Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract generalised parton distributions Nantes Seminar

Background

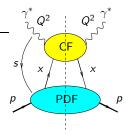
- Motivation for considering photon-meson pair photoproduction to probe GPDs
- Computation at LO and leading twist (quark GPD only)
- Results and prospects at experiments
- Collinear Factorisation breaking effects in gluon GPD contributions to π⁰γ photoproduction
- Conclusions and Outlook

Deep Inelastic Scattering DIS: inclusive process

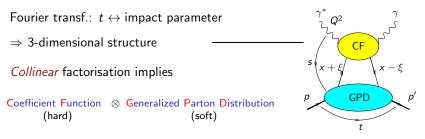
 \Rightarrow 1-dimensional structure

 \Rightarrow Collinear factorisation at the cross section level

Coefficient Function \otimes Parton Distribution Function (hard) (soft)



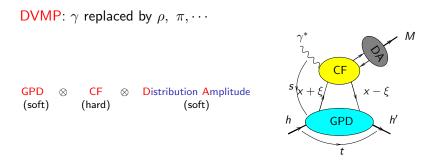
DVCS: exclusive process (non forward amplitude)



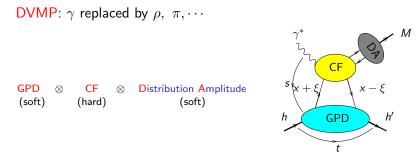
x: Average mom. fraction of the nucleon carried by the parton

 ξ : Mom. fraction of the nucleon *transferred* to hard part

[X. Ji: hep-ph/9609381]
[A. Radyushkin: hep-ph/9604317, hep-ph/9704207]
[J. Collins, A. Freund: hep-ph/9801262]
[D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, J. Horejsi: hep-ph/9812448]



[J. Collins, L. Frankfurt, M. Strikman: hep-ph/9611433][A. Radyushkin: hep-ph/9704207]



[J. Collins, L. Frankfurt, M. Strikman: hep-ph/9611433]

[A. Radyushkin: hep-ph/9704207]

proofs valid only for some restricted cases

Very useful *Sudakov decomposition* of a generic 4-vector v in lightcone directions n_+ and n_- :

$$v^{\mu} = v^+ n^{\mu}_+ + v^- n^{\mu}_- + v^{\mu}_{\perp}$$

with

$$n_{+}^{2} = n_{-}^{2} = 0$$

$$n_{+} \cdot n_{-} = 1$$

$$v^{\pm} = \frac{v^{0} \pm v^{3}}{\sqrt{2}}$$

$$v^{2} = 2v^{+}v^{-} + v_{\perp}^{2}$$

Very useful *Sudakov decomposition* of a generic 4-vector v in lightcone directions n_+ and n_- :

$$v^{\mu} = v^+ n^{\mu}_+ + v^- n^{\mu}_- + v^{\mu}_{\perp}$$

with

$$n_{+}^{2} = n_{-}^{2} = 0$$

$$n_{+} \cdot n_{-} = 1$$

$$v^{\pm} = \frac{v^{0} \pm v^{3}}{\sqrt{2}}$$

$$v^{2} = 2v^{+}v^{-} + v_{\perp}^{2}$$

In other words, n_{+}^{μ} (n_{-}^{μ}) defines a *lightlike* 4-vector with spatial components purely in the positive (negative) *z*-direction

Definition Quark GPDs: twist 2 Chiral-even

Quark GPDs at twist 2 [M. Diehl: hep-ph/0307382]

without helicity flip (chiral-even Γ matrices): 4 chiral-even GPDs: (Note: $\Delta = p' - p$)

$$\begin{aligned} F^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \gamma^{+}q(\frac{1}{2}z) \, |p\rangle \Big|_{z^{+}=0, \, z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t) \, \bar{u}(p') \frac{i \, \sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p) \right], \end{aligned}$$

$$\begin{split} \tilde{F}^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \gamma^{+} \gamma_{5} \, q(\frac{1}{2}z) \, |p\rangle \Big|_{z^{+}=0, \, z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t) \, \bar{u}(p') \gamma^{+} \gamma_{5} u(p) + \tilde{E}^{q}(x,\xi,t) \, \bar{u}(p') \frac{\gamma_{5} \, \Delta^{+}}{2m} u(p) \right]. \end{split}$$

Definition Quark GPDs: twist 2 Chiral-even

Quark GPDs at twist 2 [M. Diehl: hep-ph/0307382]

without helicity flip (chiral-even Γ matrices): 4 chiral-even GPDs: (Note: $\Delta = p' - p$)

$$\begin{aligned} F^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \gamma^{+}q(\frac{1}{2}z) \, |p\rangle \Big|_{z^{+}=0, \, z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t) \, \bar{u}(p') \frac{i \, \sigma^{+\alpha} \Delta_{\alpha}}{2m} u(p) \right], \end{aligned}$$

$$\begin{split} \tilde{F}^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \, \bar{q}(-\frac{1}{2}z) \, \gamma^{+} \gamma_{5} \, q(\frac{1}{2}z) \, |p\rangle \Big|_{z^{+}=0, \, z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t) \, \bar{u}(p') \gamma^{+} \gamma_{5} u(p) + \tilde{E}^{q}(x,\xi,t) \, \bar{u}(p') \frac{\gamma_{5} \, \Delta^{+}}{2m} u(p) \right]. \end{split}$$

 $H^q \xrightarrow{\xi=0,t=0} \text{PDF } q \qquad \tilde{H}^q \xrightarrow{\xi=0,t=0} \text{ polarised PDF } \Delta q$

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs

with helicity flip (chiral-odd Γ matrices): 4 chiral-odd GPDs:

$$\begin{split} &\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \,\bar{q}(-\frac{1}{2}z) \,i\,\sigma^{+i} \,q(\frac{1}{2}z) \,|p\rangle \Big|_{z^{+}=0,\,z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \bar{u}(p') \left[H_{T}^{q} \,i\sigma^{+i} + \tilde{H}_{T}^{q} \,\frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{m^{2}} \right. \\ &\left. + E_{T}^{q} \,\frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{2m} + \tilde{E}_{T}^{q} \,\frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{m} \right] \,u(p) \,, \end{split}$$

with helicity flip (chiral-odd Γ matrices): 4 chiral-odd GPDs:

$$\begin{split} &\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' | \,\bar{q}(-\frac{1}{2}z) \,i\,\sigma^{+i}\,q(\frac{1}{2}z) \,|p\rangle \Big|_{z^{+}=0,\,z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \bar{u}(p') \left[H_{T}^{q}\,i\sigma^{+i} + \tilde{H}_{T}^{q}\,\frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{m^{2}} \right. \\ &\left. + E_{T}^{q}\,\frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{2m} + \tilde{E}_{T}^{q}\,\frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{m} \right] \,u(p) \,, \end{split}$$

 $H_T^q \xrightarrow{\xi=0,t=0}$ quark transversity PDFs δq

Note:
$$\tilde{E}_T^q(x,-\xi,t) = -\tilde{E}_T^q(x,\xi,t)$$

Definition Why GPDs are interesting to study

3D parton tomography [M. Burkardt hep-ph/0207047; M. Diehl hep-ph/0205208]:

In the $\xi \to 0$ limit, the Fourier transform of the GPD over Δ_{\perp} gives the *impact parameter dependent* PDF, $q(x, b_{\perp})$:

$$q(x,b_{\perp})=\int rac{d^2\Delta_{\perp}}{\left(2\pi
ight)^2}H^q(x,\xi=0,\Delta_{\perp}^2)e^{ib_{\perp}\cdot\Delta_{\perp}}$$

Definition Why GPDs are interesting to study

3D parton tomography [M. Burkardt hep-ph/0207047; M. Diehl hep-ph/0205208]:

In the $\xi \rightarrow 0$ limit, the Fourier transform of the GPD over Δ_{\perp} gives the *impact parameter dependent* PDF, $q(x, b_{\perp})$:

$$q(x,b_{\perp})=\int rac{d^2\Delta_{\perp}}{\left(2\pi
ight)^2}H^q(x,\xi=0,\Delta_{\perp}^2)e^{ib_{\perp}\cdot\Delta_{\perp}}$$

Form Factors:

Integration over x gives the *electromagnetic* FF. Mellin moments in x of GPDs gives the gravitational FFs. connected to the energy-momentum tensor.

Definition Why GPDs are interesting to study

3D parton tomography [M. Burkardt hep-ph/0207047; M. Diehl hep-ph/0205208]:

In the $\xi \rightarrow 0$ limit, the Fourier transform of the GPD over Δ_{\perp} gives the *impact parameter dependent* PDF, $q(x, b_{\perp})$:

$$q(x,b_{\perp})=\int rac{d^2\Delta_{\perp}}{\left(2\pi
ight)^2}H^q(x,\xi=0,\Delta_{\perp}^2)e^{ib_{\perp}\cdot\Delta_{\perp}}$$

Form Factors:

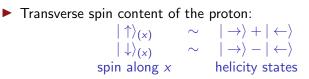
Integration over x gives the *electromagnetic* FF. Mellin moments in x of GPDs gives the gravitational FFs. connected to the energy-momentum tensor.

Connection to nucleon spin: Ji sum rule [X. Ji hep-ph/9603249]

$$2J^{q} = \int_{-1}^{1} dx \, x \, (H^{q}(x,\xi,0) + E^{q}(x,\xi,0))$$

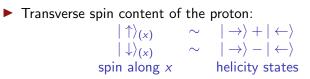
Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs

Understanding quark transversity



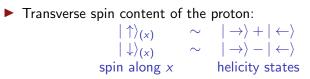
 Observables which are sensitive to helicity flip thus give access to transversity PDFs. Poorly known.

Understanding quark transversity



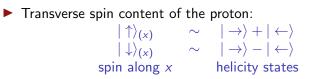
- Observables which are sensitive to helicity flip thus give access to transversity PDFs. Poorly known.
- Transversity GPDs are completely unknown experimentally.

Understanding quark transversity



- Observables which are sensitive to helicity flip thus give access to transversity PDFs. Poorly known.
- Transversity GPDs are completely unknown experimentally.
- ► For massless (anti)particles, chirality = (-)helicity
- Transversity GPDs can thus be accessed through chiral-odd F matrices.

Understanding quark transversity



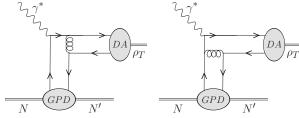
- Observables which are sensitive to helicity flip thus give access to transversity PDFs. Poorly known.
- Transversity GPDs are completely unknown experimentally.
- ► For massless (anti)particles, chirality = (-)helicity
- Transversity GPDs can thus be accessed through chiral-odd F matrices.
- Since (in the massless limit) QCD and QED are chiral-even $(\gamma^{\mu}, \gamma^{\mu}\gamma^{5})$, the chiral-odd quantities $(1, \gamma^{5}, [\gamma^{\mu}, \gamma^{\nu}])$ which one wants to measure should appear in pairs.

