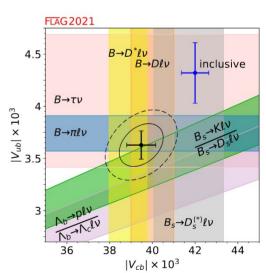
CKM Matrix Elements from W Decays

Ulrich Einhaus

3rd ECFA workshop on e⁺e⁻ Higgs, Top & ElectroWeak Factories 09.10.2024


Motivation

- Target: determine CKM matrix elements with optimal precision
- Why do we want that?
 - New Physics can affect couplings at 'low' energies → deviations from SM expectation
 - Does the unitarity triangle actually close?
 - Specifically: tension between inclusive and exclusive measurements of V_{cb} at ~ 3 σ

$$|V_{cb}|$$
 from inclusive B decays
$$|V_{cb}|$$
 from exclusive B , B_s and A_b decays
$$(42.19 \pm 0.78) \times 10^{-3}$$

$$(39.10 \pm 0.50) \times 10^{-3}$$

- \rightarrow Focus topic WW-CKM, along with 2 more W-based focus topics (m $_{\! W},$ Wdiff) making use of large statistics at $E_{cm} \geq 2 m_{\! W}$ at any future HTE factory
- Direct W decays allow to directly measure 6 'non-top' elements
- See also <u>2-day meeting of flavour sub-group</u>

CKM precision: status & outlook

- V_{cs} prospects to reach 0.2%
- V_{cb} already now systematically limited, reach possibly 2 with HL-LHC
- Statistics at future HTE factory can allow for 1 order of magnitude higher precision

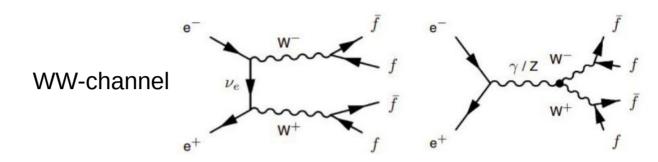
from study with FCC-ee:		$ V_{ij} $ Current (PDG)			FCC-ee $(\delta_{\epsilon} = 0.1\%)$
	$ V_{cs} $	0.975 ± 0.006	(0.6%)	0.36%	0.05%
	$ V_{cb} $	$(40.8 \pm 1.4) \times 10^{-3}$	(3.4%)	0.52%	0.16%

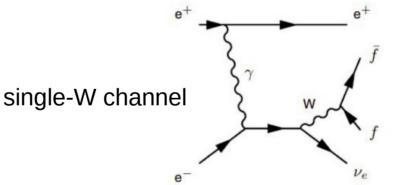
For 10⁸ W with perfect efficiency and no background:

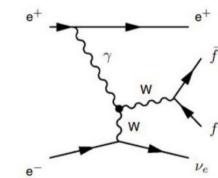
$W^- \rightarrow$	$\bar{u}d$	$\bar{u}s$	$ar{u}b$	$ar{c}d$	$ar{c}s$	$ar{c}b$
BR	31.8%	1.7%	4.5×10^{-6}	1.7%	31.7%	5.9×10^{-4}
$N_{ m ev}$	64×10^{6}	3.4×10^{6}	900	3.4×10^{6}	63×10^{6}	118×10^{3}
$\delta^{ ext{th}}_{V_{ij}}$	0.0063 %	0.027 %	1.7 %	0.027 %	0.0063 %	0.15 %

Method

- W branching fraction into quarks u_i + d_j directly proportional to |V_{ij}|²
- Identify W events, simply tag and count decays into different quark combinations!
- Simply tag...? → crucial: high efficiency & purity & well-understood flavour tagger!
- Measuring CKM elements from B/D-meson decays suffers from significant nonperturbative hadronic contributions to the matrix element, not at $m_w >> \Lambda_{QCD}$
- Great prospects with perfect efficiency and no systematics, but what is realistic?


