3rd ECFA workshop on e⁺e⁻ Higgs, Top & ElectroWeak Factories

9–11 October 2024

The Higgs-EWK-top Factory Challenge for Detectors

Paris, October 10, 2024

Felix Sefkow

Menu Sequence of Courses

Detector Requirements

Detector concepts

linear and circular colliders

Detector systems and technologies

- Silicon Vtx and Tracker
- Gasous tracking
- Calorimeters
- no time to cover lumi system, muons and coil

Selected impressions from on-going work

Higgs Factory Energies, Luminosities, Experiments

And Detector Requirements

Particle and jet energies vary only logarithmically with collider energy

· detector concepts have been evolving adiabatically from one collider to the other

Two extreme points:

- CLICdet at high energy extensively studied 2010-2020: 0.5 ns pile-up of hadronic γγ background manageable
- Tera-Z at FCCee poses most extreme challenges still to be tackled

FCCee Parameters and Program

option

Top threshold

Challenges

FCC-ee parameters		Z	W+W-	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ CM ⁻² S ⁻¹	143	20	7.5	1.38
Bunch spacing	ns	25	160	680	5000
"Physics" cross section	pb	35,000	10	0.2	0.5
Total cross section	pb	70,000	30	10	8
Event rate	Hz	100,000	6	0.5	0.1
"Pile up" parameter [μ]	10 ⁻⁶	2,500	1	1	1
Z peak $\sqrt{s} \sim 2$ WW threshold $\sqrt{s} \sim 2$ ZH maximum $\sqrt{s} \sim 2$ Is-channel H $\sqrt{s} \sim 2$	Deak $\sqrt{s} \sim 88, 91, 94 \text{ GeV}$ N threshold $\sqrt{s} \sim 157.5, 162.5 \text{ GeV}$ I maximum $\sqrt{s} \sim 240 \text{ GeV}$ channel H $\sqrt{s} \sim 125 \text{ GeV}$		~200 ab ⁻¹ ~10 ab ⁻¹ ~10 ab ⁻¹	6.10 ¹² $e^+e^- \rightarrow Z$ 10 ⁸ $e^+e^- \rightarrow WW$ 2.10 ⁶ $e^+e^- \rightarrow ZH$ ~5000 $e^+e^- \rightarrow H$	

5 yrs ~3 ab⁻¹

√s ~ 345 – 365 GeV

 $2.10^6 e^+e^- \rightarrow tt$

Detector Requirements from Physics

Ambitious

Higgs Factory Program

- 2M ZH events at vs = 240 GeV
- 75k WW \rightarrow H events at \sqrt{s} = 365 GeV
- Higgs Couplings
- Higgs self-couplings (2-4 σ) via loop diagrams
- Unique: e+e- \rightarrow H at \sqrt{s} = 125 GeV

Momentum Resolution ^{σ_{pT}}/_{p_T} ≃ 10⁻³ at p_T ~ 50 GeV.
 Jet energy resolution of 3-4% in multi-jet environment for Z/W separation
 Impact parameter resolution for *b*, *c* tagging

Precision EW and QCD Program

- 6 x 10^{12} Z and 10^{8} WW events
 - m_Z , Γ_Z , Γ_{inv} , $sin^2\theta_W$, m_W , Γ_W , ...
- 2×10^6 tt events
 - + m_{top} , Γ_{top} , EW couplings
- Indirect sensitivity to new physics

- Absolute normalisation of **luminosity** to 10-4.
- Relative normalisation to 10⁻⁵ (eg Γ_{had}/Γ_{l})
- Momentum resolution, limited by multiple scattering → minimise material.
- Track angular resolution < 0.1 mrad
- Stability of **B-field** to 10-6

Detector Requirements from Physics

Ambitious

Heavy Flavor Program

- 10¹² bb, cc; 1.7 x 10¹¹ ττ produced in a clean environment (10x Belle)
 - CKM matrix, CP measurements,
 - rare decays, CLFV searches, lepton universality

Feebly coupled particles Beyond SM

- Opportunity to directly observe new feebly interacting particles with masses below m_z
- Axion-like particles, dark photons, Heavy neutral leptons
- Long lifetimes LLPs