• the leading DA (twist 2) of ρ_T is chiral-odd ($\sigma^{\mu\nu}$ coupling)

- the leading DA (twist 2) of ρ_T is chiral-odd ($\sigma^{\mu\nu}$ coupling)
- unfortunately $\gamma^* N \rightarrow \rho_T N' = 0$, since such a process would require a helicity transfer of 2 from a photon. [M. Diehl,

T. Gousset, B. Pire: hep-ph/9808479], [J. Collins, M. Diehl: hep-ph/9907498]

- the leading DA (twist 2) of ρ_T is chiral-odd ($\sigma^{\mu\nu}$ coupling)
- unfortunately γ* N → ρ_T N' = 0, since such a process would require a helicity transfer of 2 from a photon. [M. Diehl, T. Gousset, B. Pire: hep-ph/9808479], [J. Collins, M. Diehl: hep-ph/9907498]
- Iowest order diagrammatic argument:



 $\gamma^{\alpha}[\gamma^{\mu},\gamma^{\nu}]\gamma_{\alpha}=\mathbf{0}$

Vanishing of chiral-odd amplitude in DVMP only occurs at twist 2 Vanishing of chiral-odd amplitude in DVMP only occurs at twist 2

At twist 3 this process does not vanish [S. Ahmad, G. Goldstein, S. Liuti: 0805.3568], [S. Goloskokov, P. Kroll: 1106.4897, 1310.1472]

- Vanishing of chiral-odd amplitude in DVMP only occurs at twist 2
- At twist 3 this process does not vanish [S. Ahmad, G. Goldstein, S. Liuti: 0805.3568], [S. Goloskokov, P. Kroll: 1106.4897, 1310.1472]
- However processes involving twist 3 DAs may face problems with factorisation (end-point singularities)

 \Rightarrow can be made safe in the high-energy k_T -factorisation approach

[I. Anikin, D. Ivanov, B. Pire, L. Szymanowski, S. Wallon: 0909.4090]

Circumvent this using 3-body final states:

▶ $\gamma N \rightarrow MMN'$:

D. Ivanov, B. Pire, L. Szymanowski, O. Teryaev: [hep-ph/0209300] R. Enberg, B. Pire, L. Szymanowski: [hep-ph/0601138]

M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, S. Wallon: [1001.4491]

$$\blacktriangleright \gamma N \rightarrow \gamma M N':$$

R. Boussarie, B. Pire, L. Szymanowski, S. Wallon: [1609.03830]

G. Duplančić, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon: [1809.08104]

G. Duplančić, **S.N.**, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon: [2212.00655, 2302.12026]

Circumvent this using 3-body final states:

▶ $\gamma N \rightarrow MMN'$:

D. Ivanov, B. Pire, L. Szymanowski, O. Teryaev: [hep-ph/0209300]

R. Enberg, B. Pire, L. Szymanowski: [hep-ph/0601138]

M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, S. Wallon: [1001.4491]

$$\blacktriangleright \gamma N \rightarrow \gamma M N':$$

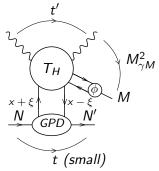
R. Boussarie, B. Pire, L. Szymanowski, S. Wallon: [1609.03830]

G. Duplančić, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon: [1809.08104]

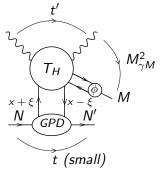
G. Duplančić, S.N., K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon: [2212.00655, 2302.12026]

Moreover, the richer kinematics of the process allows the sensitivity of GPDs wrt x to be probed (beyond moment-type dependence, e.g. in DVCS): J. Qiu, Z. Yu: [2305.15397]

• Consider the process $\gamma N \rightarrow \gamma MN'$, M =meson. Collinear factorisation of the amplitude at large $M^2_{\gamma M}$, t', u', and small t.

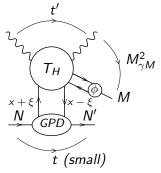


• Consider the process $\gamma N \rightarrow \gamma MN'$, M =meson. Collinear factorisation of the amplitude at large $M^2_{\gamma M}$, t', u', and small t.



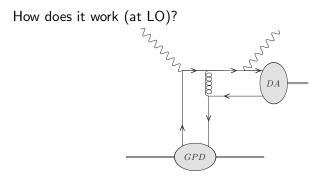
• Mesons considered in the final state: π^{\pm} , $\rho_{L,T}^{\pm,0}$.

• Consider the process $\gamma N \rightarrow \gamma MN'$, M =meson. Collinear factorisation of the amplitude at large $M^2_{\gamma M}$, t', u', and small t.



- Mesons considered in the final state: π^{\pm} , $\rho_{L,T}^{\pm,0}$.
- Leading order and leading twist.

Chiral-odd GPDs using $\rho_T \gamma$ production

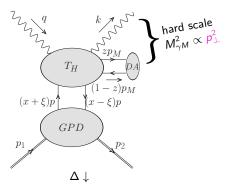


Typical non-zero diagram for a transverse ρ meson

the σ matrices (from either the DA or the GPD) do not kill it anymore!

Computation Kinematics

$\gamma(q) + N(p_1) \rightarrow \gamma(k) + M(p_M, \varepsilon_M) + N'(p_2)$



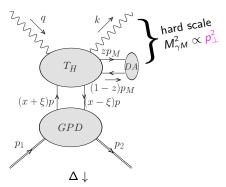
Useful Mandelstam variables:

$$egin{aligned} t &= (p_2 - p_1)^2\,, \ u' &= (p_M - q)^2\,, \ t' &= (k - q)^2\,, \ S_{\gamma N} &= (q + p_1)^2 \end{aligned}$$

► Factorisation requires: $-u' > 1 \text{ GeV}^2$, $-t' > 1 \text{ GeV}^2$ and $(-t)_{\min} \leq -t \leq .5 \text{ GeV}^2$ \implies sufficient to ensure large p_T .

Computation Kinematics

$\gamma(q) + N(p_1) \rightarrow \gamma(k) + M(p_M, \varepsilon_M) + N'(p_2)$



Useful Mandelstam variables:

$$egin{aligned} t &= (p_2 - p_1)^2\,, \ u' &= (p_M - q)^2\,, \ t' &= (k - q)^2\,, \ S_{\gamma N} &= (q + p_1)^2\,. \end{aligned}$$

► Factorisation requires: $-u' > 1 \text{ GeV}^2$, $-t' > 1 \text{ GeV}^2$ and $(-t)_{\min} \leq -t \leq .5 \text{ GeV}^2$ \implies sufficient to ensure large p_T .

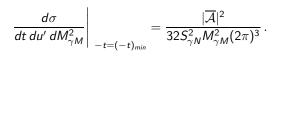
• Cross-section differential in (-u') and $M^2_{\gamma M}$, and evaluated at $(-t) = (-t)_{\min}$, covering $S_{\gamma N}$ from $\sim 4 \text{ GeV}^2$ to 20000 GeV².

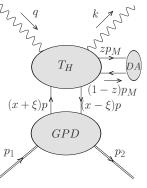
Computation Method

$$\mathcal{A} = \int_{-1}^{1} dx \int_{0}^{1} dz \ T(x,\xi,z) \ H(x,\xi,t) \ \Phi_{M}(z)$$

$$\mathcal{A} = \int_{-1}^{1} dx \int_{0}^{1} dz \ T(x,\xi,z) \ H(x,\xi,t) \ \Phi_{M}(z)$$

Differential cross section:





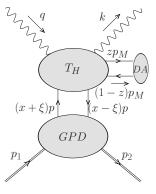
$$\mathcal{A} = \int_{-1}^{1} dx \int_{0}^{1} dz \ T(x,\xi,z) \ H(x,\xi,t) \ \Phi_{M}(z)$$

Differential cross section:

$$\left. \frac{d\sigma}{dt\,du'\,dM_{\gamma M}^2} \right|_{-t=(-t)_{min}} = \frac{|\overline{\mathcal{A}}|^2}{32S_{\gamma N}^2M_{\gamma M}^2(2\pi)^3} \,.$$

- Kinematic parameters: $S_{\gamma N}$, $M^2_{\gamma M}$, -t, -u'
- Useful dimensionless variables (hard part):

$$\begin{split} \alpha &= \frac{-u'}{M_{\gamma M}^2} \,, \\ \xi &= \frac{M_{\gamma M}^2}{2 \left(S_{\gamma N} - m_N^2 \right) - M_{\gamma M}^2} \end{split}$$



Quark GPDs are parametrised in terms of Double Distributions [A. Radyushkin: hep-ph/9805342]

Quark GPDs are parametrised in terms of Double Distributions [A. Radyushkin: hep-ph/9805342]

For polarised PDFs Δq (and hence transversity PDFs δq), two scenarios are proposed for the parameterization:

- "standard" scenario, with flavor-symmetric light sea quark and antiquark distributions.
- "valence" scenario with a completely flavor-asymmetric light sea quark densities.

We take the simplistic asymptotic form of the DAs

$$\phi_{\rm as}(z)=6z(1-z)\,.$$

We take the simplistic asymptotic form of the DAs

$$\phi_{\rm as}(z)=6z(1-z)\,.$$

We also investigate the effect of using a holographic DA:

$$\phi_{\mathrm{hol}}(z) = \frac{8}{\pi} \sqrt{z(1-z)}.$$

Suggested by

- AdS/QCD correspondence [S. Brodsky, G. de Teramond: hep-ph/0602252],
- dynamical chiral symmetry breaking on the light-front [C. Shi, C. Chen, L. Chang, C. Roberts, S. Schmidt, H, Zong: 1504.00689],
- recent lattice results. [X. Gao, A. Hanlon, N. Karthik, S. Mukherjee,

P. Petreczky, P. Scior, S. Syritsyn, Y. Zhao: 2206.04084]

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs

- ► Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N'$ by J. Qiu, Z. Yu [2205.07846].
- ▶ This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]

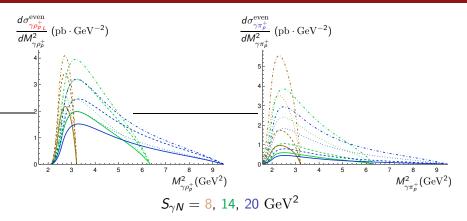
- ► Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N'$ by J. Qiu, Z. Yu [2205.07846].
- ▶ This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- The proof relies on having large p_T, rather than large invariant mass (e.g. photon-meson pair).

- ► Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N'$ by J. Qiu, Z. Yu [2205.07846].
- ▶ This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- ► The proof relies on having large p_T, rather than large invariant mass (e.g. photon-meson pair).
- ▶ In fact, NLO computation has been performed for $\gamma N \rightarrow \gamma \gamma N'$ by O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner [2110.00048, 2204.00396]
- Also, NLO computation for γγ → π⁺π⁻ by crossing symmetry G. Duplancic, B. Nizic: [hep-ph/0607069].

- ► Recently, factorisation has been proved for the process $\pi N \rightarrow \gamma \gamma N'$ by J. Qiu, Z. Yu [2205.07846].
- ▶ This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- ► The proof relies on having large p_T, rather than large invariant mass (e.g. photon-meson pair).
- ▶ In fact, NLO computation has been performed for $\gamma N \rightarrow \gamma \gamma N'$ by O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner [2110.00048, 2204.00396]
- ► Also, NLO computation for γγ → π⁺π⁻ by crossing symmetry G. Duplancic, B. Nizic: [hep-ph/0607069].

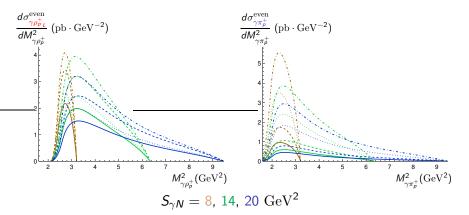
Issues with exclusive $\pi^0 \gamma$ photoproduction...

Results Single differential cross-section: 340



Dashed: Holographic DAnon-dashed: Asymptotical DADotted: standard scenarionon-dotted: valence scenario

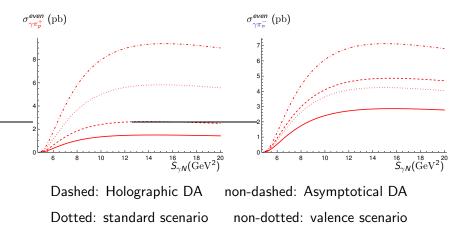
Results Single differential cross-section: *mp*



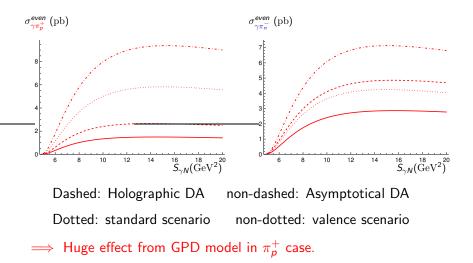
vs $\gamma \pi_p^+$

Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario \implies Effect of GPD model more important on π_p^+ than on ρ_p^+

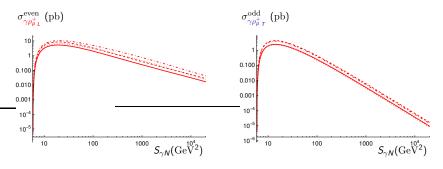
Results Integrated cross-section: $\gamma \pi_0^+$ vs $\gamma \pi_0^-$



Results Integrated cross-section: $\gamma \pi_0^+$ vs $\gamma \pi_0^-$



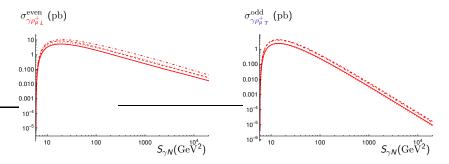
Results Integrated cross-section: $\gamma \rho_{pT}^+$ vs $\gamma \rho_p^+$



Dashed: Holographic DAnon-dashed: Asymptotical DADotted: standard scenarionon-dotted: valence scenario

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs

Results Integrated cross-section: $\gamma \rho_{pT}^+$ vs $\gamma \rho_p^+$



Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario $\implies \xi^2$ suppression in the chiral-odd case causes the cross-section to drop rapidly with $S_{\gamma N}$ ($\xi \approx \frac{M_{\gamma P}^2}{2S_{\gamma N}}$).

- Circular polarisation asymmetry = 0. (QCD/QED invariance under parity)
- Linear polarisation asymmetry, LPA = $\frac{d\sigma_x d\sigma_y}{d\sigma_x + d\sigma_y}$, where x is the direction defined by p_{\perp} (direction of outgoing photon in the transverse plane).

- Circular polarisation asymmetry = 0. (QCD/QED invariance under parity)
- ► Linear polarisation asymmetry, LPA = $\frac{d\sigma_x d\sigma_y}{d\sigma_x + d\sigma_y}$, where x is the direction defined by p_{\perp} (direction of outgoing photon in the transverse plane).

In fact,

$$LPA_{Lab} = LPA\cos(2\theta)$$
,

where θ is the angle between the lab frame x-direction and p_{\perp} .

- Circular polarisation asymmetry = 0. (QCD/QED invariance under parity)
- ► Linear polarisation asymmetry, LPA = $\frac{d\sigma_x d\sigma_y}{d\sigma_x + d\sigma_y}$, where x is the direction defined by p_{\perp} (direction of outgoing photon in the transverse plane).

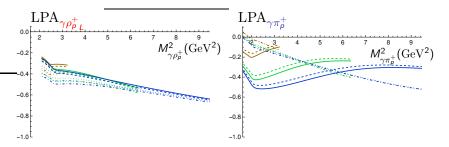
In fact,

$$LPA_{Lab} = LPA\cos(2\theta)$$
,

where θ is the angle between the lab frame x-direction and p_{\perp} .

- ► Kleiss-Sterling spinor techniques used to obtain expressions.
- Both asymmetries zero in chiral-odd case!

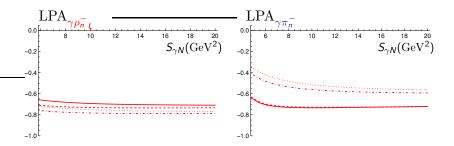
Results LPA wrt incoming photon: Single-differential level: $\gamma p_{p_1}^+$ vs $\gamma \pi_p^+$



 $S_{\gamma N} = 8$, 14, 20 GeV²

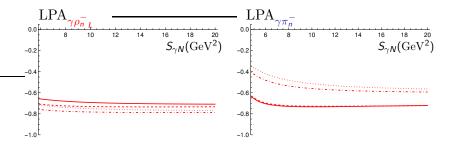
Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario \implies GPD model changes the behaviour of the LPA completely in the π_p^+ case!

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs



Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs



Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

 \Rightarrow LPAs are sizeable!

Good statistics: For example, at JLab Hall B:

▶ untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution

Good statistics: For example, at JLab Hall B:

- ▶ untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- ▶ with an expected luminosity of L = 100 nb⁻¹s⁻¹, for 100 days of run:

$$\begin{array}{l} - \ \rho_L^0 \ ({\rm on} \ p) : \approx 2.4 \times 10^5 \\ - \ \rho_T^0 \ ({\rm on} \ p) : \approx 4.2 \times 10^4 \ ({\rm Chiral-odd}) \\ - \ \rho_L^+ : \approx 1.4 \times 10^5 \\ - \ \rho_T^+ : \approx 6.7 \times 10^4 \ ({\rm Chiral-odd}) \\ - \ \pi^+ : \approx 1.8 \times 10^5 \end{array}$$

Good statistics: For example, at JLab Hall B:

- ▶ untagged incoming $\gamma \Rightarrow$ Weizsäcker-Williams distribution
- ▶ with an expected luminosity of L = 100 nb⁻¹s⁻¹, for 100 days of run:

-
$$ho_L^0$$
 (on p) : $pprox 2.4 imes 10^5$

- ho_T^0 (on p) : pprox 4.2 imes 10⁴ (Chiral-odd)

-
$$ho_L^+$$
 : $pprox$ 1.4 $imes$ 10⁵

- $ho_T^+:pprox$ 6.7 imes 10⁴ (Chiral-odd)
- $\pi^+:pprox 1.8 imes 10^5$

▶ No problem in detecting outgoing photon at JLab.

Prospects at experiments Counting rates: EIC

- At the future EIC, with an expected integrated luminosity of 10 fb⁻¹ (about 100 times smaller than JLab):
 - ho_L^0 (on p) : pprox 2.4 imes 10⁴
 - ho_T^0 (on p) : $pprox 2.4 imes 10^3$ (Chiral-odd)

-
$$\rho_L^+:\approx 1.5 imes 10^4$$

-
$$ho_T^+$$
 : $pprox$ 4.2 $imes$ 10³ (Chiral-odd)

-
$$\pi^+:\approx 1.3 imes 10^4$$

Prospects at experiments Counting rates: EIC

- At the future EIC, with an expected integrated luminosity of 10 fb⁻¹ (about 100 times smaller than JLab):
 - ho_L^0 (on p) : pprox 2.4 imes 10⁴
 - ho_T^0 (on p) : $pprox 2.4 imes 10^3$ (Chiral-odd)

-
$$\rho_L^+:\approx 1.5 imes 10^4$$

$$-
ho_T^+$$
 : $pprox$ 4.2 $imes$ 10³ (Chiral-odd)

-
$$\pi^+$$
 : $pprox$ 1.3 $imes$ 10⁴

► Small ξ study: $300 < S_{\gamma N} / \text{GeV}^2 < 20000 \ (5 \cdot 10^{-5} < \xi < 5 \cdot 10^{-3}):$ $-\rho_L^0 \ (\text{on } p) : \approx 1.2 \times 10^3$ $-\rho_T^0 \ (\text{on } p) : \approx 6.5 \ (\text{Chiral-odd}) \ (\text{tiny})$ $-\rho_L^+ : \approx 9.3 \times 10^2$ $-\pi^+ : \approx 5.0 \times 10^2$

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs

Prospects at experiments LHC at UPC

For p-Pb UPCs at LHC (integrated luminosity of 1200 nb^{-1}):

▶ With future data from runs 3 and 4,

-
$$ho_L^0$$
 : $pprox$ 1.6 $imes$ 10⁴

- ho_T^0 : pprox 1.7 imes 10³ (Chiral-odd)

-
$$ho_L^+:pprox 1.1 imes 10^4$$

-
$$ho_T^+$$
 : $pprox$ 2.9 $imes$ 10³ (Chiral-odd)

-
$$\pi^+$$
 : \approx 9.3 $imes$ 10³

Prospects at experiments LHC at UPC

For p-Pb UPCs at LHC (integrated luminosity of 1200 nb^{-1}):

▶ With future data from runs 3 and 4,

-
$$ho_L^0$$
 : $pprox$ 1.6 $imes$ 10⁴

-
$$ho_T^0$$
 : $pprox$ 1.7 $imes$ 10³ (Chiral-odd)

-
$$\rho_L^+$$
 : $\approx 1.1 \times 10^4$

-
$$ho_T^+$$
 : $pprox$ 2.9 $imes$ 10³ (Chiral-odd)

- $\pi^+:\approx 9.3\times 10^3$

► $300 < S_{\gamma N} / \text{GeV}^2 < 20000 \ (5 \cdot 10^{-5} < \xi < 5 \cdot 10^{-3})$:

-
$$ho_L^0$$
 : $pprox$ 8.1 $imes$ 10²

-
$$ho_L^+:pprox$$
 6.4 $imes$ 10²

-
$$\pi^+:pprox$$
 3.4 $imes$ 10²

Factorisation breaking effects in $\pi^0\gamma$ photoproduction $_{\rm Gluon \ GPD \ contributions}$

• Because of the quantum numbers of π^0 ($J^{PC} = 0^{-+}$), the exclusive photoproduction of $\pi^0 \gamma$ is also sensitive to gluon *GPD contributions*.