$W^- \rightarrow$	$ar{u}d$	$\bar{u}s$	$\bar{u}b$	$ar{c}d$	$ar{c}s$	$\bar{c}b$
BR	31.8%	1.7%	4.5×10^{-6}	1.7%	31.7%	5.9×10^{-4}
$N_{ m ev}$	64×10^{6}	3.4×10^{6}	900	3.4×10^{6}	63×10^{6}	118×10^{3}
$\delta^{ ext{th}}_{V_{ij}}$	0.0063 %	0.027 %	1.7 %	0.027 %	0.0063 %	0.15 %

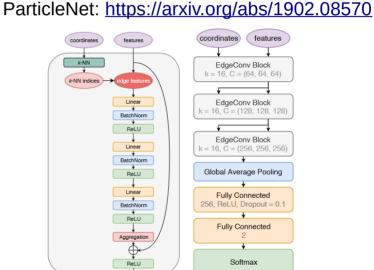




W Physics Working Points

- W threshold
 - needed anyway for m_w
 - cross section ~ 5 pb
 - more interesting for CC
- Higgs (240-250 GeV)
 - needed anyway for H
 - cross section ~ 20 pb
 - more interesting for LC
- W(W) production profits greatly from polarisation

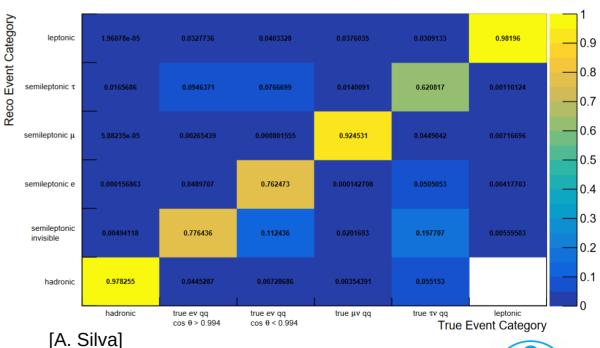
- Both CC and LC expect some 10⁸ Ws
- Note: fully hadronic channel has colour reconnection!



Flavour Taggers

- Long-time (> 10 a) standard tool: LCFIPlus, now out-of-date with BDT and b/c/light tag
- A number of new flavour taggers have been developed, making use of neural networks and advanced machine learning
 - ParticleNet (ILD/CLD) [Meyer]
 - ParticleNet (IDEA) [Selvaggi e.a.]
 - ParticleNet (CEPC baseline) [Ruan e.a.]
 - Particle Transformer (ILD, IDEA) [Suehara]
 - Particle Transformer (CLD, Si-IDEA) [Aumiller e.a.]
- Adding strange-tag via PID (kaonID), possibly individual u- and d-tag via FSR
- Systematic uncertainties on flavour taggers?
 - \rightarrow calibrate at Z-pole with double-tag method and 10¹² events (FCC-ee) or some 10⁹ (LC)
 - → limits to detector adaptions to center-of-mass energy?

Study with ILD/CLD


- Approach: full-sim incl. backgrounds, using 250 GeV MC production (ILC) of ~ 12 ab-1 (~ 6 times data from target luminosity)
- Goal: ILD post-processing of 250 GeV MC production (from DST to MiniDST) by adding new high-level-reco features, to provide easy-to-access analysis basis
 - → Work in progress
- WW categorisation
- Flavour tagger, implementation in standard reco chain

