Focus Topic:

2-fermion final states ($\sqrt{s} = M_z$ and beyond)

2-fermion expert team

Emanuele Bagnaschi, Freya Blekman, Adrian Irles, Daniel Jeans, Eram Rizvi, Alessandro Vicini

$e+e- \rightarrow ff-bar$

"simple" process

```
theoretically \rightarrow "precise" predictions
```

experimentally \rightarrow "small" exp. systematics

large cross-sections

very large at Z-pole

still one of largest at higher energies

Z⁽⁾ boson couplings

from the Z-pole, ..., 240, ..., 1000 GeV

search for effects of other, BSM, interactions

main observable \rightarrow differential cross-section with scattering angle \rightarrow A_{FB}

for different fermion flavours (polarisation), at different CM energies

with the great statistics comes a great responsibility !

on theorists to make similarly precise predictions

on experimenters to squeeze out maximal information, and to control systematic detector effects

Higher order calculations of Drell-Yan QED, QCD, EW corrections and their mixing development of new tools and methods, applicability at both LHC and HF

5

A. Vicini

experimental tools: jet flavour tagging

a few years ago, this meant identification of jets initiated by b- and c-quarks based mostly on reconstruction of secondary vertices and leptons within jets

several groups have made impressive progress in extension to other jet flavours more general kinematic observables identification of Kaons

 \rightarrow extend 2f measurements to exclusive quark flavours

distinguishing quarks from anti-quarks

 \rightarrow essential for full (unfolded) 2f scattering angle measurement

arXiv:2406.08590v3

impact of kaon ID efficiency on s-jet tagging

Freya Blekman ^(a),^{1,2,4} Florencia Canelli ^(a),³ Alexandre De Moor ^(a),¹ Kunal Gautam ^(a),^{1,3} Armin IIg ^(a),³ Anna Macchiolo ^(a),³ Eduardo Ploerer ^(a),^{1,3}

fast simulation (Delphes) of IDEA concept

ParticleTransformer on ILD full simulation T. Suehara et al

1. Suchara el ar

significant improvements on previous generation tool (LCFIPlus)

porting to the

reconstruction framework underway → general use in full-sim physics analyses

progress on s-jet tagging, using *fully reconstructed* particle ID (esp. K)

Krzysztof Mękała

separating u- and d-type jet events based on Final State Radiation

 Γ_{had} scales as:

$$\Gamma_{had} \sim (3c_d + 2c_u)$$

and $\Gamma_{had+\gamma}$ as:

$$\Gamma_{had+\gamma} \sim rac{lpha}{2\pi} f(y_{cut}) \left(3q_d^2 c_d + 2q_u^2 c_u
ight)$$

The correction factor $f(y_{cut})$ to be determined for a given value of the resolution parameter y_{cut} .

We want to consider:

$$e^+e^-
ightarrow qar{q}(\gamma)$$

Experimentally measured photons can originate not only from the Final State Radiation but also from the Initial State Radiation, hadronisation and decays...

One may encounter the following issues:

- Matrix Element calculations divergent or very slow for low photon-emission angles;
- ISR structure functions good for small angles, a proper matching procedure needed;
- FSR showers important for QCD emissions, may cause double-counting;
- hadron decays photons to be included properly.

dedicated photon matching procedure essential !

$e+e- \rightarrow tau+ tau-$: final state polarisation is an extra handle

Results and Precisions – case Aleph

	Obtained results		1				Eur.Pł	าys.J.C	20:401	1-430,	2001
Channel	$\mathcal{A}_{ au}$ (%)	$\mathcal{A}_{e}~(\%)$									
hadron	$15.21 \pm 0.98 \pm 0.49$	$15.28 \pm 1.30 \pm 0.12$	<u>]</u>	Most n	recis	e ch	anne	ls			
\mathbf{rho}	$13.79 \pm 0.84 \pm 0.38$	$14.66 \pm 1.12 \pm 0.09$	J	INDSCP				13			
a1(3h)	$14.77 \pm 1.60 \pm 1.00$	$13.58 \pm 2.11 \pm 0.40$									
${ m a1(h2\pi^0)}$	$16.34 \pm 2.06 \pm 1.52$	$15.62 \pm 2.72 \pm 0.47$							svst	tema	atics
electron	$13.64 \pm 2.33 \pm 0.96$	$14.09 \pm 3.17 \pm 0.91$									
muon	$13.64 \pm 2.09 \pm 0.93$	$11.77 \pm 2.77 \pm 0.25$		Source	Ь	0	A_{τ}	$h 2\pi^0$	0	.,	Incl h
pion inclusive	$14.93 \pm 0.83 \pm 0.87$	$14.91 \pm 1.11 \pm 0.17$		selection	-	ρ 0.01	-	-	0.14	$\frac{\mu}{0.02}$	0.08
Combined	$14.44 \pm 0.55 \pm 0.27$	$14.58 \pm 0.73 \pm 0.10$		tracking	0.06	-	0.22	-	-	0.10	-
				ECAL scale	0.15	0.11	0.21	1.10	0.47	-	-
			-	PID misid	0.15 0.05	0.06	0.04	0.01	0.07	0.07	0.18
 LEP me 	asurement statis	tics limited		photon	0.22	0.24	0.37	0.22	-	-	-
 Δ+ ECC_ 	• At ECC an 105-6 larger statistics:			non- τ back.	0.19	0.08	0.05	0.18	0.54	0.67	0.15
ALICC-	$ee_i \sim 10^{\circ}$ larger.	statistics.		τ BR	0.09	0.04	0.10	0.26	0.03	0.03	0.78
Need (n	Need (much) reduced systematics			modelling	-	-	0.70	0.70	-	-	0.09
				TOTAL	0.30	0.26	1.00	1.52	0.61	0.63	0.26
							A				
The sinc	gle most important	systematics	and the second se	Source	h	ρ	3h	$h2\pi^0$	e	μ	Incl. h
(on the	most precise chann	rels) is due		tracking	0.04	-	-	-	-	0.05	-
to phot	an and π^0 identifica	tion		non- τ back.	0.11	0.09	0.04	0.22	0.91	0.24	0.17
to photo				TOTAL	-	-	0.40	0.40	-	-	- 0.17
				TOTAL	0.12	0.09	0.40	0.47	0.91	0.25	0.17
ans Dam / NRL Cononhagen ECEA Miniwarkshon: Two-fermion Dhysics 22 March 2024											