- Superior impact parameter resolution
 - Precisely dentify secondary vertices and measure lifetimes
- **ECAL** resolution at few $\%/\sqrt{E}$
- Excellent π^0/γ separation for tau identification
- **Particle ID**: K/ π separation over a wide momentum range \rightarrow e.g. by precision timing
- Sensitivity to far detached vertices
 - Tracking: more layers, "continuous" tracking
 - Calorimeter: granularity, tracking capability
- Large decay length \rightarrow extended decay volume
- Precise timing
- Heremeticity

From Linear to Circular e+e- Detectors

Conceptual Adaptations

Lower energy jets and particles, less collimated jets:

- reduced calorimeter depth
- shift imaging vs. energy resolution balance towards the latter
 - jet assignment ambiguities matter: added value of $\pi^0 \rightarrow \gamma \gamma$ mass reconstruction
- tracking even more multiple-scattering dominated: increased pressure on material budget of vertex detector and main tracker
 - fresh air to gaseous tracking

Limitations on solenoidal field B < 2T, to preserve luminosity:

- · recover momentum resolution with tracker radius
- on the other hand larger magnetic volume also more easily affordable (coil and yoke)

Main difference: no bunch trains; collisions every 20 ns (~ at LHC)

- no power pulsing, more data bandwidth: both imply larger powering and cooling needs
- adds material to the trackers and compromises calorimeter compactness or reduces granularity, timing, speed
- implications strongly technology-dependent, interesting optimisation challenges
- DAQ (and possibly trigger) re-enter the stage, trigger-less read-out challenged

From Linear to Circular e+e- Detectors

Conceptual Adaptations

Lower energy jets and particles, less collimated jets:

- reduced calorimeter depth
- shift imaging vs. energy resolution balance towards the latter

FCCee has many common challenges with ILC plus significant additional ones

- jet assignment ambiguities matter: added value of $\pi^0 \rightarrow \gamma \gamma$ mass reconstruction
- tracking even more multiple-scattering dominated: increased pressure on material budget of vertex detector and main tracker
 - fresh air to gaseous tracking

Limitations on solenoidal field B < 2T, to preserve luminosity:

- · recover momentum resolution with tracker radius
- on the other hand larger magnetic volume also more easily affordable (coil and yoke)

Main difference: no bunch trains; collisions every 20 ns (~ at LHC)

- no power pulsing, more data bandwidth: both imply larger powering and cooling needs
- adds material to the trackers and compromises calorimeter compactness or reduces granularity, timing, speed
- implications strongly technology-dependent, interesting optimisation challenges
- DAQ (and possibly trigger) re-enter the stage, trigger-less read-out challenged

Detector Concepts

From CLICdet to CLD

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

From CLICdet to CLD

9

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

From CLICdet to CLD

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

From CLICdet to CLD

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

Linear Collider Detectors - FCC Week, November 2020

From CLICdet to CLD

 A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

Linear Collider Detectors - FCC Week, November 2020

From CLICdet to CLD

• A LC-inspired FCCee detector concept - retaining key performance parameters Evolving from CLICdet to CLD

Linear Collider Detectors - FCC Week, November 2020

FCCee Detector Concepts

Strawman Detector Benchmarks

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (**O**(10 ps) timing and/or RICH)?

- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

DESY. Detector Challenge | Felix Sefkow | October 2024

FCCee Detector Concepts

Strawman Detector Benchmarks

CLD/ILD'

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker, study TPC option viability

10.6 m

- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (**O**(10 ps) timing and/or RICH)?
- **DESY.** Detector Challenge | Felix Sefkow | October 2024

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber with powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system

CDR

- Very active community
 - Prototype designs, test beam campaigns,

- Si vtx det., ultra light drift chambe (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAI
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

FCCee Detector Concepts

CDR

Strawman Detector Benchmarks

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker, study TPC option viability
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - **Cooling of Si-sensors & calorimeters**
- Possible detector optimizations
 - $\sigma_{\rm p}/\rm p, \sigma_{\rm F}/\rm E$
 - PID ($\mathcal{O}(10 \text{ ps})$ timing and/or RICH)?
- DESY. Detector Challenge | Felix Sefkow | October 202

Detector Concepts

In a Nutshell

Detector concepts form the link between performance requirements and technological capabilities