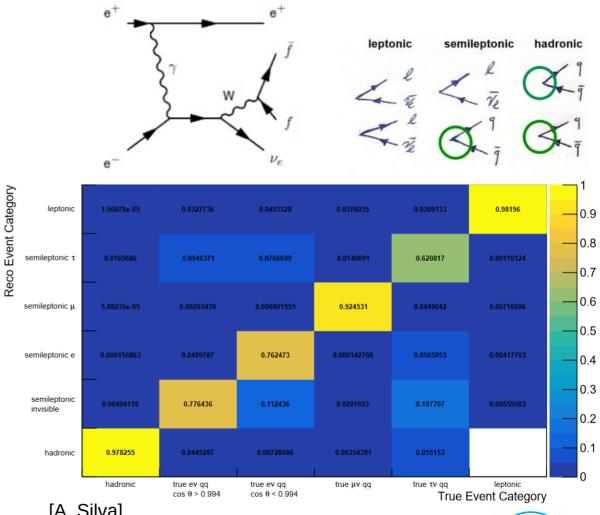
W(W) channel categorisation

- Categorise W(W) decay channels: each event receives one 'tag'
- Overlap-free categories allow for easy combination of exclusive analyses of any W-related study
- Basis: number & flavour of leptons
- Refine with number of reco particles (n_{PFOs}), m_{inv}, E_{miss}, p_{T,miss}

leptonic

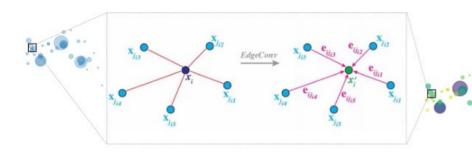
semileptonic

hadronic



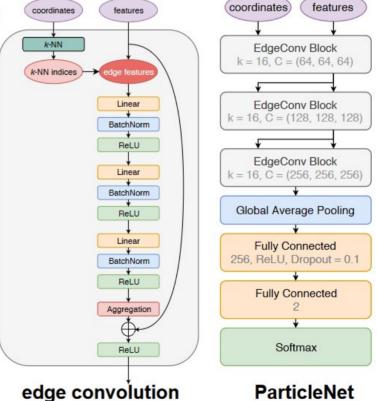
W(W) channel categorisation

Good diagonality


- hadronic & leptonic ~ 98% eff.
- semilep. $\mu \sim 92\%$ eff.
- confusion at the edge of det. acc. in semilep e vis./invis. ~ 77 % eff. \rightarrow invis. (cos θ > 0.994) mostly from t-channel contribution some more confusion with
- semilep. T ~ 62 % eff.
- Study: increase and understand electron detection efficiency at detector acceptance edge [L. Reichenbach]
- Potential study: T tagger

ParticleNet (ILD/CLD)

- treat jet as "particle cloud"
- input: jet constituents


key building block: edge convolution

- particle cloud: graph, each point: vertex, connections between each point & k nearest neighboring points: edges
- · learn an "edge feature" for each pair:

$$e_{ij} = MLP(x_i, x_j)$$

- MLP: parameters shared among all edges
- aggregation of edge features: x_i' = mean_j e_{ij}

arXiv:1902.08570, Pushing the Limit of Jet Tagging With Graph Neural Networks, Huilin Qu, talk at ML4Jets2021, July 7, 2021

Δη, ΔΦ

secondary vertices: features

Δη, ΔΦ

 $log(p_T)$, E_{SV}/E_{iet} , E_{SV}

η

m_{SV}

Ntracks in SV

χ2/ndf

impact parameters & significances

 $cos(flight direction_{SV}, \overrightarrow{p}_{SV})$

14 input features

2 SVs & all jet constituents considered, no ordering of inputs output classes: b, c, light

 \rightarrow b, c, s, u/d

Δη, ΔΦ

iet constituents: features

Δη, ΔΦ, η

 $log(p_T)$, log(E), $log(p_T/p_T^{jet})$, $log(E/E^{jet})$, \overrightarrow{p} track $\cdot \overrightarrow{p}$ jet/pjet