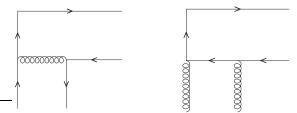
Factorisation breaking effects in $\pi^0\gamma$ photoproduction $_{\rm Gluon\ GPD\ contributions}$

- Because of the quantum numbers of π^0 ($J^{PC} = 0^{-+}$), the exclusive photoproduction of $\pi^0 \gamma$ is also sensitive to gluon *GPD contributions*.
- A total of 24 diagrams contribute in this case (compared to 20 diagrams from quark GPD contributions), with 6 groups of 4 related by symmetries (x → −x and z → 1 − z separately).

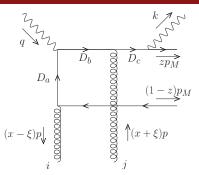
Factorisation breaking effects in $\pi^0\gamma$ photoproduction $_{\rm Gluon \ GPD \ contributions}$

- Because of the quantum numbers of π^0 ($J^{PC} = 0^{-+}$), the exclusive photoproduction of $\pi^0 \gamma$ is also sensitive to gluon *GPD contributions*.
- A total of 24 diagrams contribute in this case (compared to 20 diagrams from quark GPD contributions), with 6 groups of 4 related by symmetries (x → −x and z → 1 − z separately).

 Diagrams amount to connecting photons to the following two topologies.



Investigation of a problematic diagram



$$CF \sim \frac{\mathrm{Tr}\left[\not{p}_{M}\gamma^{5}\not{\epsilon}_{k}\left(\not{k}+z\not{p}_{M}\right)\gamma^{j}\left(\not{q}-(x-\xi)\not{p}-\bar{z}\not{p}_{M}\right)\not{\epsilon}_{q}\left(-(x-\xi)\not{p}-\bar{z}\not{p}_{M}\right)\gamma^{i}\right]}{\left[2z\,kp_{M}\right]\left[-2\,(x-\xi)\,qp-2\bar{z}\,qp_{M}+2\bar{z}\,(x-\xi)\,pp_{M}+i\epsilon\right]\left[2\bar{z}\,(x-\xi)\,pp_{M}+i\epsilon\right]}$$

$$\xrightarrow{x \to \xi, \overline{z} \to 0} \propto \frac{x - \xi}{\left[(x - \xi) + A\overline{z} - i\epsilon \right] \left[\overline{z} \left(x - \xi \right) + i\epsilon \right]}, \qquad A \equiv \frac{q p_M}{q p} > 0.$$

(Assuming p_M is along minus direction)

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs

Investigation of a problematic diagram

Need to dress coefficient function CF with gluon GPD

$$\begin{pmatrix} H_{g}(x) \\ (x-\xi+i\epsilon)(x+\xi-i\epsilon) \end{pmatrix}, \text{ and DA } (z\bar{z}). \text{ This gives} \\
\mathcal{A} \sim \frac{\bar{z} (x-\xi) H_g(x)}{(x-\xi+i\epsilon) [(x-\xi) + A\bar{z} - i\epsilon] [\bar{z} (x-\xi) + i\epsilon]} \\
\longrightarrow \frac{H_g(x)}{[(x-\xi) + A\bar{z} - i\epsilon] [x-\xi+i\epsilon]}$$

Investigation of a problematic diagram

Need to dress coefficient function CF with gluon GPD

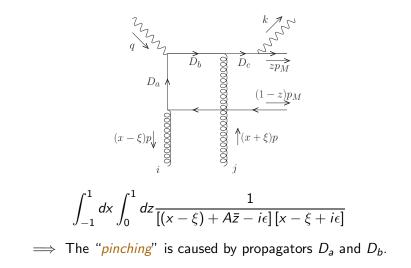
$$\begin{pmatrix} H_g(x) \\ (x-\xi+i\epsilon)(x+\xi-i\epsilon) \end{pmatrix}, \text{ and DA } (z\bar{z}). \text{ This gives} \\
\mathcal{A} \sim \frac{\bar{z} (x-\xi) H_g(x)}{(x-\xi+i\epsilon) [(x-\xi)+A\bar{z}-i\epsilon] [\bar{z} (x-\xi)+i\epsilon]} \\
\longrightarrow \frac{H_g(x)}{[(x-\xi)+A\bar{z}-i\epsilon] [x-\xi+i\epsilon]}$$

The integral over z and x diverges if the GPD $H_g(x)$ is non-vanishing at $x = \xi$:

$$\int_{-1}^{1} dx \int_{0}^{1} dz \frac{1}{[(x-\xi) + A\overline{z} - i\epsilon] [x-\xi + i\epsilon]}$$
$$\supset \int_{-1}^{1} dx \frac{\ln (x-\xi - i\epsilon)}{[x-\xi + i\epsilon]} \implies \text{divergent imaginary part}$$

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs

Investigation of a problematic diagram



Factorisation breaking effects in $\pi^0\gamma$ photoproduction $_{\rm Full \ Amplitude}$

What about the sum of diagrams?

$$\sum \mathcal{A} \sim \frac{z\bar{z} \left(x^{2} - \xi^{2}\right) \left[-\alpha \left[\left(x^{2} - \xi^{2}\right)^{2} \left(1 - 2z\bar{z}\right) + 8x^{2}\xi^{2}z\bar{z}\right] - \left(1 + \alpha^{2}\right) z\bar{z} \left(x^{4} - \xi^{4}\right)\right] H_{g}(x)}{z\bar{z} \left[x - \xi + i\epsilon\right]^{2} \left[\bar{z} \left(x + \xi\right) - \alpha z \left(x - \xi\right) - i\epsilon\right] \left[z \left(x - \xi\right) + \alpha \bar{z} \left(x + \xi\right) - i\epsilon\right]} \\ \times \frac{1}{\left[x + \xi - i\epsilon\right]^{2} \left[\bar{z} \left(x - \xi\right) + \alpha z \left(x + \xi\right) - i\epsilon\right] \left[z \left(x + \xi\right) - \alpha \bar{z} \left(x - \xi\right) - i\epsilon\right]} \\ x \to \xi_{,\bar{z} \to 0} \propto \frac{\left[-\alpha \left[\left(x^{2} - \xi^{2}\right)^{2} \left(1 - 2z\bar{z}\right) + 8x^{2}\xi^{2}z\bar{z}\right] - \left(1 + \alpha^{2}\right) z\bar{z} \left(x^{4} - \xi^{4}\right)\right] H_{g}(x)}{\left[x - \xi + i\epsilon\right] \left[2\xi\bar{z} - \alpha \left(x - \xi\right) - i\epsilon\right] \left[(x - \xi) + 2\xi\alpha\bar{z} - i\epsilon\right]}$$

Factorisation breaking effects in $\pi^0\gamma$ photoproduction $_{\rm Full \ Amplitude}$

What about the sum of diagrams?

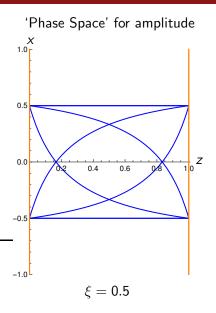
$$\sum \mathcal{A} \sim \frac{z\bar{z} \left(x^{2} - \xi^{2}\right) \left[-\alpha \left[\left(x^{2} - \xi^{2}\right)^{2} \left(1 - 2z\bar{z}\right) + 8x^{2}\xi^{2}z\bar{z}\right] - \left(1 + \alpha^{2}\right) z\bar{z} \left(x^{4} - \xi^{4}\right)\right] H_{g}(x)}{z\bar{z} \left[x - \xi + i\epsilon\right]^{2} \left[\bar{z} \left(x + \xi\right) - \alpha z \left(x - \xi\right) - i\epsilon\right] \left[z \left(x - \xi\right) + \alpha \bar{z} \left(x + \xi\right) - i\epsilon\right]} \\ \times \frac{1}{\left[x + \xi - i\epsilon\right]^{2} \left[\bar{z} \left(x - \xi\right) + \alpha z \left(x + \xi\right) - i\epsilon\right] \left[z \left(x + \xi\right) - \alpha \bar{z} \left(x - \xi\right) - i\epsilon\right]} \\ x \to \xi, \bar{z} \to 0_{\infty} \frac{\left[-\alpha \left[\left(x^{2} - \xi^{2}\right)^{2} \left(1 - 2z\bar{z}\right) + \left(8x^{2}\xi^{2}z\bar{z}\right)\right] - \left(1 + \alpha^{2}\right) z\bar{z} \left(x^{4} - \xi^{4}\right)\right] H_{g}(x)}{\left[x - \xi + i\epsilon\right] \left[2\xi\bar{z} - \alpha \left(x - \xi\right) - i\epsilon\right] \left[(x - \xi) + 2\xi\alpha\bar{z} - i\epsilon\right]}$$

Full amplitude (anti)-symmetric in $x \to -x$ and $z \to \overline{z}$ for (anti)-symmetric GPD. (only symmetric result shown above)

 \implies *divergence survives*, and actually adds up.

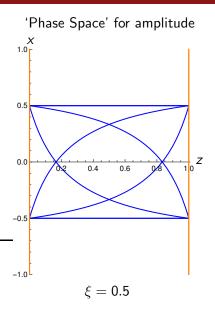
Factorisation breaking effects in $\pi^0\gamma$ photoproduction

Gluon GPD contributions: Singularity structure of the full amplitude

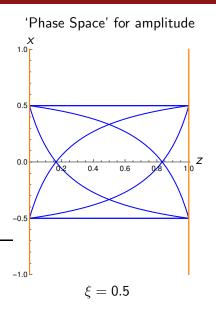


Factorisation breaking effects in $\pi^0 \gamma$ photoproduction

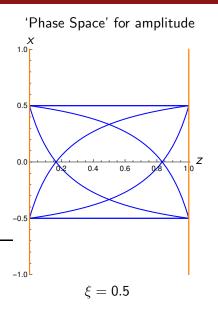
Gluon GPD contributions: Singularity structure of the full amplitude



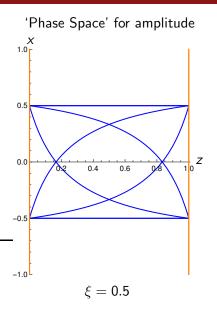
 Unfortunately, no cancellations between the 4 corners.