- thus guide the R&D and give feedback on performance impact of technical solutions
 Two main ingredients:
- a full simulation model
 - enable validation of single particle performance with prototypes
 - realistic prediction of full-event performance: will also need higher-level reconstruction tools
- overall engineering
 - to act and respond in the design of the MDI
 - to guide the optimisation of the global structure and parameters

Collaboration forming at a later stage

• maintain freedom to combine, e.g. tracking and calorimeter technologies ("plug & play")

CLD with RICH-based Particle ID

Up to high momenta

CLD option with ARC

- New option of CLD to accommodate ARC subdetector (A. Tolosa-Delgado) [link]
- Array of RICH Cells (ARC) is a Cerenkov-based detector
- RICH detectors are suitable for particle identification at high momentum
- Work in geometry optimization, digitization and reconstruction algorithms is ongoing

CLD with RICH-based Particle ID

Up to high momenta

CLD option with ARC

Tracker optimisation by Gaelle Sadowski, ARC status by Serena Pezzulo at this workshop

- New option of CLD to accommodate ARC subdetector (A. Tolosa-Delgado) [link]
- Array of RICH Cells (ARC) is a Cerenkov-based detector
- RICH detectors are suitable for particle identification at high momentum
- Work in geometry optimization, digitization and reconstruction algorithms is ongoing

FUTURE CIRCULAR COLLIDER

Crystal option

Status of ALLEGRO / LAr Simulations

Active Development in Key4HEP

2023: important groundwork. \Rightarrow 2024: granularity optimisation studies possible

- Flexible geometry implemented in Full sim
 - Can study EM shower shapes
 - Benchmark: photon / π^0 separation
 - Ongoing: implementation of cross-talk effects
- Calibrations of reconstruction
 - Simple MVA energy regression of EM clusters
 - Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)
- Particle Flow on its way
 - Using Pandora toolbox
 - For technical reasons, pioneered in detector sim with Allegro Ecal + CLD Tracker
 - Hope for first results in 2024 !

Second US FCC Workshop, 25/03/2024

Status of ALLEGRO / LAr Simulations

Active Development in Key4HEP

2023: important groundwork. \Rightarrow 2024: granularity optimisation studies possible

- Flexible geometry implemented in Full sim
 - Can study EM shower shapes
 - Benchmark: photon / π^0 separation
 - Ongoing: implementation of cross-talk effects
- Calibrations of reconstruction
 - Simple MVA energy regression of EM clusters
 - Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)
- Particle Flow on its way
 - Using Pandora toolbox
 - For technical reasons, pioneered in detector
 - sim with Allegro Ecal + CLD Tracker
 - Hope for first results in 2024 !

Plug

& play

Second US FCC Workshop, 25/03/2024

Status of ALLEGRO / LAr Simulations

update by Michaela Mlynarikova at this workshop

Active Development in Key4HEP

2023: important groundwork. \Rightarrow 2024: granularity optimisation studies possible

- Flexible geometry implemented in Full sim
 - Can study EM shower shapes
 - Benchmark: photon / π^0 separation
 - Ongoing: implementation of cross-talk effects
- Calibrations of reconstruction
 - Simple MVA energy regression of EM clusters
 - Cluster position calibration per layer
 - Allows pointing studies (⇒ ALPs)
- Particle Flow on its way
 - Using Pandora toolbox
 - For technical reasons, pioneered in detector
 - sim with Allegro Ecal + CLD Tracker
 - Hope for first results in 2024 !

Plug

& play

Second US FCC Workshop, 25/03/2024

Detector Subsystems and Technologies

Status of DRD collaborations

DRD Meetings: https://indico.cern.ch/category/6805/

Proposals (search for DRDC public) <u>https://cds.cern.ch/?ln=en</u>

Silicon Vertex Detector and Main Tracker

Sensors technology requirements for Vertex Detector

Several technologies are being studied to meet the physics performance

- Sensor's contribution to the total material budget is 15-30%
 - Services cables + cooling + support make up most of the detector mass
- Sensors will have to be less than 75 μ m thick with at least 3-5 μ m hit resolution (17-25 μ m pitch) and low power consumption
- Beam-background suppression
 - ILC/C³ evolve time stamping towards O(1-100) ns (bunch-tagging)
 - FCC, continuous r/o integrated over ~10µs with O(1) ns timing resolution for beam background suppression