 ΔR

isElectron, isMuon, isChargedHadron, isNeutralHadron, isPhoton

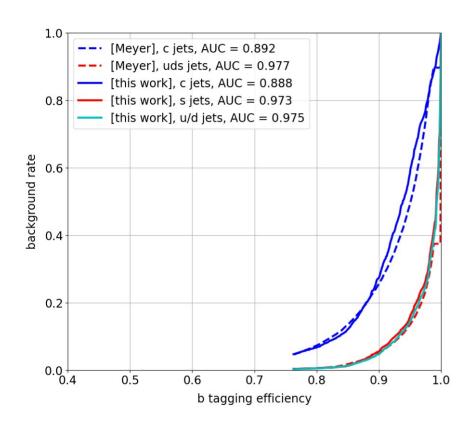
impact parameter & significances

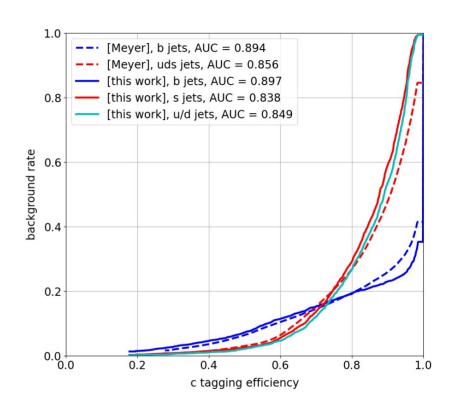
impact parameter tag probabilities

track used in PV?

lepton related variables

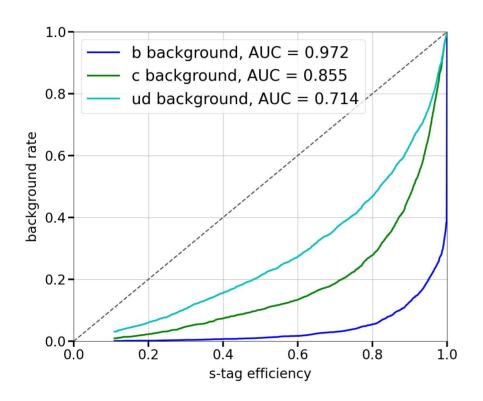
pid variables → now including CPID:

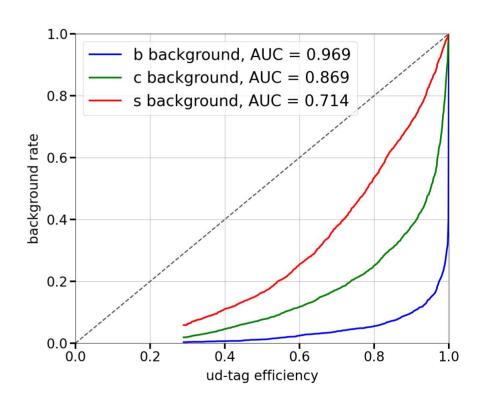

 $\{e, \mu, \pi, K, p\}$ scores EHCAL/EHCAL+ECAL


χ2/ndf

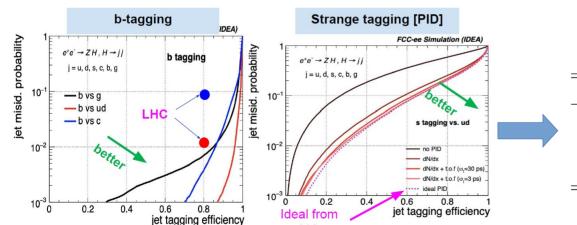
34 39 input features

Comparison with 'best of' training by M. Meyer




very similar performance, overall slightly worse → space for CNN parameter improvements

