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Project Goals

▪ Develop new techniques to enhance 
existing γ-ray tracking algorithms, 
boosting photopeak efficiency and 
improving the signal-to-background 
ratio (P/T).
▪ Adapt these techniques to accurately 

perform Doppler correction with the 
first interaction point (ordering!)
▪ Expand these methods to handle pair 

production events.
▪ Incorporate these tools into tracking 

codes used by the community.

Machine-Learning (ML) tools for Gamma-Ray Tracking
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A. Korichi and T. Lauritsen, Eur. Phys. J. A (2019) 55: 121
AGATA-GRETINA Review paper

Current tracking arrays  (AGATA & GRETINA) 
do not meet the required performance



Outline

1. Available information for tracking
2. The tracking optimization problem

a. The full problem
b. Tracking in practice: Cluster, Order, Suppress

3. The choice of Figure of Merit(s)
4. Picking the best Figure of Merit (for simulated data)
5. Picking the best Figure of Merit (for experimental data)



Trackable γ-ray Interactions
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Three interaction types of interest



Goal of Tracking
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Simulated event

Actual event:
clustering/ordering 

of interactions

Actual 
interactions

Interactions 
recorded by PSA:

“Packed and 
smeared”

Tracked event:
interactions are

clustered and ordered 

PSA

Goal is to:
1. Match the original event

2. Remove clustered interactions background energies

Tracking



The Full Tracking Problem
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Organize interactions to recover the experimental event as best as possible

Tracking

PROBLEM: Too many possible 
ordered clusters of interactions!

10 interactions → 58,941,091 
possible ordered clusters
60 interactions → as many 
possibilities as atoms in the universe

DATA: interaction positions and energies

GOAL: Find the ordered clusters of interaction 
that optimize a Figure of Merit (FOM)

What FOM recovers the event?



In Practice: Cluster then Order
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Detector
Local level

Global level

PSA/Decomposition 
hits

Hit Clusterization

Order cluster 
interactions (use FOM)

Reject cluster/markAccept cluster

Compton scattering is mostly forward (Klein-Nishina) 
Use a cone clustering (alpha) 

AFT & OFT

True hits

FOM for ordered cluster

Simulated AGATA data



Cone Clustering

θ

Angle between interactions θ

If θ < threshold angle α:
Same cluster

Great with:
▪ Low multiplicity

Bad with:
▪ γ-rays close together
▪ γ-rays that cross the 

detector

Attempts to use ML to 
improve clustering have 
not yet worked for 
experimental data
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Missing 
interactions

C
ou

nt
s

Energy, keV

60Co Spectrum

Too many interactions
(too close)

&
environmental γ-rays

AFT (Argonne Forward Tracking
FOM cut 0-0.8

▪ γ-rays too close
▪ γ-rays escape
▪ γ-rays crossing the detector

γ-ray Clustering Challenges



Ordering Hypothesize cluster represents a complete 
γ-ray originating from the central target

Evaluate a FOM for all possible interaction 
orders

a)

b)

c)

d)

Gamma-ray 
interaction order FOM

1

2

4

4

Select the 
order with the 
best FOM, 
whether 
correct or not

Assumption: If some energy is missing, 
even the best FOM would still be bad



Existing possible FOMs

● Derive existing FOMs from Compton scattering formula, 
conservation of energy, and probabilities

● Argonne Forward Tracking (AFT):

● Orsay Forward Tracking (OFT):

● Mars Gamma-ray Tracking (MGT)

For perfect measurements, 
all squared error terms are 
zero for correctly ordered, 
complete energy γ-ray

With noise, all FOMS act 
differently. Ordering by any 
FOM may create errors.



Where do current FOMs apply?

Single 
interactions

Compton 
Scattering

Pair 
production

Escaped 
Compton

Cluster 
combining 
multiple rays

Or split into 
multiple 
clusters

No order No single 
order

No order

Previous FOMs 
don’t work

Previous FOMs 
don’t work

No FOMs work



Simulated data using AFT

● 30 separate energies
● Provided correct 

clusters
● Ordered with pristine 

simulated data
● Ordered with 

packed-and-smeared 
values



Ordering simulated data using AFT

● Ordering process decreases 
FOM values. Selects:

○ True order
○ or False order with a 

better FOM
● Decreasing the FOM value 

for background counts 
makes suppression harder



a)

b)

c)

d)