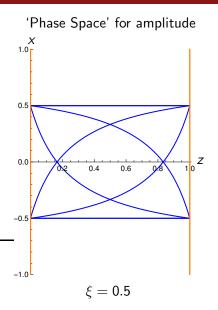
- Unfortunately, no cancellations between the 4 corners.
- In *γγ* → *MM*, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.



- Unfortunately, no cancellations between the 4 corners.
- In γγ → MM, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation? At twist-2??



- Unfortunately, no cancellations between the 4 corners.
- In γγ → MM, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation? At twist-2??
- Can this divergence be understood from a theoretical point of view?



- Unfortunately, no cancellations between the 4 corners.
- In γγ → MM, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation? At twist-2??
- Can this divergence be understood from a theoretical point of view?

 $\mathsf{YES!} \implies [S. N., J. Schönleber,$

L. Szymanowski, S. Wallon: 2311.09146]

Factorisation breaking effects in $\pi^0\gamma$ photoproduction Reduced diagram analysis

How to obtain the dominant contribution of an amplitude (in QCD) in a certain specific kinematics (e. g. collinear)?

 Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252; Phys.Rev.D 18 (1978) 4737]

Factorisation breaking effects in $\pi^0\gamma$ photoproduction Reduced diagram analysis

- How to obtain the dominant contribution of an amplitude (in QCD) in a certain specific kinematics (e. g. collinear)?

 —> Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252; Phys.Rev.D 18 (1978) 4737]
- Extensively used in factorisation proofs [Collins: Foundations of perturbative QCD]
- Basic idea is to identify regions of loop momenta of partons (also number of partons), which gives the dominant contribution to the full amplitude.

Factorisation breaking effects in $\pi^0\gamma$ photoproduction Reduced diagram analysis

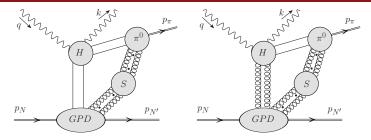
- How to obtain the dominant contribution of an amplitude (in QCD) in a certain specific kinematics (e. g. collinear)?

 —> Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252; Phys.Rev.D 18 (1978) 4737]
- Extensively used in factorisation proofs [Collins: Foundations of perturbative QCD]
- Basic idea is to identify regions of loop momenta of partons (also number of partons), which gives the dominant contribution to the full amplitude.
- Collect all contributions to the *smallest* α :

$$\mathcal{A} = \mathcal{Q}^{eta} \sum_{lpha} f_{lpha} \lambda^{lpha}, \qquad \lambda = rac{\Lambda_{ ext{QCD}}, \ m_{\pi}, \ m_{N}}{Q} \ll 1$$

Factorisation breaking effects in $\pi^0\gamma$ photoproduction

Reduced diagram analysis: Classic Collinear pinch

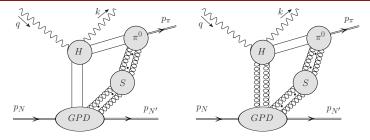


In both of the above cases, the power counting is [S. N., J. Schönleber, L. Szymanowski, S. Wallon: 2311.09146]:

$$\mathcal{A} \sim Q^{-1} \lambda^{lpha} , \qquad \lambda = rac{\Lambda_{
m QCD}, \ m_{\pi}, \ m_{N}}{Q} \ll 1 , \qquad lpha = 1$$

Factorisation breaking effects in $\pi^0\gamma$ photoproduction

Reduced diagram analysis: Classic Collinear pinch



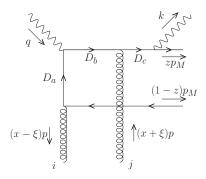
In both of the above cases, the power counting is [S. N., J. Schönleber, L. Szymanowski, S. Wallon: 2311.09146]:

$$\mathcal{A} \sim Q^{-1} \lambda^{lpha} \,, \qquad \lambda = rac{\Lambda_{
m QCD}, \ m_{\pi}, \ m_{N}}{Q} \ll 1 \,, \qquad lpha = 1$$

Collinear factorisation at *all orders* and *leading power* provided:

the above (classic) collinear pinch diagrams are the only ones contributing to the leading power of α = 1

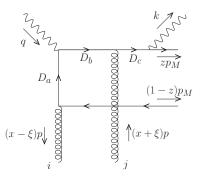
Factorisation breaking effects in $\pi^0\gamma$ photoproduction Other pinch surfaces?



Divergence obtained when $(x - \xi) p$ and $(1 - z) p_M$ lines become soft:

 \implies D_a becomes soft and D_b becomes collinear with respect to q.

Factorisation breaking effects in $\pi^0\gamma$ photoproduction Other pinch surfaces?

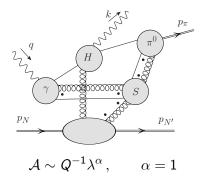


Divergence obtained when $(x - \xi) p$ and $(1 - z) p_M$ lines become soft:

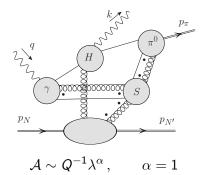
 $\implies D_a$ becomes soft and D_b becomes collinear with respect to q.

Is there a *leading* pinch diagram that corresponds to this region? *Yes!*

Factorisation breaking effects in $\pi^0 \gamma$ photoproduction Other pinch surfaces?

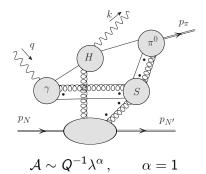


Factorisation breaking effects in $\pi^0\gamma$ photoproduction Other pinch surfaces?



 \implies power counting is the same as the collinear region!

Factorisation breaking effects in $\pi^0\gamma$ photoproduction Other pinch surfaces?



⇒ power counting is the same as the collinear region!
Note: Corresponding reduced diagram for quark GPD case is power suppressed.

Factorisation breaking effects in $\pi^0\gamma$ photoproduction

What exactly does the pinch surface correspond to?

• Use Sudakov basis $(+, -, \bot)$:

 $\text{Collinear} \quad k \sim Q\left(1, \lambda^2, \lambda\right) \quad \left(\text{or} \quad k \sim Q\left(\lambda^2, 1, \lambda\right)\right)$

• Use Sudakov basis $(+, -, \bot)$:

$$\text{Collinear} \quad k \sim Q\left(1, \lambda^2, \lambda\right) \quad \left(\text{or} \quad k \sim Q\left(\lambda^2, 1, \lambda\right)\right)$$

Need to distinguish between *ultrasoft*, *soft* and *Glauber* gluons:

 $\begin{array}{lll} \text{Ultrasoft} & k \sim Q\left(\lambda^2, \lambda^2, \lambda^2\right) \\ \text{Soft} & k \sim Q\left(\lambda, \lambda, \lambda\right) \\ \text{Glauber} & k \sim Q\left(\lambda^2, \lambda^2, \lambda\right) \quad \text{(or similar with } |k_{\perp}^2| \gg k^+k^-) \end{array}$

• Use Sudakov basis
$$(+, -, \bot)$$
:

$$\text{Collinear} \quad k \sim Q\left(1, \lambda^2, \lambda\right) \quad \left(\text{or} \quad k \sim Q\left(\lambda^2, 1, \lambda\right)\right)$$

Need to distinguish between *ultrasoft*, *soft* and *Glauber* gluons:

 Libby-Sterman power counting formula strictly applies for *ultrasoft* gluons only.

• Use Sudakov basis $(+, -, \bot)$:

 $\text{Collinear} \quad k \sim Q\left(1, \lambda^2, \lambda\right) \quad \left(\text{or} \quad k \sim Q\left(\lambda^2, 1, \lambda\right)\right)$

Need to distinguish between ultrasoft, soft and Glauber gluons:

- Libby-Sterman power counting formula strictly applies for *ultrasoft gluons* only.
- However, these are typically eliminated by the use of Ward identities.

• Use Sudakov basis
$$(+, -, \bot)$$
:

$$\text{Collinear} \quad k \sim Q\left(1, \lambda^2, \lambda\right) \quad \left(\text{or} \quad k \sim Q\left(\lambda^2, 1, \lambda\right)\right)$$

Need to distinguish between ultrasoft, soft and Glauber gluons:

- Libby-Sterman power counting formula strictly applies for *ultrasoft gluons* only.
- However, these are typically eliminated by the use of Ward identities.
- Glauber gluons *cannot* be eliminated/suppressed by the use of Ward identities.

• Use Sudakov basis
$$(+, -, \bot)$$
:

$$\text{Collinear} \quad k \sim Q\left(1, \lambda^2, \lambda\right) \quad \left(\text{or} \quad k \sim Q\left(\lambda^2, 1, \lambda\right)\right)$$

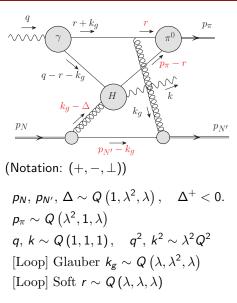
Need to distinguish between *ultrasoft*, *soft* and *Glauber* gluons:

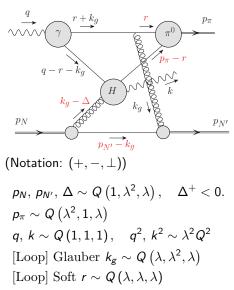
 $\begin{array}{lll} \mbox{Ultrasoft} & k \sim Q\left(\lambda^2, \lambda^2, \lambda^2\right) \\ \mbox{Soft} & k \sim Q\left(\lambda, \lambda, \lambda\right) \\ \mbox{Glauber} & k \sim Q\left(\lambda^2, \lambda^2, \lambda\right) & (\mbox{or similar with } |k_{\perp}^2| \gg k^+k^-) \end{array}$

- Libby-Sterman power counting formula strictly applies for *ultrasoft gluons* only.
- However, these are typically eliminated by the use of Ward identities.
- Glauber gluons *cannot* be eliminated/suppressed by the use of Ward identities.
- Key Question: Is there a Glauber pinch that contributes at leading power?

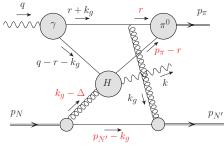
Factorisation breaking effects in $\pi^0\gamma$ photoproduction

Is there a Glauber pinch?





