Simulation status and benchmarking with real data

UCGretina Geant4 GRETINA/GRETA Simulation Code github.com/rileyle/UCGretina

4th AGATA-GRETINA/GRETA Tracking Arrays Collaboration Meeting Argonne National Laboratory November 21, 2024

Lew Riley

lriley@ursinus.edu

GRETINA/GRETA Geometry adopted from the AGATA simulation code

E. Farnea et al., NIMA 621, 331 (2010)

GRETINA/GRETA Geometry

... with modified capsules and cryostat walls ...

... and back, coaxial, and outer passive layers.

GRETINA/GRETA Geometry constraining passive layers: Q4, Crystal 4

Outer Passive Layer

FEP efficiencies

GRETINA/GRETA Geometry

constraining passive layers: Pencil-beam scans Q4, Crystal 4

GRETINA/GRETA Geometry constraining passive layers: Pencil-beam scans Q4, Crystal 4

Best-fit coaxial passive-layer thickness = 2.24(6) mm

GRETINA/GRETA Geometry constraining passive layers: back slice Q4, Crystal 4

Best-fit back passive-layer thickness = 2.43(12) mm

GRETINA/GRETA Geometry constraining passive layers: Q4, xtal4 FEP efficiencies

Best-fit outer passive-layer thickness = 0.85(2) mm

GRETINA/GRETA Geometry constraining passive layers: 12 Quads

Coaxial & Outer Dead Layers

(no pencil beam scans)

FEP efficiencies

Back Dead Layer

FEP efficiencies for events involving the back slice (φ layer)

L. A. Riley et al., NIMA 1003, 165305 (2021)

Full-Energy Peak Efficiencies, 12 Quads

L. A. Riley et al., NIMA 1003, 165305 (2021)

GRETINA/GRETA Geometry ... and additional passive material

LaBr-Gated ⁶⁰Co: Compton Continuum

Liquid Hydrogen Target NSF-MRI PHY-0922615 (2009-2010)

In-beam Inverse-kinematics ⁴⁴S(p,p')

30 mm LH Target ≈5×10⁶ beam particles

L.A. Riley et al., PRC100, 044312 (2019)

Angular Distributions & Compton Polarimetry In Beam: Inverse-kinematics ²⁴Mg(p,p')

C. Morse et al., NIMA 1025, 166155 (2022)

Geant4 γ Tracking Information \rightarrow Simulated Data

- Raw data: "hits" depositing energy in active detector volumes
 - Primary particles (emitted γ rays)
 - Secondary particles (scattered electrons, scattered γ rays, pairs)
- First pass: consolidate secondary electrons with each Compton-scattering interaction
- Second pass: Consolidate multiple interaction points within each segment
 - User-specified "packing resolution" (6 mm?)
 - IP positions: barycenters of consolidated hits

In Beam: Ion Tracking, Reactions, and y Decay

- Beam/Beam-Like Reaction Product (Genericlon Class)
 - Tracked through the target
 - Incoming kinetic energy
 - Option 1: Mean KE and dp/p
 - Option 2: User-supplied incoming KE distribution
 - Relativistic 2-body reaction kinematics
 - Alignment of beam-like reaction product (magnetic substate populations)

• γ decay in flight

- Option 1: Single transition
- Option 2: User-supplied partial level scheme (including level half-lives)

Output

- **Decomposed γ-ray packets** (Mode 2 data, Type 1)
- S800 physics data packets (Type 9)
- Emitted γ-ray packets (Type 11)
 - Number of emitted $\boldsymbol{\gamma}$ rays
 - Full-energy flag (multiplicity 1, full energy in one crystal)
 - For each emitted γ:
 - Energy
 - Emission position (x, y, z)
 - Emission direction (theta, phi)
 - Source beta
- User sorting code must fold in thresholds, energy resolution, & position resolution

Thank You!

Heather Crawford, Chris Morse, Chris Campbell, Mario Cromaz, Paul Fallon, Augusto Macchiavelli

Dirk Weisshaar, Alex Gade, Remco Zegers, Charlie Hultquist

Samantha Wildonger (UC `12), Michael Agiourgousis (UC `13), Ben Roberts (UC `13), Bryan Sadler (`14), Jonathan Kustina (UC `16), Sean Gregory (UC `17), Ethan Haldeman (UC `18), Leah Jarvis (UC `18), Chase Stine (UC `18), Esther Lawson-John (UC `20)

> github.com/rileyle/UCGretina contact: lriley@ursinus.edu

LaBr-Gated ⁶⁰Co: Compton Continuum

L. A. Riley et al., NIMA 1003, 165305 (2021)

Polarization Sensitivity

In Beam: Inverse-kinematics ²⁴Mg(p,p')