Gamma-ray 
interaction order FOM1

1

2

4

4

FOM2

4

2

4

1

Formally a Learning-to-rank (LTR) problem (e.g., 
search engine optimization)

FOMs and other features are combined to get the 
right order as often as possible

FOM1
+

FOM2
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▪ Interaction order is needed for Doppler correction 
– Common with high v/c data that will be 

produced at ATLAS and  FRIB
▪ Chosen by Figure-Of-Merit (FOM) value

𝛾1

𝛾2

𝛾3 𝛾4

𝛾6 𝛾5
𝛾7

Optimizing interaction order for Doppler 
correction and linear polarization measurements

Hyperplane classification of relative cluster

FOM1

FOM2



ML Approach for Learning-to-rank
● When ordering, we want

FOM(best incorrect order) > FOM(true order)
● We don’t care about the FOM value, only the difference between desired and undesired 

orders

● The best incorrect order requires ordering with the FOM

● Let FOM be weighted sum of physics derived objectives (e.g. existing FOMs), a simple, 
interpretable model, that prevents overfitting (maximizes likelihood that the model can survive 
the translation from simulated data to experimental data)

FOM(order) = wTf(order)
● Allows simplification

wT(f(incorrect) - f(true)) > 0
● If all features/FOMs are quantities that we want to minimize, constrain w positive, protect 

against overfitting

● Use linear classification (introduce mirrored data as second class → off the shelf solvers)



No FOM cut/supression. Only Doppler correction

Fusion-evaporation reaction
12C(84Kr,xn)

Beam Energy = 394 MeV
Recoil velocity ~8 %

Test ML models on 92Mo in-beam data



Example of parameters, FOMs and models that have been used in this work

C: Controls the sparsity of the model; a smaller C means a simpler model
Columns: Groups of FOM features
Model type: The approach for training the ML model

      LP: Linear program (more precise than SVM), LR: Logistic regression (simplest, but least accurate)
          MILP: Mixed integer linear program (most accurate), SVM: Support-vector machine (basic linear model)
Non-negative: If "noneg = True," all weights in the FOM are non-negative, focusing on minimizing values. 

          If "noneg = False," some weights can be negative, allowing for maximization.

Simulated data Experimental data



 FWHM  Peak Area    Energy
 8.02(6)   31763(266)  2065.63(4)
 8.75(7)   30169(277)  2065.65(5)

Clear improvement in the energy resolution & efficiency

Results for 92Mo in-beam data



ML TOOLS FOR GAMMA-RAY TRACKING
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Cluster 
interactions into 
separate γ-rays

Order 
interactions for 

individual γ-rays

Suppress γ-rays 
scattering out of 

the detector

2
31

0 1
32

0

3
21

0 2
13

0

3! = 6 permutations

Three complex operations



Supression of ordered clusters 

● Final FOM check to remove background 
from energy spectrum

● ML classification problem:
○ Use linear model to help 

interpretability, protect against 
overfitting, help transition to 
experimental data
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Missing 
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60Co Spectrum

AFT (Argonne Forward Tracking)
FOM cut 0-0.8 AFT



FOM cut 0-0.8

Results for 60Co source data 

● Good ordering, 
especially for 
incomplete 
gamma-rays, helps 
clean up the spectrum

● Biggest gain: More 
complex handling of 
single interactions

● Single interactions 
previously had FOM 
values of 0 or 1.85 
(AFT), now continuous

Better 
suppression

Better 
ordering



FOM cut 0-0.8

New FOM

Results for 60Co source data 



P/T improved by ~10 %
Efficiency ~ 6 % FWHM improved by 9 %

These numbers look small BUT !

Results summary



Total photopeak efficiency    ε 
Energy resolution              FWHM 
photopeak-to-total ratio     P/T

FIGURE OF MERIT FOR THE EVALUATION OF A SPECTROMETER PERFORMANCE
COMPOSITE PARAMETER WITH:   

R= 

δE Average spacing between consecutive 
transitions in a typical cascade

P/T δE
FWHM

Resolving Power(RP) ~ 
RFold

This results in more than a factor 
2.5 gain in the Resolving Power

  For a 5-fold γ-ray event 
 (typical for high-spin Gammasphere exp.)

   10 %P/T  better → increase RP by  60% 

   8 % fwhm better →  increase RP by 52%    



A more populated array towards GRETA (with new PSA?)will do much better !