Physics driven requirements	Running constraints	Sensor specification	ations
$\sigma < 3 \mu m$	·····>	Small Pixel	~15µm
Material budget 0.1%X_0/layer	>	Thinning to	50 µm
12-14 mm	➤ Cooling>	Low Power	20-50 mW/cm ²
r of the Inner most layer	→ Beam-background ·····>	Fast Readout	~1-10 µs
<u>.</u>	➤ Radiation damage ·····>	Radiation Tolerance	10 MRad, 10 ¹⁴ n _{eg} / /cm ²

Time resolution vs. power

O(ns) time resolution for beam-background suppression requires dedicated optimizations

Current designs that can achieve ns or sub-ns time resolutions compensate with higher power consumption

Target power consumption is less than 20 mW/cm²

Chip name	Experiment	Subsystem	Technology	Pixel pitch [µm]	Time resolution [ns]	Power Density [mW/cm ²]
ALPIDE	ALICE-ITS2	Vtx, Trk	Tower 180 nm	28	< 2000	5
Mosaic	ALICE-ITS3	Vtx	Tower 65 nm	25x100	100-2000	<40
FastPix	HL-LHC		Tower 180 nm	10 - 20	0.122 – 0.135	>1500
DPTS	ALICE-ITS3		Tower 65 nm	15	6.3	112
NAPA	SiD	Trk, Calo	Tower 65 nm	25x100	<1	< 20
Cactus	FCC/EIC	Timing	LF 150 nm	1000	0.1-0.5	145
MiniCactus	FCC/EIC	Timing	LF 150 nm	1000	0.088	300
Monolith	FCC/Idea	Trk	IHP SiGe 130 nm	100	0.077 - 0.02	40 - 2700
Arcadia	FCC/Idea	Trk	LF 110 nm	25	-	30

Dedicated ongoing effort to target O(ns) resolution with MAPS (slides) First prototype (Napa-p1) produced in TJ 65 nm process 5x5 mm², 25 µm pitch

Vertex Detector & Interaction Region

Detailed Engineering

09/2023 Assieme modulo layer3 stave simmetrico

Layer 3 Inner Tracker

Fegle 1 / 1

Isstituto Nazionale di Fisuca Nucleare-Sezione di Pisa

NFN

Vertex Detector & Interaction Region

Detailed Engineering

○ FCC

Fabrizio Palla INFN Pisa – 7th FCC Physics workshop – Annecy (France) – 29 Jan - 2 Feb 2024

Assembly of a half-layer

Gluing of the longerons

Gluing of the H-rings

Assembly of a half-layer

Gluing of the longerons

Gluing of the H-rings

FCC

Cylindrical Structural She SEGMENT er 0: 3 segments Z-axis (equatorial direction) ar 1: 4 segments beam length er 2: 5 segments 259,999 Repeated Sensor Unit (RSU)

Proposed layout using an ALICE ITS3 inspired design

(~0.05 % X/X_0 material budget per layer – 5 times less than the Mid-Term one)

After fruitful discussions with C. Gargiulo, A. Junique, G. Aglieri Rinella, W. Snoeys

12"

Same reticle for all layers

Layer	Radius (mm)
1	13.7
2	20.23
3	26.76
4	33.3

44

32168

719 719

432

719

Active area (RS

Readout peripheries

Pixel matrix

Data backbone

Biasing

Fabrizio Palla - Pisa & CERN - 2nd Annual U.S. FCC Workshop - MIT - 25 - 27 March 2024

