are:

> Geant4: a Monte Carlo particle transport code

The main software packages used to **perform physics simulations** are:

- > Geant4: a Monte Carlo particle transport code
- EDM4hep: a collection of data structures used for persistency in memory

The main software packages used to **perform physics simulations** are:

- Geant4: a Monte Carlo particle transport code
- EDM4hep: a collection of data structures used for persistency in memory
- DD4hep: A comprehensive framework that manages the detector description, including geometry and other functionalities necessary for simulation and reconstruction.

The main software packages used to **perform physics simulations** are:

- Geant4: a Monte Carlo particle transport code
- EDM4hep: a collection of data structures used for persistency in memory
- DD4hep: A comprehensive framework that manages the detector description, including geometry and other functionalities necessary for simulation and reconstruction.
 - Detector geometry description is the primary input for performing simulations, as Geant4 provides built-in physics, and DD4hep the mechanisms to record and write simulation data

- Each detector concept is described by a text file called **compact file**
- This text file contains:
 - specific configuration of each subsystem, such as its size, number of layers, materials, etc
 - global configuration, including list of materials, fields description, etc

Compact file

Subsystem 1: driver name configuration

Subsystem 2: driver name configuration

Subsystem 3: driver name configuration

Materials Visual attributes Magnetic field

- Each detector concept is described by a text file called **compact file**
- This text file contains:
 - specific configuration of each subsystem, such as its size, number of layers, materials, etc
 - global configuration, including list of materials, fields description, etc
- Each subsystem configuration links to a **detector driver**, which builds the detector geometry in memory according to the given configuration

- DD4hep allows for easy swapping of subdetectors
- The detector drivers may be shared by different detector concepts, changing only the configuration

- DD4hep allows for easy swapping of subdetectors
- The detector drivers may be shared by different detector concepts, changing only the configuration
- This motivated that **all detector geometries for projects ILC, CLIC, and FCC are centralized in k4geo [link], a repository part of the Key4hep GitHub project**.
 - > In the following, I will review the subdetectors hosted in k4geo
 - > This is not an exhaustive list, as some subdetectors are hosted elsewhere (e.g. CEPCSW)

- DD4hep allows for easy swapping of subdetectors
- The detector drivers may be shared by different detector concepts, changing only the configuration
- This motivated that **all detector geometries for projects ILC, CLIC, and FCC are centralized in k4geo [link], a repository part of the Key4hep GitHub project**.
 - > In the following, I will review the subdetectors hosted in k4geo
 - > This is not an exhaustive list, as some subdetectors are hosted elsewhere (e.g. CEPCSW)
- The subsystems are grouped as:
 - Machine-Detector Interface (MDI)
 - > Tracking Systems: Silicon-based and Silicon/Gas-based designs.
 - Calorimeter Systems: sampling calorimeters and dual-readout calorimeters.
 - > Muon Systems
 - Particle Identification (PID) system

Machine-Detector Interface (MDI)

CERN

- MDI design is driven by the nature of the colliding beam
 - > ILD and FCC have a centralized description of their MDI

Machine-Detector Interface (MDI)

- MDI design is driven by the nature of the colliding beam
 - > ILD and FCC have a centralized description of their MDI
- Beampipe structure is non sensitive, but detailed description is needed for acurate simulation results
 - baseline model is made up by simple geometrical shapes
 - > detailed CAD design has been newly developed for FCC

Shape-based model (left) and CAD model (right) of the FCC beampipe

Machine-Detector Interface (MDI)

- MDI design is driven by the nature of the colliding beam
 - > ILD and FCC have a centralized description of their MDI
- Beampipe structure is non sensitive, but detailed description is needed for acurate simulation results
 - baseline model is made up by simple geometrical shapes
 - > detailed CAD design has been newly developed for FCC
- Lumimeter: a silicon-tungsten (SiW) calorimeter based on the one used by LEP-OPAL. At the moment the same detector driver is used by detectors at ILC, CLIC, and FCC.

Shape-based model (left) and CAD model (right) of the FCC beampipe

Lumimeter geometry

Simulation of future collider detectors

alvaro.tolosa.delgado@cern.ch

Full silicon-based tracker

- The tracking system consists of a silicon vertex and tracker, covering both the barrel and endcap
- Two families of detector drivers are shared among different detector concepts:
 - SiD (ILC), CLICdet (CLIC), CLD (FCC)
 - ILD (ILC), CRD baseline (CEPC). TDR baseline (CEPC) is an evolution from the previous one.