Glauber gluon, since
$$k_g^+ k_g^- << |k_g^\perp|^2$$



Glauber gluon, since $k_g^+ k_g^- << |k_g^\perp|^2$ r^+ pinch:

$$r^{2} + i0 = r^{+}r^{-} - |r_{\perp}|^{2} + i0,$$

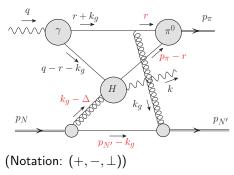
$$\implies r^{+} = \mathcal{O}(\lambda) - \operatorname{sgn}(r^{-}) i0.$$

$$(p_{\pi} - r)^{2} + i0 = -2p_{\pi}^{-}r^{+} + \mathcal{O}(\lambda^{2}) + i0,$$

$$\implies r^{+} = \mathcal{O}(\lambda^{2}) + i0.$$

(Notation: $(+, -, \bot)$)

$$\begin{array}{ll} p_{N},\,p_{N'},\,\Delta\sim Q\left(1,\lambda^{2},\lambda\right), & \Delta^{+}<0.\\ p_{\pi}\sim Q\left(\lambda^{2},1,\lambda\right)\\ q,\,k\sim Q\left(1,1,1\right), & q^{2},\,k^{2}\sim\lambda^{2}Q^{2}\\ [\text{Loop] Glauber }k_{g}\sim Q\left(\lambda,\lambda^{2},\lambda\right)\\ [\text{Loop] Soft }r\sim Q\left(\lambda,\lambda,\lambda\right) \end{array}$$



$$\begin{split} p_{N}, \, p_{N'}, \, \Delta &\sim Q\left(1, \lambda^{2}, \lambda\right), \quad \Delta^{+} < 0. \\ p_{\pi} &\sim Q\left(\lambda^{2}, 1, \lambda\right) \\ q, \, k &\sim Q\left(1, 1, 1\right), \quad q^{2}, \, k^{2} \sim \lambda^{2}Q^{2} \\ \text{[Loop] Glauber } k_{g} &\sim Q\left(\lambda, \lambda^{2}, \lambda\right) \\ \text{[Loop] Soft } r &\sim Q\left(\lambda, \lambda, \lambda\right) \end{split}$$

Glauber gluon, since $k_g^+ k_g^- << |k_g^\perp|^2$ r^+ pinch:

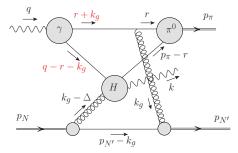
$$r^{2} + i0 = r^{+}r^{-} - |r_{\perp}|^{2} + i0,$$

$$\implies r^{+} = \mathcal{O}(\lambda) - \operatorname{sgn}(r^{-}) i0.$$

$$(p_{\pi} - r)^{2} + i0 = -2p_{\pi}^{-}r^{+} + \mathcal{O}(\lambda^{2}) + i0$$

$$\implies r^+ = \mathcal{O}(\lambda^2) + i0.$$

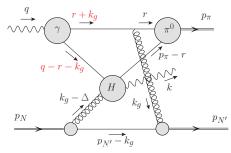
 $k_g^- \text{ pinch:}$ $(k_g - \Delta)^2 + i0 = -2\Delta^+ k_g^- + \mathcal{O}(\lambda^2) + i0$ $\implies k_g^- = \mathcal{O}(\lambda^2) - i0$ $(p_{N'} - k_g)^2 + i0 = -2p_{N'}^+ k_g^- + \mathcal{O}(\lambda^2) + i0$ $\implies k_g^- = \mathcal{O}(\lambda^2) + i0.$



r⁻ *pinch*:

$$(q - r - k_g)^2 + i0$$

= $-2q^+r^- - 2q^-k_g^+ + \mathcal{O}(\lambda) + i0$
 $\implies r^- = \mathcal{O}(\lambda) + i0$
 $(r + k_g)^2 + i0 = 2k_g^+r^- + \mathcal{O}(\lambda^2) + i0$
 $\implies r^- = \mathcal{O}(\lambda) - \operatorname{sgn}(k_g^+)i0$



$$k_g^+ \text{ pinch:}$$

$$(q - r - k_g)^2 + i0$$

$$= -2q^+r^- - 2q^-k_g^+ + \mathcal{O}(\lambda) + i0$$

$$\implies k_g^+ = \mathcal{O}(\lambda) + i0$$

$$(r + k_g)^2 + i0 = 2k_g^+r^- + \mathcal{O}(\lambda^2) + i0$$

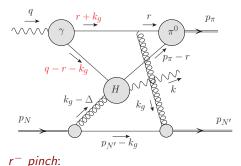
$$\implies k_g^+ = \mathcal{O}(\lambda) - \operatorname{sgn}(r^-)i0$$

r⁻ pinch:

$$(q - r - k_g)^2 + i0$$

= $-2q^+r^- - 2q^-k_g^+ + \mathcal{O}(\lambda) + i0$
 $\implies r^- = \mathcal{O}(\lambda) + i0$
 $(r + k_g)^2 + i0 = 2k_g^+r^- + \mathcal{O}(\lambda^2) + i0$
 $\implies r^- = \mathcal{O}(\lambda) - \operatorname{sgn}(k_g^+)i0$

Pinch when $k_g^+ > 0 \implies \text{DGLAP region}$



$$\begin{aligned} k_g^+ \text{ pinch:} \\ (q-r-k_g)^2 + i0 \\ &= -2q^+r^- - 2q^-k_g^+ + \mathcal{O}(\lambda) + i0 \\ &\implies k_g^+ = \mathcal{O}(\lambda) + i0 \\ (r+k_g)^2 + i0 = 2k_g^+r^- + \mathcal{O}(\lambda^2) + i0 \\ &\implies k_g^+ = \mathcal{O}(\lambda) - \operatorname{sgn}(r^-)i0 \end{aligned}$$

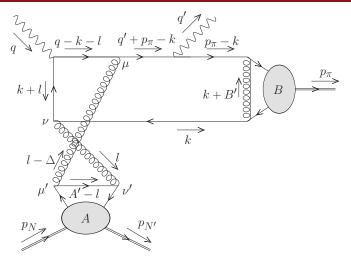
Recall:

$$egin{aligned} & k_{g} \sim Q\left(\lambda,\lambda^{2},\lambda
ight) \ & r \sim Q\left(\lambda,\lambda,\lambda
ight) \end{aligned}$$

 $(q - r - k_g)^2 + i0$ = $-2q^+r^- - 2q^-k_g^+ + \mathcal{O}(\lambda) + i0$

$$\implies r^{-} = \mathcal{O}(\lambda) + i0$$
$$(r + k_g)^2 + i0 = 2k_g^+ r^- + \mathcal{O}(\lambda^2) + i0$$
$$\implies r^- = \mathcal{O}(\lambda) - \operatorname{sgn}(k_g^+)i0$$

Pinch when $k_g^+ > 0 \implies \text{DGLAP region}$



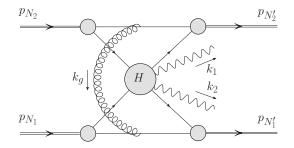
Explicit 2-loop analysis shows that the Glauber pinch demonstrated previously is leading, i.e. it scales as λ^{α} , with $\alpha = 1$.

Very similar to the exclusive double diffractive process, where the Glauber gluon is pinched between the two pairs of incoming and outgoing collinear hadrons.

$$p(p_{N_1}) + p(p_{N_2}) \longrightarrow p(p_{N'_1}) + p(p_{N'_2}) + \gamma(k_1) + \gamma(k_2)$$

Very similar to the exclusive double diffractive process, where the Glauber gluon is pinched between the two pairs of incoming and outgoing collinear hadrons.

$$p(p_{N_1}) + p(p_{N_2}) \longrightarrow p(p_{N_1'}) + p(p_{N_2'}) + \gamma(k_1) + \gamma(k_2)$$



Here, the Glauber pinch corresponds to $k_g \sim (\lambda^2, \lambda^2, \lambda)$

Using the exclusive photoproduction of a photon-meson pair in collinear factorisation to extract GPDs

Instead, here, the Glauber gluon (which corresponds to one of the active partons) is pinched between a pair of collinear hadrons, and a soft line joining the outgoing pion and the incoming photon.

So-called *generalised* Landau conditions [Collins] can also be used to prove the existence of the Glauber pinch here [ongoing]

Instead, here, the Glauber gluon (which corresponds to one of the active partons) is pinched between a pair of collinear hadrons, and a soft line joining the outgoing pion and the incoming photon.

So-called *generalised* Landau conditions [Collins] can also be used to prove the existence of the Glauber pinch here [ongoing]

Conclusions:

- Collinear factorisation for the exclusive $\pi^0 \gamma$ photoproduction *fails* due to the *gluon exchange channel*.
- The same thing happens for the exclusive process $\pi^0 N \rightarrow N \gamma \gamma$ discussed in J. Qiu, Z. Yu [2205.07846].
- Channels where 2-gluon exchanges are forbidden (π[±] and ρ^{0,±}) are safe from the effects discussed here.

Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs: Interesting effects from choice of different mesons, access to chiral-odd GPDs at the leading twist.

Conclusions

- Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs: Interesting effects from choice of different mesons, access to chiral-odd GPDs at the leading twist.
- Especially interesting since it can probe chiral-odd GPDs at the leading twist, and provides better sensitivity to x-dependence of GPDs.

Conclusions

- Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs: Interesting effects from choice of different mesons, access to chiral-odd GPDs at the leading twist.
- Especially interesting since it can probe chiral-odd GPDs at the leading twist, and provides better sensitivity to x-dependence of GPDs.
- Proof of factorisation for this family of processes now available, but $\pi^0 \gamma$ photoproduction suffers from collinear factorisation breaking effects at the leading twist.

Conclusions

- Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs: Interesting effects from choice of different mesons, access to chiral-odd GPDs at the leading twist.
- Especially interesting since it can probe chiral-odd GPDs at the leading twist, and provides better sensitivity to x-dependence of GPDs.
- Proof of factorisation for this family of processes now available, but $\pi^0 \gamma$ photoproduction suffers from collinear factorisation breaking effects at the leading twist.
- Good statistics in various experiments, particularly at JLab.

- Exclusive photoproduction of photon-meson pair provides additional channel for extracting GPDs: Interesting effects from choice of different mesons, access to chiral-odd GPDs at the leading twist.
- Especially interesting since it can probe chiral-odd GPDs at the leading twist, and provides better sensitivity to x-dependence of GPDs.
- Proof of factorisation for this family of processes now available, but $\pi^0 \gamma$ photoproduction suffers from collinear factorisation breaking effects at the leading twist.
- Good statistics in various experiments, particularly at JLab.
- Small ξ limit of GPDs can be investigated by exploiting high energies available in collider mode such as EIC and UPCs at LHC.