20.52

O FCC C FOO Fabrizio Palla - Pisa & CERN - 2nd Annual U.S. FCC Workshop - MIT - 25 - 27 March 2024 20 Fabrizio Palla – Pisa & CERN – 2nd Annual U.S. FCC Workshop – MIT – 25 -27 March 2024 Layers 3 & 4 Layer 1 LIOF Balance supply to centralize IR-drop maximum ALI 10 RSU + 2 EC (same size) long per half layer Readout and power from both sides (reduces transmission off-detector and limits power • 6x 10.24 Gbps Four "guarter" layers of 9 RSU to allow same angular coverage of L1 dissipation in the endcaps) Leaves two ~2 mm* insensitive gaps in R-phi, to account for assembly tolerances Layer 4 has the same length of Layer 3 but higher radius Quarter readout only on one side. The other side only for power (wire) Minimizing electrical trace lengt Ring • Gap of ~ 2xO(10 mm) at z=0: can be mitigated by having quarters with non-Flex circuit symmetric layout (e.g. left quarter with 10 RSU and right one with 8 RSU, and (power & R/O) swapped for L4) or with (slightly) twisted wrap (complicated wire bonding of the flex circuit) RSU ^{216.7} mm active Layer 3 Layer 4 Longeron R=33.3 mm R=26.76 mm R=13.7 mm 195 mm active * In ITS3 is 1 mm. Needs to be modified in accordance with the RSU height $|\cos(\theta)| < 0.987$ $|\cos(\theta)| < 0.992$ $|\cos(\theta)| < 0.992$ 2x few mm DESY. Detector Challenge | Felix Sefkow | October 2024

O FOC

Detailed Full Simulations

Realistic Material Budgets

Complete vertex outer barrel system

Detailed Full Simulations

Realistic Material Budgets

Complete vertex outer barrel system

The SVT inner barrel ("bent" layers 0, 1, 2)

SVT inner barrel

ePIC specific needs:

- reduce services at forward/backward
- mechanical stability in the presence of a R=12 cm layer (R_{TTS3}^{max} is < 4 cm!)
- air cooling strategy is more challenging due to the presence of the disks

Innocenti <u>https://indico.mit.edu/event/876/</u> <u>contributions/2981/attachments/</u> <u>1070/1762/20240326_SVTInnocenti.pdf</u>

- built with bent ITS3 wafer-size sensors
- minimal support structure (carbon foam)
- air cooling (~ few m/s)
- Radii = 3.6, 4.8, 12 cm
- ·Lengths = 27 cm

The SVT inner barrel ("bent" layers 0, 1, 2)

The SVT outer barrel (layers 3, 4) and disks

SVT disks SVT outer layers

SVT disks

Challenges:

 preserve the low material budget in the presence of carbon fiber supports and services disk geometry can obstruct air cooling for the inner barrel

→ SVT for ePIC as the most advanced application of stitched MAPS sensors for large-area wide-acceptance detectors

→ unique benchmark for a future MAPS-based FCC tracker

"Flat" Large Area Sensors (LASs) derived from ITS3 optimised for covering large surfaces · traditional staved structure (not bent) carbon fibre support integrated cooling (liquid or air)

Innocenti https://indico.mit.edu/event/876/ contributions/2981/attachments/ 1070/1762/20240326 SVTInnocenti.pdf

- built with bent ITS3 wafer-size sensors
- minimal support structure (carbon foam)
- air cooling (~ few m/s)
- Radii = 3.6, 4.8, 12 cm
- Lengths = 27 cm

Gaseous Tracking

Gaseous Main Trackers

Strong Case

Transparency wins over single point resolution

• over most of relevant momentum range

Particle ID via dcdx or dN/dx (cluster counting)

complement ToF

Continuous tracking

for long-lived particle vertices

CLID

- All Si Tracker
- total material budget 11%

IDEA

- Drift Chamber
- Material budget is < 2%

Gaseous Main Trackers

Strong Case

Transparency wins over single point resolution

• over most of relevant momentum range

Particle ID via dcdx or dN/dx (cluster counting)

complement ToF

Continuous tracking

for long-lived particle vertices

CLID

- All Si Tracker
- total material budget 11%

IDEA

- Drift Chamber
- Material budget is < 2%

M_{recoil} (GeV)

Gaseous Main Trackers

Strong Case

Transparency wins over single point resolution

• over most of relevant momentum range

Particle ID via dcdx or dN/dx (cluster counting)

complement ToF

Continuous tracking

for long-lived particle vertices

CLID

- All Si Tracker
- total material budget 11%

IDEA

- Drift Chamber
- Material budget is < 2%

Estimate Distortions in a TPC

Full simulation study in ILD

Combine ILD and CLD elements

- ILD geometry and TPC
- CLD: MDI and inner Si tracker
- lower B field

Primary ions (no backflow)