ROC Curves of strange and u/d tagging

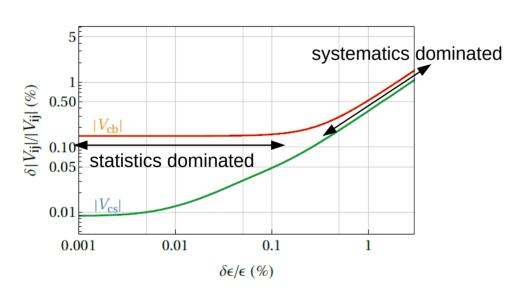


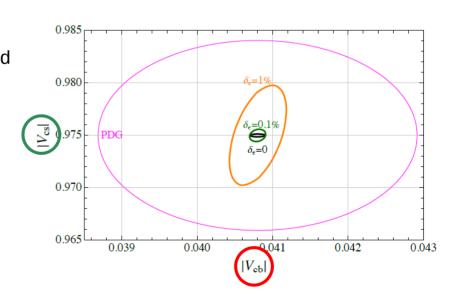
Study with FCC-ee

- → D. Marzocca, M.Szewc, M.Tammaro: https://arxiv.org/abs/2405.08880
- Assessment of prospects with given systematics, starting from quarks from the W decays at the parton level, using 3x10⁸ Ws at the W threshold
- Background: only 2q (+2j) considered
- Showing measurement estimates in dependence of parton-to-flavour-tag systematics
- Focus on V_{cb} and V_{cs}

ParticleNet (IDEA) flavour tag working points used:

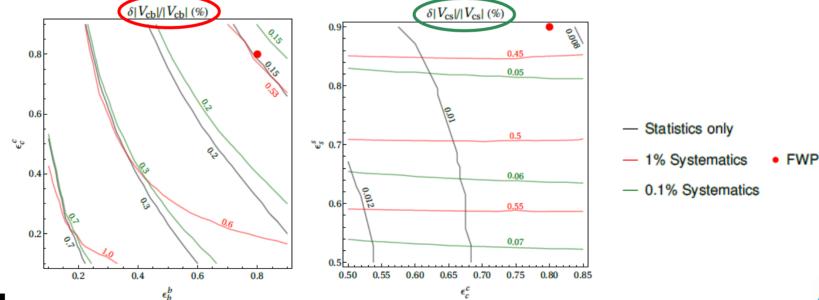
	b	S	c	u	d	g
ϵ^b_eta	0.8	0.0001	0.003	0.0005	0.0005	0.007
ϵ^{c}_{eta}	0.02	0.008	0.8	0.01	0.01	0.01
ϵ^s_{eta}	0.01	0.9	0.1	0.3	0.3	0.2




EPJ C 82 646 (2022)

Study with FCC-ee

- Achievable uncertainties on V_{cb} and V_{cs}, depending on systematics uncertainties
- V_{cs} would profit from systematics below 0.01%
- V_{cb} stronger limited through statistics, flat below 0.1% systematics

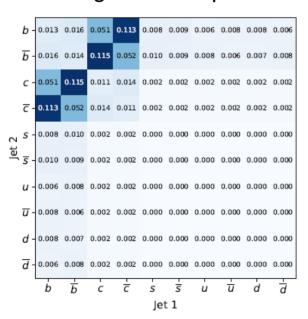


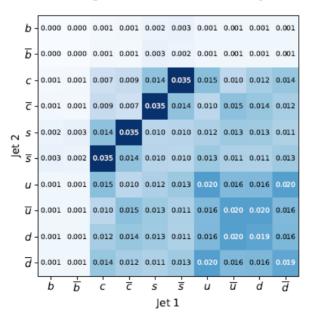
Study with FCC-ee

- Systematic impact assessment:
- For V_{cb}, both c- and b-tagger uncertainties are of somparable impact
 - fewer b-jets than c-jets, but b-tagger has higher purity working point than c-tagger
- For V_{cs}, the uncertainty is dominated by the contribution from the s-tagger
 - efficiency a lot worse than c-tagger, working point with higher backgrounds

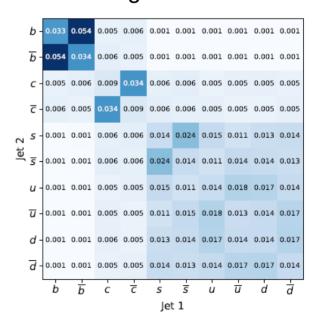
Study with CEPC

- → H. Liang, L. Li, Y. Zhu, X. Shen, M. Ruan: https://arxiv.org/abs/2406.01675
- Approach: full-sim with CEPC-baseline detector (ILD-like) at 240 GeV
- Focus on V_{cb} in semileptonic channel WW → Ivcb
- Extrapolation to running scenarios for various future HTE factories
- Uncertainty assessment: theoretical uncertainties ~ 0.1%,
 flavour taggers dominating at ~ 2% → need for excellent calibration!
- Backgrounds: WW(other), 2f, 4f, Higgs
 - → one conclusion: 2f is least important background