• Compute $\gamma N \rightarrow \gamma \pi^0 N$ in high-energy (k_T) factorisation [ongoing]

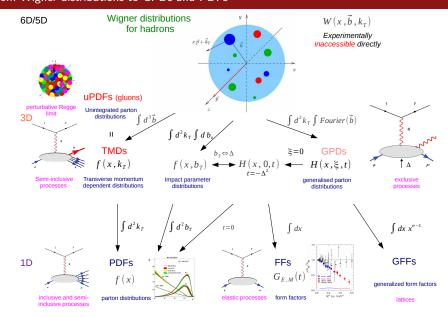
• Compute $\gamma N \rightarrow \gamma \pi^0 N$ in high-energy (k_T) factorisation [ongoing]

► Compute NLO corrections (422 NLO diagrams, vs 20 LO diagrams!). Careful treatment of *i e* factors in denominators [ongoing]

- Compute $\gamma N \rightarrow \gamma \pi^0 N$ in high-energy (k_T) factorisation [ongoing]
- ► Compute NLO corrections (422 NLO diagrams, vs 20 LO diagrams!). Careful treatment of *i e* factors in denominators [ongoing]
- Generalise to electroproduction $(Q^2 \neq 0)$.
- Add Bethe-Heitler component (photon emitted from incoming lepton)
 - zero in chiral-odd case.
 - suppressed in chiral-even case.

BACKUP SLIDES

Introduction From Wigner distributions to GPDs and PDFs



Computation Parametrising the GPDs: Double distributions

$$H^{q}(x,\xi,t=0) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \,\,\delta(\beta+\xi\alpha-x) \,f^{q}(\beta,\alpha)$$

• Ansatz for Double Distributions $f^q(\beta, \alpha)$:

$$\begin{split} &f^{q}(\beta, \alpha, t=0) = \Pi(\beta, \alpha) \, q(\beta) \Theta(\beta) - \Pi(-\beta, \alpha) \, \bar{q}(-\beta) \, \Theta(-\beta) \,, \\ &\tilde{f}^{q}(\beta, \alpha, t=0) = \Pi(\beta, \alpha) \, \Delta q(\beta) \Theta(\beta) + \Pi(-\beta, \alpha) \, \Delta \bar{q}(-\beta) \, \Theta(-\beta) \,. \end{split}$$

chiral-odd sector:

$$f_T^q(\beta, \alpha, t = 0) = \Pi(\beta, \alpha) \, \delta q(\beta) \Theta(\beta) - \Pi(-\beta, \alpha) \, \delta \bar{q}(-\beta) \, \Theta(-\beta) \, .$$

•
$$\Pi(\beta, \alpha) = \frac{3}{4} \frac{(1-\beta)^2 - \alpha^2}{(1-\beta)^3}$$
: profile function

simplistic factorised ansatz for the *t*-dependence:

$$H^q(x,\xi,t) = H^q(x,\xi,t=t_{\min}) \times F_H(t)$$

with
$$F_H(t) = \frac{(t_{\min} - C)^2}{(t - C)^2}$$
 a standard dipole form factor $(C = 0.71 \text{GeV}^2)$

Computation Parametrising the GPDs: ρ_L and π case, Chiral-even

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H^{q}(x, \xi, t)\gamma^{+} + E^{q}(x, \xi, t) \frac{i\sigma^{\alpha+}\Delta_{\alpha}}{2m} \right] u(p_{1}, \lambda_{1})$$

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) \gamma^{+}\gamma^{5} \psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[\tilde{H}^{q}(x, \xi, t)\gamma^{+}\gamma^{5} + \tilde{E}^{q}(x, \xi, t) \frac{\gamma^{5}\Delta^{+}}{2m} \right] u(p_{1}, \lambda_{1})$$

• Take the limit $\Delta_{\perp} = 0$.

In that case <u>and</u> for small ξ, the dominant contributions come from H^q and H^q.

Computation Parametrising the GPDs: ρ_T case, Chiral-odd

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) i\sigma^{+i}\psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H_{T}^{q}(x,\xi,t) i\sigma^{+i} + \tilde{H}_{T}^{q}(x,\xi,t) \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{m_{N}^{2}} + \tilde{E}_{T}^{q}(x,\xi,t) \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{m_{N}} + \tilde{E}_{T}^{q}(x,\xi,t) \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{m_{N}} \right] u(p_{1},\lambda_{1})$$

• Take the limit $\Delta_{\perp} = 0$.

 In that case <u>and</u> for small ξ, the dominant contributions come from H^q_T.

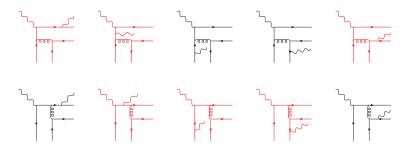
Sets of PDFs used to model GPDs

- q(x) : unpolarised PDF:
 - GRV-98 [M. Glück, E. Reya, A. Vogt: hep-ph/9806404]
 - MSTW2008lo [A. Martin, W. Stirling, R. Thorne, G. Watt: 0901.0002]
 - MSTW2008nnlo [A. Martin, W. Stirling, R. Thorne, G. Watt: 0901.0002]
 - ABM11nnlo [S. Alekhin, J. Blumlein, S. Moch: 1202.2281]
 - CT10nnlo [J. Gao, M. Guzzi, J. Huston, H. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.P. Yuan: 1302.6246]
- $\Delta q(x)$ polarised PDF
 - GRSV-2000 [M. Glück, E. Reya, M. Stratmann, W. Vogelsang: hep-ph/0011215]
- $\delta q(x)$: transversity PDF:
 - Based on parameterisation for TMDs from which transversity PDFs obtained as limiting case [M. Anselmino, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin: 1303.3822]

Effects are not significant! But relevant for NLO corrections!

Computation Hard Part: Diagrams

A total of 20 diagrams to compute

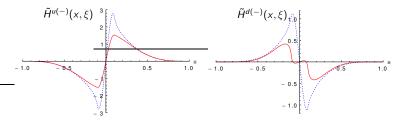


• We compute 10 diagrams: Other half related by $q \leftrightarrow \bar{q}$ (anti)symmetry.

- In fact, by choosing the right gauge, only 4 diagrams can be used to generate all the others by various symmetries (eg. photon exchange).
- Red diagrams cancel in the chiral-odd case

Typical kinematic point (for JLab kinematics): $\xi = .1 \iff S_{\gamma N} = 20 \text{ GeV}^2 \text{ and } M_{\gamma \rho}^2 = 3.5 \text{ GeV}^2$

$$ilde{H}^{q(-)}(x,\xi,t)= ilde{H}^q(x,\xi,t)- ilde{H}^q(-x,\xi,t) \quad [\mathcal{C}=-1]$$

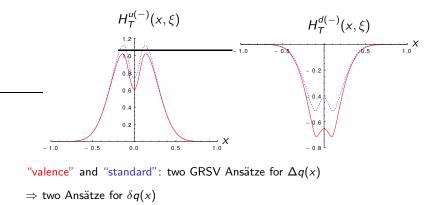


"valence" and "standard": two GRSV Ansätze for $\Delta q(x)$

Computation Valence vs Standard scenarios in H_T (Chiral-odd)

Typical kinematic point (for JLab kinematics): $\xi = .1 \iff S_{\gamma N} = 20 \text{ GeV}^2 \text{ and } M_{\gamma \rho}^2 = 3.5 \text{ GeV}^2$

$$H_T^{q(-)}(x,\xi,t) = H_T^q(x,\xi,t) + H_T^q(-x,\xi,t) \quad [C=-1]$$



• Helicity conserving (vector) DA at twist 2: ρ_L

$$\langle 0|\bar{u}(0)\gamma^{\mu}u(x)|\rho_{L}^{0}(p)
angle = rac{p^{\mu}}{\sqrt{2}}f_{\rho}\int_{0}^{1}du\ e^{-iup\cdot x}\phi_{\rho}(u)$$

• Helicity flip (tensor) DA at twist 2: ρ_T

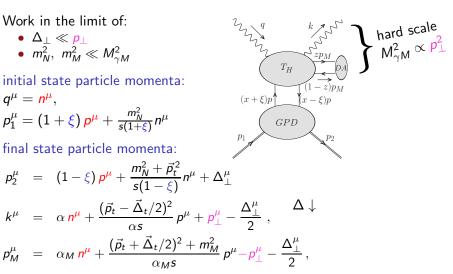
$$\langle 0|\bar{u}(0)\sigma^{\mu\nu}u(x)|\rho_T^0(p,s)\rangle = \frac{i}{\sqrt{2}}(\epsilon_\rho^\mu p^\nu - \epsilon_\rho^\nu p^\mu)f_\rho^\perp \int_0^1 du \ e^{-iu\rho \cdot x} \ \phi_\rho(u)$$

• Helicity conserving (axial) DA at twist 2: π^{\pm}

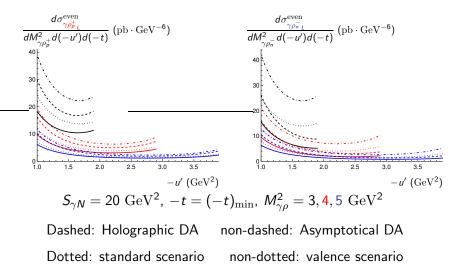
$$\langle 0|ar{u}(0)\gamma^{\mu}\gamma^{5}d(x)|\pi(p)
angle=ip^{\mu}f_{\pi}\int_{0}^{1}du\;e^{-iup\cdot x}\phi_{\pi}(u)$$

Computation Kinematics

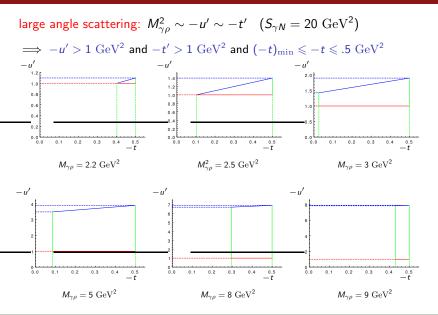
- Work in the limit of:
 - $\Delta_{\perp} \ll p_{\perp}$ • m_N^2 , $m_M^2 \ll M_{\sim M}^2$
- initial state particle momenta: $a^{\mu} = n^{\mu}$. $p_1^{\mu} = (1+\xi) p^{\mu} + \frac{m_N^2}{s(1+\xi)} n^{\mu}$
- final state particle momenta:



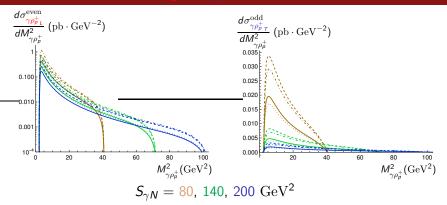
Results Fully-differential cross-sections:



Results Phase space integration: Evolution in (-t, -u') plane



Results Single differential cross-section: γp_i



Dashed: Holographic DAnon-dashed: Asymptotical DADotted: standard scenarionon-dotted: valence scenario

 \implies CO cross-section is suppressed by a factor of ξ^2 ($\xi \approx \frac{M_{\gamma\rho}^2}{2S_{\gamma N}}$): Measurable at small $S_{\gamma N}$, but drops rapidly with increasing $S_{\gamma N}$.