- 1e10 from physics,
- 1e12 from background

Distortions up to 20 mm

• comparable to ALICE TPC

ALICE: data-driven corrections

- comparable to ALICE TPC
- residuals after correction up to 0.6mm⁻
- work ongoing

Calorimetry

Calorimeter Technologies

Already Introduced

All concepts aim at Particle Flow reconstruction

with different emphasis on granularity, energy resolution, stability

Liquid Argon + tiles

- finer longitudinal sampling wrt ATLAS ($4\rightarrow$ 12)
- warm or cold electronics
- CALICE or ATLAS style scintillator tile HCAL

Fibre-based Dual Read-out with crystals in front

- copper or steel matrix, Cherenkov and scintillating fibres, SiPMs
- pointing geometry, superior PID
- Iongitudinal segmentation via timing

CALICE-style sandwich with embedded front-end electronics

- silicon (pads or MAPS) ECAL, SiPM-on-Tile HCAL
 - alternatives: strip ECAL, gas HCAL
- LC technology to be re-invented: no power-pulsing
- synergies with CMS HGCAL upgrade
- **DESY.** Detector Challenge | Felix Sefkow | October 2024

Eur.Phys.J.Plus 136 (2021) 10, 1066,

https://arxiv.org/abs/2109.00391

Towards a testbeam module

Plan to produce testmodule in the next four years

- Mechanical design of module (64 absorbers) has started
 - First finite element calculations performed
- Work on finding / adapting testbeam cryostat
- Common tools (e.g EUDAQ) should facilitate integration in testbeam facility

Towards a testbeam module

Plan to produce testmodule in the next four years

- Mechanical design of module (64 absorbers) has starte⁻¹
 - First f
- Work on 1
- Common integratic

The cryostat available to is the CRRP-00563.

DR calorimeter

Full containment hadronic prototype in progress Hidra2 call INFN CSN5

Full containment hadronic prototype in progress Hidra2 call INFN CSN5

DR calorimeter

FUTURE CIRCULAR COLLIDER CIRCULAR DR calorimeter

Full containment hadronic prototype in progress

≻ Hidra2 call INFN CSN5

first DR prototype with containment

stainless steel is non-magnetic

Scaling up - Step by Step

Orders of Magnitude

High channel count of highly granular calorimeters remains a challenge on all levels

- production, test, calibration, software, management
- each step in size requires higher degrees of automation
 - e.g. mega-tiles

Full imaging power requires both ECAL and HCAL inside the solenoid

- much higher demands on compactness than in the CMS endcap
- re-optimisation of sampling including cooling and services / dead spaces
- NB: all alternatives have peripheral electronics

CALICE AHCAL prototype **22'000** SiPMs

CMS HGCAL (2 end-caps) **280'000** SiPMs

CLD / ILD HCAL barrel only **4'000'000 SiPMs**

Scaling up - Step by Step

Orders of Magnitude

High channel count of highly granular calorimeters remains a challenge on all levels

- production, test, calibration, software, management
- each step in size requires higher degrees of automation
 - e.g. mega-tiles

Full imaging power requires both ECAL and HCAL inside the solenoid

- much higher demands on compactness than in the CMS endcap
- re-optimisation of sampling including cooling and services / dead spaces
- NB: all alternatives have peripheral electronics

see talk by V.Boudry at this workshop

CALICE AHCAL prototype **22'000** SiPMs

CMS HGCAL (2 end-caps) **280'000** SiPMs

CLD / ILD HCAL barrel only **4'000'000 SiPMs**

Timeline for the FCCee

Working Hypothesis

all HF projects similar, except maybe CEPC

Timeline for the FCCee

Working Hypothesis

Summary Take-home

FCCee detectors represent exciting challenges

 radiation tolerance generally not an issue - but rate capability is, and in tension with ILC-like ambitions for material budget and compactness

There is time and room for new ideas, concepts and technologies - see this workshop!

• try them out: demonstrators are largely collider-agnostic

Gradual and moderate ramp-up in resources in some places (only)

 but real (scalable) prototypes will soon have to meet TDAQ electronics specs and will require some engineering - to address system aspects from the beginning

FCC PED is inviting sub-detector groups to form

Back-up