Excellent with a less than
optimal array configuration 
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ADOPTED METHODOLOGY
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GEANT4
Simulated  data

Radioactive 
source  data 

with GRETINA
In-beam 

GRETINA data

High and low multiplicity data: clusterization, escape suppression
      Efficiency and P/T evaluation 

High and low recoil velocity:    ordering the interactions 
      1st interaction for Doppler correction
      1st and 2nd interactions for Linear polarization  

In all cases the results were compared to those obtained using conventional 
tracking codes AFT (Argonne Forward Tracking)  and OFT (Orsay Forward Tracking)



Cluster 
interactions into 
separate γ-rays

Order 
interactions for 

individual γ-rays

Suppress γ-rays 
scattering out of 

the detector

Where ML and data science techniques apply to the problem
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• Choice of FOM
• Combined 

clustering/ordering

• Choice of FOM
• ML classification
• Recover γ-ray energies

GAMMA-RAY TRACKING SUMMARY

• Angle clustering
• ML clustering
• GNN clustering

We designed the ML features to be minimized to prevent overfitting.

While maximizing certain features might be beneficial, simpler and sparser models generally perform better for
experimental data. Complex models excel with simulated data but risk overfitting.

To avoid this, we intentionally restricted the ML model's capabilities (sparse, linear models, minimization only)



– Python Code has been published on GitHub
– New ordering approaches enhance existing techniques, improving 

the resolving power by up to 2.4 for Doppler-corrected data
– Learning To Rank (LTR) methods enable expanded tracking 

optimizations
– New suppression approaches further enhance the resolving power 

and are nearly ready  for experiments 
– Journal paper manuscript is in preparation
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github.com/lynntf/GRETOProject status

Gamma Ray Energy 
Tracking Optimization

Should be moved 
off of my personal 
github

https://github.com/lynntf/GRETO


What could make this better

● Alignment of simulated data and PSA output
○ Better alignment means better transfer of ML models from simulation to 

experiment
○ Better ML models can be applied: RNN, transformers, etc.

● Different training data (GEANT4)
○ Prefer completely unbiased data

● Somehow training with experimental data
○ Pencil beam data?

● Integration with other/new metrics
○ Graph neural network output can be added to existing FOM features

● ML models implemented in something faster than python
● We still need better algorithms/optimization to use with new FOM



● Transferring ML models from simulated data to 
experimental data is tricky; easy to overfit

● Previously used FOMs are well motivated but ill 
suited for ordering in cases where they don’t make 
sense (incomplete gamma-rays)

● Learning-to-rank allowed us to construct (from 
physics based objectives) a FOM for ordering that 
improved Doppler correction, P/T, and efficiency

● Assigning single interactions more descriptive FOM 
values creates huge improvements in P/T and 
efficiency
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Conclusions

Thank you !

60Co

92Mo - Doppler





About me

Postdoc at Argonne in Math and Computer Science from 2022-2024
Focused on γ-ray tracking and optimization

Worked closely with Amel and Torben

Curently at Johns Hopkins University Applied Physics Lab since August 2024



FUTURE WORK AND EXTENSIONS

▪ Improved recovery of escape 
energies instead of suppression
▪ML tools for fast tracking
▪ML training using experimental data 

from sources
▪ML tools for on-line learning
▪ Optimization based approaches for 

better clustering
▪ Apply techniques to the problem of 

pair production

Improving the resolving power of GRETINA for further analysis
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ML CLUSTERING

▪ GRETINA clustering is done 
spatially with respect to cluster 
spread (scattering forward)
▪ Use ML to create an alternate 

distance metric by which to 
cluster
– Learned from data
– Include additional clustering 

steps beyond singles
– Include cluster order

Clustering beyond GRETINA without knowledge of spectrum
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ML Estimate Ground Truth GRETINA ()



γ-ray Interaction Data
Overview of the principle
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Challenges:
▪ γ-rays too close
▪ γ-rays escape

▪ γ-rays crossing the detector
▪ Suppress environmental γ-rays



RECREATING COMPTON SUPPRESSION 

▪ Previously done with BGO absorber
▪ FOM correctly orders < 50% of escapes

– Wrong order favorable over truth
– Suppression suffers

▪ Using escape energy estimate improves 
suppression (Tashenov & Gerl 2010)
– Order for escapes is essential for 

suppression
▪ ML can further improve ordering & 

suppression

Correctly ordering escaped γ-rays improves suppression
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Relative Efficiency
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