excellent and excellently-*understood* photon and π^0 measurement are the key to achieving the required precision

tau reconstruction and polarisation at higher energies

Updated result on $\sin^2 \theta_{eff}^l$ measurement

Tuble 2. Sensitivity 5 of different final state particles.						
√s/GeV	S of $A_{FB}^{e/\mu}$	S of A^d_{FB}	$S ext{ of } A^u_{FB}$	S of A^s_{FB}	S of A_{FB}^{ϵ}	S of A^b_{FB}
70	0.224	4.396	1.435	4.403	1.445	4.352
75	0.530	5.264	2.598	5.269	2.616	5.237
92	1.644	5.553	4.200	5.553	4.201	5.549
105	0.269	4.597	1.993	4.598	1.994	4.586
115	0.035	3.956	1.091	3.958	1.087	3.942
130	0.027	3.279	0.531	3.280	0.520	3.261

Table 2 Sensitivity S of different final state particles

Table 3. Cross section of process $e^+e^- \rightarrow f\bar{f}$ calculated using the ZFITTER package. Values of the fundamental parameters are set as $m_2 = 91.1875$ GeV, $m_2 = 173.2$ GeV, $m_R = 125$ GeV, $a_{\pi} = 0.18$ and $m_{W} = 80.38$ GeV.

√s/GeV	$\sigma_{\mu}/{ m mb}$	$\sigma_d/{\rm mb}$	$\sigma_u/{ m mb}$	$\sigma_{\rm S}/{\rm mb}$	$\sigma_{\rm c}/{\rm mb}$	$\sigma_b/{\rm mb}$
70	0.039	0.032	0.066	0.031	0.058	0.028
75	0.039	0.047	0.073	0.046	0.065	0.043
92	1.196	5.366	4.228	5.366	4.222	5.268
105	0.075	0.271	0.231	0.271	0.227	0.265
115	0.042	0.135	0.122	0.135	0.118	0.132
130	0.026	0.071	0.068	0.071	0.066	0.069

Verify the RG behavior... using ~1 month of data taking

Expected statistical uncertainties on $\sin^2 \theta_{eff}^l$ measurement. (Using one-month data collection, ~ **4e12/24** Z events at Z pole)

\sqrt{s}	b	С	S
70	1.6×10^{-5}	3.2×10^{-5}	2.2×10^{-5}
75	1.3×10^{-5}	1.8×10^{-5}	1.8×10^{-5}
92	1.6×10^{-6}	2.2×10^{-6}	2.2×10^{-6}
105	1.0×10^{-5}	2.4×10^{-5}	1.4×10^{-5}
115	1.9×10^{-5}	6.8×10^{-5}	2.7×10^{-5}
130	3.9×10^{-5}	2.3×10^{-4}	$5.4 imes 10^{-5}$

M. Ruan

9

AFB – heavy quarks Double Charge Method

▷AFB measured in the continuum (not Z in rest frame)

• Sensitivity to Z, gamma, Z`

▷ At least 4 observables for AFB at ILC250 per energy point

- 2 quarks and 2 polarisations (eLpR, eRpL)
- Per mil level statistical uncertainties reachable for the nominal ILC250-500 program
 - Smaller exp syst. Uncertainties
 - Fragmentation, angular correlations → minimized thanks to double tagging techniques and Data Driven measurement of efficiencies à la LEP and SLC

NEW

2024!

Gauge Higgs Unification models vs SM discrimination power

A. Irles et al

II D-PHYS-PUB-2023-001 ILD-PHYS-PROC-2023-013

Summary

quite some activity related to the 2f focus topic

- higher order theoretical calculations: QED, EW, QCD
- experimental reconstruction tools
- estimates of physics reach

The 2f expert team is preparing to summarise these studies in its section of the ECFA report