Flavour Tagger: ParticleNet (CEPC)

- 5 quarks + 5 anti-quarks → 10x10 confusion matrix for 2 tagged jets
- Use jet scores in BDT to identify cb-decays


signal: W \rightarrow µvcb

bkg: other W decays

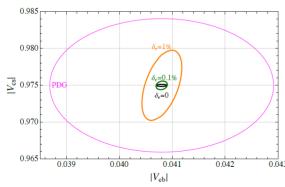
bkg: other

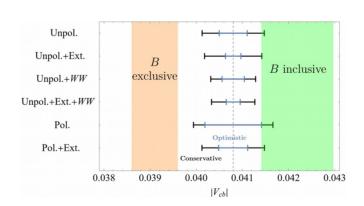
Study with CEPC

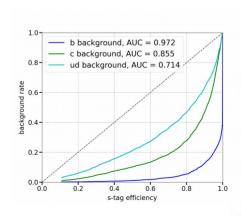
- Results, depending on running scenarios for various future HTE factories
- Combined statistical uncertainty on V_{cb} with sl (e, μ) channels;
 plot includes optimistic (0.2%) and conservative (1.5%) scenario on systematics

plot: Lingfeng Li

Unpolarized, Baseline (5 ab^{-1}) 0.72%Unpolarized, Extended (20 ab⁻¹) 0.36%BB inclusive exclusive Unpolarized, Baseline + WW0.58%0.34%Unpolarized, Extended + WWPolarized, Baseline (0.5 ab^{-1}) 1.5%Optimistic Polarized, Extended (2 ab^{-1}) 0.75%Conservative 0.038 0.039 0.040 0.041 0.042 0.043

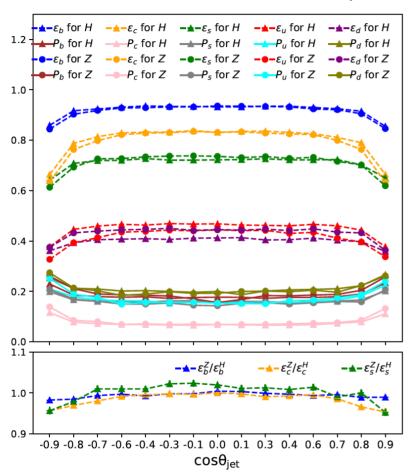


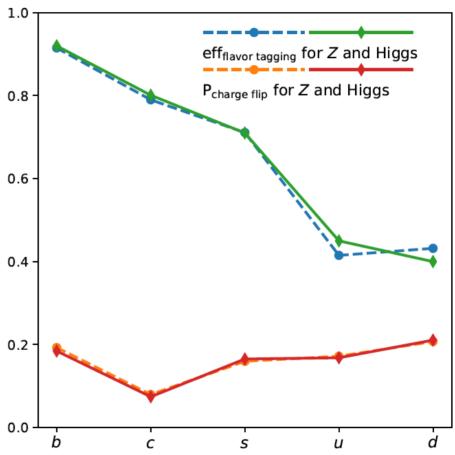



 $|V_{cb}|$

Outlook & Conclusions

- CKM matrix elements great opportunity for e+e- precision physics
- Focus on V_{cs} and V_{cb} , where HL-LHC and Belle II are limited already/soon, and standing tension in V_{cb} at 3 σ
- Studies ongoing, first papers are out prospects of 1 order of magnitude or more in enhanced precision, resolve tension
- Discussions ongoing how to continue, expand and refine results
- Critical: systematics, in particular of the flavour taggers
- Also: great ongoing progress in theory, in particular LQCD!





CEPC study: cross check jet tagging in Z vs. H

plots from M. Ruan