Full silicon-based tracker

- The tracking system consists of a silicon vertex and tracker, covering both the barrel and endcap
- Two families of detector drivers are shared among different detector concepts:
 - SiD (ILC), CLICdet (CLIC), CLD (FCC)
 - > ILD (ILC), CRD baseline (CEPC). TDR baseline (CEPC) is an evolution from the previous one.
- The detector driver builds the geometry as an assembly of radial or planar layers

Full silicon-based tracker

- The tracking system consists of a silicon vertex and tracker, covering both the barrel and endcap
- Two families of detector drivers are shared among different detector concepts:
 - SiD (ILC), CLICdet (CLIC), CLD (FCC)
 - > ILD (ILC), CRD baseline (CEPC). TDR baseline (CEPC) is an evolution from the previous one.
- The detector driver builds the geometry as an assembly of radial or planar layers
- Resizing tracking layers is done by just modifying a few lines in the compact file

- The tracking system consists of a silicon vertex and tracker, covering both the barrel and endcap
- Two families of detector drivers are shared among different detector concepts:
 - SiD (ILC), CLICdet (CLIC), CLD (FCC)
 - > ILD (ILC), CRD baseline (CEPC). TDR baseline (CEPC) is an evolution from the previous one.
- The detector driver builds the geometry as an assembly of radial or planar layers
- Resizing tracking layers is done by just modifying a few lines in the compact file
- The maturity of the geometry has paved the way for further developments, such as the ongoing integration of ACTS with the CLD tracking system

Silicon + gaseous (Time Proj. Chamber) tracking

- The tracking system is made up by a silicon vertex and inner tracker, and a TPC as main tracker subsystem
- This combination was developed by ILD (TDR 2013) and adopted by CEPC baseline detector (CDR 2018),
- The geometry of the silicon vertex is more detailed than the one used by full silicon tracking subsystem
- The design of the TPC is an active project supported by the LC-TPC collaboration, and integrated within DRD1 of CERN.
- A new version of the geometry has been developed for FCC. See V. Schwan talk [link]. This version is now under study to evaluate the beam-induced backgrounds. See D. Jeans talk [link].

ILD cross section view of the vertex and TPC

Silicon + gaseous (Drift Chamber) tracking

- This combination of silicon vertex and drift chamber is used by IDEA and ALLEGRO (FCC) detectors
- A newly developed vertex detector driver
 - Supports both single-sided flat and bent silicon layers
 - > **Easy reuse** across different detector configurations.
 - > Also used by the Silicon Wrapper subsystem

Silicon + gaseous (Drift Chamber) tracking

- This combination of silicon vertex and drift chamber is used by IDEA and ALLEGRO (FCC) detectors
- A newly developed vertex detector driver
 - Supports both single-sided flat and bent silicon layers
 - Easy reuse across different detector configurations.
 - > Also used by the Silicon Wrapper subsystem
- The stereo drift chamber (DC)
 - > Geometry is fully implemented
 - Geant4 physics has to be tuned and validated against beam test data for acurate simulations. See talk by W.
 Elmetenawee [link].
 - Preliminary background studies and development of new tracking algorithms are already using this implementation. See D. Garcia talk [link]

Cross-section of the wires (software)

MEG II, a similar design of a DC

Simulation of future collider detectors

alvaro.tolosa.delgado@cern.ch

General sampling calorimeter

- Consist in a layered structure covering the barrel and endcap regions.
- The layer structure is given in the compact file
 - easily reused across different subsystems with minimal modifications
- The same detector driver is used to build the ECAL and HCAL of different detector concepts, including SiD (ILC), CLICdet (CLIC), and CLD (FCC)

CLD outer systems:

- 1. ECAL
- 2. HCAL
- 3. Iron Yoke with RPC for muon ID
- 4. solenoid 2T

General sampling calorimeter

- Consist in a layered structure covering the barrel and endcap regions.
- The layer structure is given in the compact file
 - easily reused across different subsystems with minimal modifications
- The same detector driver is used to build the ECAL and HCAL of different detector concepts, including SiD (ILC), CLICdet (CLIC), and CLD (FCC)
- ILD has implemented calorimeters so that a single Geant4 run allows to simulate up to five configurations of different detector technologies. Some of these combinations are similar to those being explored in SiD.

