The Need for a Higgs, Electroweak and Top Factory

Milada Margarete Mühlleitner Karlsruhe Institute of Technology

3rd ECFA

Workshop

Paris

9-11 Oct 2024

 N_1 E_1 E_1 D_2

不由的地

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

 N_1 E_1 E_1 D_2

Kanton Waadt

Outline

a provided the contract of the

The Mary Hill Road

Introduction

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024 3

chi f

V 57

8

e

 Ω

QØ.

 $6₄₄₄₅$

R

 $\begin{array}{c}\n\bullet \\
\bullet\n\end{array}$

The Standard Model is Structurally Complete

Open Questions

Particle physics Cosmology

origin of electroweak symmetry breaking hierarchy problem nature of the Higgs boson fermion mass and flavor puzzle * origin of neutrino masses

nature of Dark Matter matter-antimatter asymmetry dark energy inflation ***** how to incorporate gravity

Decipherment of fundamental laws of nature: judicious combination of theoretical methods/interpretation and experimental input/scrutiny

New physics is required, but there is no clear indication at which energy scale

The Challenge

Search for New Physics

Future e+e Collider Projects

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

ee-Colliders Energy Range & Luminosity

ee-Colliders Energy Range & Luminosity

ee-Colliders Energy Range & Luminosity

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024 15

- 63

Establishing the Higgs Mechanism

Establishing the Higgs Mechanism

Role of the Higgs Boson

✦We have the SM-like Higgs boson What can we learn from Higgs physics?

Role of the Higgs Boson

✦We have the SM-like Higgs boson What can we learn from Higgs physics?

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024 16

The Higgs Factory

 $\cancel{\cancel{\#}}$

 N_1 E_1 E_1 D_2

The Higgs Factory

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

The Higgs Factory

O(106) Higgs bosons from ZH O(105) Higgs bosons from Hvv

- ❖ Higgs mechanism: Higgs couplings to SM particles ~ to masses of the particles
- ❖ Experimental test: various production and decay channels ~> extract couplings

 $\sim \Gamma_{WW} \times BR(H \rightarrow \tau \tau) \sim \Gamma_{WW} \times \Gamma(H \rightarrow \tau \tau) / \Gamma_{tot}$

at LHC: not all final states are accessible small SM Γ_{tot} non measurable

❖ e+e− Collider: Absolute coupling measurement

$$
m_{\text{recoil}}^2 = s + m_{\ell\ell}^2 - 2\sqrt{s}(E_{\ell^+} + E_{\ell^-})
$$

Fit to recoil mass distribution:

- $\sigma(ZH)$ measurement independent of Higgs decay
	- \Rightarrow absolute determination of g $_{\text{HZZ}}$

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

❖ e+e− Collider: Absolute coupling measurement

$$
m^2_{\rm recoil} \, = \, s + m^2_{\ell\ell} - 2\sqrt{s} (E^{\,}_{\ell^+} + E^{\,}_{\ell^-})
$$

Fit to recoil mass distribution:

- $\sigma(ZH)$ measurement independent of Higgs decay
	- \Rightarrow absolute determination of g $_{\text{HZZ}}$

$$
\sigma_{HZ} \times \Gamma(H \to ZZ) / \Gamma_H \sim (g_{HZZ})^4 / \Gamma_H
$$

 \Rightarrow extraction of Γ_H

❖ e+e− Collider: Absolute coupling measurement

$$
m_{\rm recoil}^2\,=\,s+m_{\ell\ell}^2-2\sqrt{s}(E_{\ell^+}+E_{\ell^-})
$$

Fit to recoil mass distribution:

- $\sigma(ZH)$ measurement independent of Higgs decay
	- \Rightarrow absolute determination of g $_{\text{HZZ}}$

Exclusive decays into $XX = bb$, cc, gg, $\tau\tau$, $\mu\mu$, WW, $\gamma\gamma$, $Z\gamma$, invisible, other new BSM states \Rightarrow absolute coupling extraction g_{HXX}

$$
\sigma_{HZ} \times \Gamma(H\to ZZ)/\Gamma_H \sim (g_{HZZ})^4/\Gamma_H
$$

 \Rightarrow extraction of Γ_H

✏︎ all Higgs factories perform similar: luminosity vs. polarization ✏︎ couplings will be pushed to single percent - few per mille ✏︎ at least 1 order of magnitude precision gain compared to HL-LHC

✏︎ all Higgs factories perform similar: luminosity vs. polarization ✏︎ couplings will be pushed to single percent - few per mille precision ✏︎ at least 1 order of magnitude precision gain compared to HL-LHC

✽ **What do we learn about new physics from indirect measurements** through enhanced precision (~factor 10 better than HL-LHC) in comparison to direct new physics searches at the HL-LHC?