Results Explaining the difference between chiral-even and chiral-odd plots

•
$$\xi = \frac{M_{\gamma M}^2}{2S_{\gamma N} - M_N^2} \approx \frac{M_{\gamma M}^2}{2S_{\gamma N}}$$
 for $M_{\gamma M}^2 \ll S_{\gamma N}$

Chiral-even (unpolarised) cross-section:

$$\begin{split} |\overline{\mathcal{M}}_{\rm CE}|^2 &= \frac{2}{s^2} (1-\xi^2) C_{\rm CE}^2 \left\{ 2 |N_A|^2 + \frac{p_{\perp}^4}{s^2} |N_B|^2 \\ &+ \frac{p_{\perp}^2}{s} \left(N_A N_B^* + c.c. \right) + \frac{p_{\perp}^4}{4s^2} |N_{A_5}|^2 + \frac{p_{\perp}^4}{4s^2} |N_{B_5}|^2 \right\}. \end{split}$$

Chiral-odd (unpolarised) cross-section:

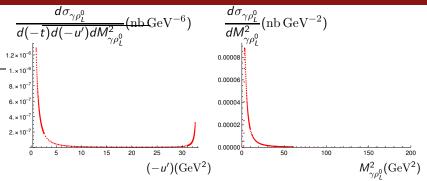
.

$$|\overline{\mathcal{M}}_{CO}|^2 = \frac{2048}{s^2} \xi^2 (1 - \xi^2) C_{CO}^2 \left\{ \alpha^4 |N_{TA}|^2 + |N_{TB}|^2 \right\}.$$

• Note:
$$\alpha = \frac{-u'}{M_{\gamma M}^2}$$

Results

Necessity for Importance Sampling



- ▶ Need enough points at boundaries for distribution in (-u')
- ▶ Need enough points to resolve peak (at low $M^2_{\gamma \rho_L^0}$) for distribution in $M^2_{\gamma \rho_L^0}$

Results Integrated cross-section: Mapping procedure for different values of $S_{\gamma N}$

To obtain distribution in $S_{\gamma N}$, we exploit non-trivial mapping between 1 set of data at a fixed $S_{\gamma N}$ to other values $\tilde{S}_{\gamma N}$ lower than it.

$$egin{aligned} & ilde{\mathcal{M}}_{\gamma\mathcal{M}}^2 = \mathcal{M}_{\gamma\mathcal{M}}^2 rac{ ilde{S}_{\gamma\mathcal{N}} - m_N^2}{S_{\gamma\mathcal{N}} - m_N^2}\,, \ & - ilde{u}' = rac{ ilde{\mathcal{M}}_{\gamma\mathcal{M}}^2}{\mathcal{M}_{\gamma\mathcal{M}}^2} (-u')\,. \end{aligned}$$

Implementing importance sampling \implies careful consideration of the various limits involved are needed.

Mapping possible since different sets of $(S_{\gamma N}, M_{\gamma M}^2, -u')$ correspond to the same (α, ξ) .

$$\alpha = \frac{-u'}{M_{\gamma M}^2}, \qquad \xi = \frac{M_{\gamma M}^2}{2(S_{\gamma N} - m_N^2) - M_{\gamma M}^2}$$

Consider

$$\gamma(q,\lambda_q) + \mathcal{N}(p_1,\lambda_1) \rightarrow \gamma(k,\lambda_k) + \pi^{\pm}(p_{\pi}) + \mathcal{N}'(p_2,\lambda_2) ,$$

where λ_i represent the helicities of the particles.

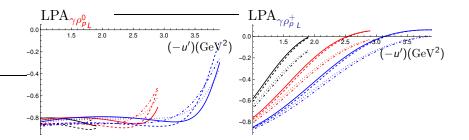
QED/QCD invariance under parity implies that [C. Bourrely, J. Soffer, E. Leader: Phys.Rept. 59 (1980) 95-297]

$$\mathcal{A}_{\lambda_{2}\lambda_{k};\lambda_{1}\lambda_{q}} = \eta \left(-1\right)^{\lambda_{1}-\lambda_{q}-(\lambda_{2}-\lambda_{k})} \mathcal{A}_{-\lambda_{2}-\lambda_{k};-\lambda_{1}-\lambda_{q}},$$

where η represents phase factors related to intrinsic spin.

Thus, at the cross-section level, it is clear that circular asymmetry will vanish, since

$$\sum_{\lambda_i,\,i\neq q} |\mathcal{A}_{\lambda_2\lambda_k\,;\,\lambda_1+}|^2 = \sum_{\lambda_i,\,i\neq q} |\mathcal{A}_{\lambda_2\lambda_k\,;\,\lambda_1-}|^2$$



$$S_{\gamma N}=20~{
m GeV}^2$$
, $-t=(-t)_{
m min},~M_{\gamma
ho}^2=3,4,5~{
m GeV}^2$

Dashed: Holographic DA non-dashed: Asymptotical DA Dotted: standard scenario non-dotted: valence scenario

At COMPASS:

- Taking a luminosity of $\mathcal{L} = 0.1 \text{ nb}^{-1} s^{-1}$, and 300 days of run, $-\rho_L^0 (\text{on } p) :\approx 1.2 \times 10^3$ $-\rho_T^0 (\text{on } p) :\approx 1.5 \times 10^2 \text{ (Chiral-odd)}$ $-\rho_L^+ :\approx 7.4 \times 10^2$ $-\rho_T^+ :\approx 2.6 \times 10^2 \text{ (Chiral-odd)}$ $-\pi^+ :\approx 7.4 \times 10^2$
- Lower numbers due to low luminosity (factor of 10³ less than JLab!)

Prospects at experiments UPCs

 In ultraperipheral collisions (UPCs), hadronic interactions (QCD) are suppressed.

 \implies Interactions between nuclei dominated by photon exchanges.

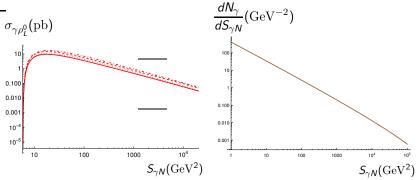
Therefore, we can study p-Pb collisions, with the Pb nucleus acting as the photon source, since it has a much larger charge:

$$\frac{d^3 N_{\gamma}}{dk d^2 \vec{b}} = \frac{Z^2 \alpha x^2}{\pi^2 k |\vec{b}|^2} K_1^2(x), \qquad x = \frac{k |\vec{b}|}{\gamma \hbar c}$$
$$\frac{dN_{\gamma}(k)}{dk} = \int_{b_{\min}}^{b_{\max}} db \ 2\pi b \ \frac{d^3 N_{\gamma}}{dk d^2 \vec{b}} P_{\text{NOHAD}}(b),$$

 P_{NOHAD}(b) taken from STARlight [S. Klein, J. Nystrand, J. Seger, Y. Gorbunov, J. Butterworth: 1607.03838]

Prospects at experiments

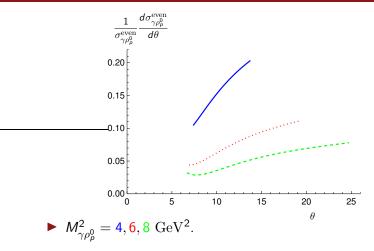
Why counting rates not as high for UPCs at LHC?



- Photon flux enhanced by a factor of Z², but drops rapidly with S_{γN}.
- LHC great for high energy, but JLab far better in terms of luminosity.
- Still, LHC gives us access to the small ξ region of GPDs!

Angular cuts on outgoing photon at JLab

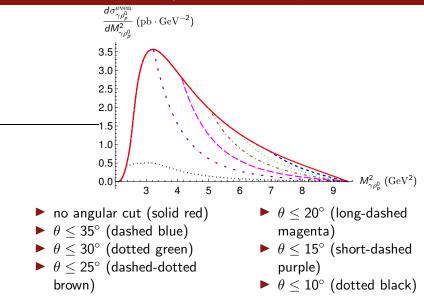
Angular distribution: $\rho_p^0 \gamma$ photoproduction at $S_{\gamma N} = 20 \text{ GeV}^2$



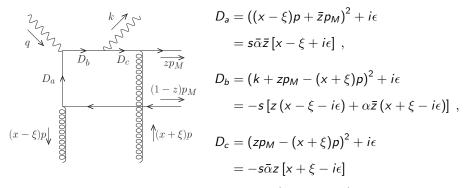
 θ: Angle between outgoing photon and incoming photon in lab (proton rest) frame.

Angular cuts on outgoing photon at JLab

Single differential cross-section: $\rho_p^0 \gamma$ photoproduction at $S_{\gamma N} = 20 \text{ GeV}^2$



Factorisation breaking effects in $\pi^0\gamma$ photoproduction $_{\rm Gluon \ GPD \ contributions}$



 \implies pinching of poles in the propagators (D_a and D_b) in the limit of $z \rightarrow 1$

Extension of the calculation to NLO Quark GPD case

At LO, there are 20 diagrams, but at NLO, this goes up to 422! \implies Necessary to automate! Our approach:

- 1. Generate diagrams using FeynArts
- Reduce tensor loop integrals (which can go up to 6-point functions!) to a basis of *known scalar master integrals*.
 ⇒ Use ROLI (Reduction Of Loop Integrals), a private code based on Integration-By-Parts (IBP) reduction developed by Goran Duplancic, which is based on B. Nizic, G. Duplancic [hep-ph/0303184].
- 3. Include GPD evolution and observe explicitly the cancellation of IR divergences.
- Perform convolution over momentum fractions x (GPD) and z (DA).

Computation very similar to B. Nizic, G. Duplancic [hep-ph/0607069] for $\gamma\gamma\to\pi^+\pi^-$... except ...

- ▶ No *i* ϵ factors needed when calculating the convolution of coefficient function with 2 DAs in the $\gamma\gamma \rightarrow \pi^+\pi^-$ case.
- In γN → γMN, since poles of propagators are crossed during the convolution, one requires iε factors to be in place in arguments of logs and dilogs (easy), as well as in denominators (hard).
- ▶ Denominators can appear both through the IBP reduction procedure, or through the evalutation of master integrals themselves, where naive analytic continuation $(p_i^2 \rightarrow p_i^2 + i\epsilon)$ does NOT lead to the correct prescription! [B. Nizic, G. Duplancic: hep-ph/0006249]

Extension of the calculation to NLO Quark GPD case

- Finally, need to deal with numerical instabilities in convolution integral: These instabilities are present even in the $\gamma\gamma \rightarrow \pi^+\pi^-$ calculation, due to the introduction of spurious singularities that should cancel in the end...
- ▶ With *i i* in denominators, the situation becomes much more complicated.
- This was actually a significant bottleneck in the NLO computation of γN → γγN, performed by O. Grocholski, B. Pire,
 P. Sznajder, L. Szymanowski, J. Wagner [2110.00048, 2204.00396], where a finite *i*ϵ was kept for the numerics.
 ⇒ However, calculation significantly simpler than our case, since only one convolution integration to perform, and also

have up to 5-point functions to reduce.