CLD outer systems:1. ECAL2. HCAL3. Iron Yoke with RPC for muon ID4. solenoid 2T

alvaro.tolosa.delgado@cern.ch

General sampling calorimeter

- Consist in a layered structure covering the barrel and endcap regions.
- The layer structure is given in the compact file
 - easily reused across different subsystems with minimal modifications
- The same detector driver is used to build the ECAL and HCAL of different detector concepts, including SiD (ILC), CLICdet (CLIC), and CLD (FCC)
- ILD has implemented calorimeters so that a single Geant4 run allows to simulate up to five configurations of different detector technologies. Some of these combinations are similar to those being explored in SiD.
- Baseline detector calorimeters for CEPC are built by specialized • detector drivers that follow the aforementioned philosophy

2 3 CLD outer systems:

- 1. ECAL
- 2. HCAL
- 3. Iron Yoke with RPC for muon ID
- 4. solenoid 2T

Simulation of future collider detectors

alvaro.tolosa.delgado@cern.ch

Noble liquid ECAL + TileCal

- These calorimeters used by ALLEGRO (FCC) detector concept
- Noble liquid ECAL full detector geometry is ready.
 - Crosstalk effects implemented for the barrel region, ongoing work to extend them to the endcap. See F. Sopkova [link] and T. Li [link] talks.
 - First studies using the barrel region in CLD (FCC). See S.
 Sasikumar talk [link]

Noble liquid ECAL endcap

Noble liquid ECAL + TileCal

- These calorimeters used by ALLEGRO (FCC) detector concept
- Noble liquid ECAL full detector geometry is ready.
 - Crosstalk effects implemented for the barrel region, ongoing work to extend them to the endcap. See F. Sopkova [link] and T. Li [link] talks.
 - First studies using the barrel region in CLD (FCC). See S.
 Sasikumar talk [link]
- TileCal complete detector geometry is also ready.
 - The segmentation has been updated to be projective in theta, with no significant changes in physics performance.
 - Current developments on optimizing the reconstruction steps.
 - See M. Mlynarikova talk [link]

Simulation of future collider detectors

5:

Noble liquid ECAL endcap

TileCal endcap

Dual-readout calorimeter

- This subdetector is so far specific to IDEA detector concept
- Two main approaches based on the absorber matrix:
 - In the monolithic option, the matrix fills the spaces between the fibers.
 - In the capillary option, each fiber is placed within a tube, leaving air gaps between the tubes.

Cross-section of the DRC, capilary option [link]

Dual-readout calorimeter

- This subdetector is so far specific to IDEA detector concept
- Two main approaches based on the absorber matrix:
 - In the monolithic option, the matrix fills the spaces between the fibers.
 - In the capillary option, each fiber is placed within a tube, leaving air gaps between the tubes.
- This is a complex detector concept, **requiring dedicated developments** such as:
 - Custom functionality to record optical photon information
 - > A fast simulation for photon transport within the fibers.
- Detector geometry and Geant4 physics models have been thoroughly validated, see talk by R. Turra [link].

Simulation of future collider detectors

Cross-section of the DRC,

capilary option [link]

15

Muon systems

• Detector geometry of the instrumented iron yoke with **Resistive Plate Chambers** (RPC) is built by the same **generic calorimeter detector driver** described before.

Muon systems

- More detailed uRWELL-based systems added recently to k4geo
 - Polygonal geometries easy to tune (number of sides, sizes of the chamber, overlap area for hermeticity)
 - > Driver used to build the IDEA muon system and pre-shower detector so far
 - More details in talk by R. Farinelli [link]

Detailed muon systems, based on uRWELL chambers

A custom overlap area is achieved by tilting the chambers

Simulation of future collider detectors alvaro.tolosa.delgado@cern.ch

- The **ARC** consist on an large array of **RICH cells** placed as in the picture below (only mirrors and sensors are visible for simplicity). The detector geometry, material description (including optical properties) and sensor readout is fully implemented in DD4hep
- **New CLD option** with a smaller tracker compared to baseline incorporates the ARC.
 - > Tracking performance of this option was presented at LCWS 2024 by G. Sadowski [link].
- First ARC performance studies were presented by S. Pezzulo [link]

Simulation of future collider detectors alvaro.to

alvaro.tolosa.delgado@cern.ch

- Many different (sub)detectors are proposed for future colliders (and more to come)
- Delphes simulation in place to easily evaluate performance under different assumptions and set requirements
- Detailed detector geometries are available as part of Key4hep for ILC, CLIC and FCC detectors
- DD4hep-based detector descriptions ensure interoperability thanks to its plug-and-play mechanism, making it easy to create new detector configurations
- Input from detector experts performing beam tests is needed for fine tuning and validation of the physics simulation`