✽ Which **new physics scales** can we probe?

✽ What can we learn from the patterns of the coupling deviations about the **underlying model**?

✽ How well can we **distinguish between different realizations** of possible BSM physics?

✽ **What do we learn about new physics from indirect measurements** through enhanced precision (~factor 10 better than HL-LHC) in comparison to direct new physics searches at the HL-LHC?

✽ Which **new physics scales** can we probe?

✽ What can we learn from the patterns of the coupling deviations about the **underlying model**?

✽ How well can we **distinguish between different realizations** of possible BSM physics?

 \Rightarrow Coupling deviations due to new physics*: $g = g_{SM} [1 + \Delta]$: $\Delta = O(v^2/\Lambda^2)$

Experimental accuracy $O(0.2)$... $O(0.01)$ => Probed new physics scale: $\Lambda = 550$ GeV ... 2.5 TeV

* Unless violation of decoupling theorem

 \Rightarrow Coupling deviations due to new physics: $g = g_{SM} [1 + \Delta]$: $\Delta = O(v^2/\Lambda^2)$

Mixing effects: $\sim v^2/M^2$

- Higgs mixes w/ other high-mass scalar fields
- singlet, doublet, triplet extensions
- strongly interacting

$\sim v^2/M^2$ **Loop effects:** $\sim 1/(16\pi^2)v^2/M^2$

- from new gauge bosons, scalars, fermions
- supersymmetry, strong dynamics, extra dimensions, see-saw, extended gauge groups

 $\rightarrow \Lambda = 200$ GeV for $\Delta = 0.01$

[Englert,Freitas,MM,Plehn,Rauch,Spira,Walz,'14]

* LC: 250+500 GeV/250+500 fb-1 — HL-LC: 250+500+1000 GeV/ 1150+1600+2500 fb-1

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

What about Coupling Patterns?

✏︎ Exploit coupling sum rules!

Example Next-to-Minimal Supersymmetric Model (NMSSM) w/ 3 Higgs CP-even bosons Hi (i=1,2,3)

$$
\sum_{i=1}^{3} g_{H_iVV}^2 = 1 \qquad \qquad \frac{1}{\sum_{i=1}^{3} g_{H_itt}^2} + \frac{1}{\sum_{i=1}^{3} g_{H_ibb}^2} = 1
$$

Violation of sum rule: - hints to not discovered Higgs boson

- allows distinction from minimal supersymmetric model (MSSM)

Coupling Violation Patterns in BSM Extensions

[MM,Sampaio,Santos,Wittbrodt,'17]

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

Coupling Violation Patterns in BSM Extensions

[MM,Sampaio,Santos,Wittbrodt,'17]

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

- ❖ Importance of the trilinear Higgs self-coupling:
	- Determines shape of the Higgs potential
	- Sensitive to beyond-SM physics
	- Important input for electroweak phase transition*

*matter-asymmetry through electroweak baryogenesis

❖ Importance of the trilinear Higgs self-coupling:

- Determines shape of the Higgs potential
- Sensitive to beyond-SM physics
- Important input for electroweak phase transition*

*matter-asymmetry through electroweak baryogenesis

Single-Higgs Access To HHH

Indirect Access below Higgs pair threshold

Single Higgs:

- Global analysis: FCC -ee₃₆₅, ILC₅₀₀: ~35% when combined w/ HL-LHC
- $-$ FCCee₃₆₅ w/ 4PIs: \sim 24%
- Exclusive analysis: too sensitive to other new physics to draw conclusions

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

Single-Higgs Access To HHH

Indirect Access below Higgs pair threshold

κ_{λ} = λ HHH/(λ HHH)SM

enters at one-loop in single Higgs process *λhhh* **Challenge!** Competition with other effects

- competition w/ much larger LO contributions
- other numerically more dominant SM loops
- BSM: modified couplings, loop contributions
- contributions from (poorly constrained) eett operators affect interpretation [Asteriadis eal, 2406.03557]

Sensitivity limitations:

- exp. and theor. uncertainties

Interpretation:

- possibly observed deviation due to λ_{hhh} or other BSM/higher-order contributions?
Di-Higgs Access To HHH

Direct Access above Higgs pair threshold

Di-Higgs:

- HL-LHC: ~50% or better?
- improved by HE-LHC (~15%), ILC_{500} (~27%), $CLIC_{1500}$ (~36%)
- Precision by CLIC₃₀₀₀ (~ 9%), FCC-hh (~5%)
- Robust w.r.t. other operators

[Taken from J.Tian, LCWS2024]

✏︎ Extended Higgs sectors: mixing effects w/ other Higgs bosons BSM particles: loop contributions **→→ coupling deviations**

[ATLAS, Nature 607(2022) 52]

$g_{HSM\,SM}$ very SM-like

[CMS, Nature 607(2022) 60]

✏︎ Extended Higgs sectors: mixing effects w/ other Higgs bosons BSM particles: loop contributions

 $ATLAS: -1.4 < \kappa_1 < 6.1$ at 95 % CL $CMS: -1.2 < \kappa_1 < 7.5$ at 95 % CL

[Abouabid,Arhrib,Azevedo,ElFalaki,Ferreira,MM,Santos,'21]

Scan in parameter space of check for w/ relevan exp. co

[Abouabid,Arhrib,Azevedo,ElFalaki,Ferreira,MM,Santos,'21]

Effect of Higher-Order Corrections

✏︎ Higher-order corrections: potentially large in BSM Higgs sectors

e.g. 2HDM: [Kanemura,Kiyoura,Okada,Senaha,Yuan,'02;Braathen,Kanemura,'19''20] [Bahl,Braathen,Weiglein,'22]

✏︎ Example 2HDM: Parameter scan (taking into account theor. & single Higgs constraints)

 $[Arco, Heinemeyer, MM, in prep.]$

LHC experiments start being sensitive

→→ higher-order corrections important for proper interpretation of limits!

 \Rightarrow First-order Phase Transition (electroweak baryogenesis): prefers larger λ _{*HHH*}

Higgs Self-Coupling & Evolution of the Universe

 \textcircled{a} Model CP in the Dark: SM-Higgs ($\lambda_{hhh}^{tree} = \lambda_{hhh}^{SM}$) + Dark Sector GW signal from strong first-order phase transition

[Basler,Biermann,MM,Müller,Santos,Viana,'24]

[Biermann,Borschensky,Erhardt,MM,Santos,Viana]

✏︎ Vector DM Model: two visible Higgs bosons + Dark photon Strong first-order phase transition: *δλNLO hhh* /*λLO hhh* = 8 %

Higgs Self-Coupling & Evolution of the Universe

Precision Measurements at Z/WW/tt

Why do we need EWPOs?

Precision at Electroweak & Top Factories

 D_2

 E_1 E_1

 $N₁$

[2209.08078]

Electron-positron run scenarios used for the Snowmass 2021 study

EWPOs at Future e+e- Colliders

[2209.08078]

Table 3: EWPOs at future e^+e^- colliders: statistical error (estimated experimental systematic error). Δ (δ) stands for absolute (relative) uncertainty, while * indicates inputs taken from current data $[6]$. See Refs. $[23, 30, 35, 36, 46, 47]$.

SM Fit to all EWPOs

Interplay EW Measurements and Higgs Precision

- Z pole run essential to isolate Higgs measurements and ensure that uncertainties from EW coupling do not affect Higgs couplings New physics
- Precision measurements at the Z pole and WW threshold affect significantly achievable precision for Higgs couplings and aTGCs: improvement by about a factor of 2

[2209.08078]

Test of

Interpretation of results

Requirements from Theory:

- Match experimental precision
- At least 3-(fully massive!)/4-loop EW corrections are needed!
- Numerical integration \sim convergence? CPU time? Grids? $\frac{1}{2}$ | 1.9x10⁶tt Non-perturbative effects may become relevant

 $\overline{0}$ 150

- Identify (ratios of) observables w/ reduced theor. uncertainties

[Freitas,Heinemeyer,Beneke,Blondel,Dittmaier,Gluza,Hoang,Jadach,Janot,Reuter,Reimann;Schwinn,Skrzypek,Weinzierl]

A Look Into the Future

What to Expect?

✏︎ Situation at the end of HL-Luminosity LHC:

suppose: no new physics + Higgs behaves very SM-like

Light on the Horizon

✏︎ Future colliders may still reveal new physics!

Example CP-violating 2-Higgs-Doublet Model:

Could be that 125 GeV Higgs is very close to the alignment limit and be very CP-even!

Can we still see new physics at future colliders?

Focus Topics

In order to stimulate new engagement and trigger some concrete studies in areas where further work would be beneficial towards fully understanding the physics potential of an e^+e^- Higgs / Top / Electroweak factory, we propose to define a set of focus topics. The

Conclusions

- ✦ e+e- Colliders: Higgs/Electroweak/Top Factories in clean e+e- environment
- ✦ Absolute Higgs couplings access @ unprecedented precision
- ✦ Unique measurement of He+e− coupling
- ✦ Higgs self-coupling measurement
- ✦ EWPOs tremendously improved precision

What do we learn from indirect measurements at Higgs/EW/top factories about the underlying model? How can we combine information from all possible observables, experiments and research areas to get maximum insight?

Lot of work ahead! Exciting times!

A

Tarte

Tartz

de

Cereja

 T' arte

a

Lima

Queljada

Patu
'G

Tarte

Ourists

Queila

Physics Program at ee-Colliders

What do we Learn?

TABLE I: Expected accuracy at the 68% C.L. with which fundamental and derived Higgs couplings can be measured; the deviations are defined as $g = g_{SM}[1 \pm \Delta]$ compared to the Standard Model at the LHC/HL-LHC (luminosities 300 and 3000 fb⁻¹), LC/HL-LC (energies 250+500 GeV / 250+500 GeV+1 TeV and luminosities 250+500 fb⁻¹ / $1150+1600+2500$ fb⁻¹), and in combined analyses of HL-LHC and HL-LC. For invisible Higgs decays we give the upper limit on the underlying couplings. Constraints on an invisible Higgs decay width involve model-specific assumptions at the LHC, see e.g. $[15]$. Therefore, we allow for additional contributions to the total Higgs width only in the linear collider scenarios, where these can be constrained model-independently by exploiting the recoil measurement $[14]$.

Higgs Coupling Measurements

Higgs Mass Measurement

❖ Higgs mass and ZH cross section:

[Eysermans,Bernardi,Li]

Events / (0.2 GeV)

Higgs Mass Measurement

❖ Higgs mass and ZH cross section:

Electron Yukawa Coupling - Unique!

- ❖ Why electron Yukawa coupling: establish experimentally the Higgs coupling to *all* generations ~> also to the *1st* generation!
- ❖ How?: from e+e−➞H at √s = MH ❖ Challenge: coupling extremely tiny

Requirements

- ∗ MH knowledge at (few MeV) precisely ∗ Huge luminosity (i.e. several years w/ 4 IPs)
- ^{*} (Mono)chromatization Γ_Η(4.2 MeV)«δ_{/s}(100 MeV) * continuous *Js* monitoring & adjustment

∗ extremely sensitive event selection against SM backgrounds

Electron Yukawa Coupling - Unique!

- ❖ Why electron Yukawa coupling: establish experimentally the Higgs coupling to *all* generations ~> also to the *1st* generation!
- ❖ How?: from e+e−➞H at √s = MH ❖ Challenge: coupling extremely tiny

Requirements

- ∗ MH knowledge at (few MeV) precisely ∗ Huge luminosity (i.e. several years w/ 4 IPs)
- ^{*} (Mono)chromatization Γ_Η(4.2 MeV)«δ_{/s}(100 MeV) * continuous *Js* monitoring & adjustment
- ∗ extremely sensitive event selection against SM backgrounds

M.M. Mühlleitner, KIT 3rd ECFA Workshop, Paris, 9-11 Oct 2024

Higgs Self-Coupling & Evolution of the Universe

 \textcircled{a} Model CP in the Dark: SM-Higgs ($\lambda_{hhh}^{tree} = \lambda_{hhh}^{SM}$) + Dark Sector GW signal from strong first-order phase transition

[Basler,Biermann,MM,Müller,Santos,Viana,'24]

[Biermann,Borschensky,Erhardt,MM,Santos,Viana]

✏︎ Vector DM Model: two visible Higgs bosons + Dark photon Strong first-order phase transition: *δλNLO hhh* /*λLO hhh* = 8 %

SM Fit to all EWPOs

