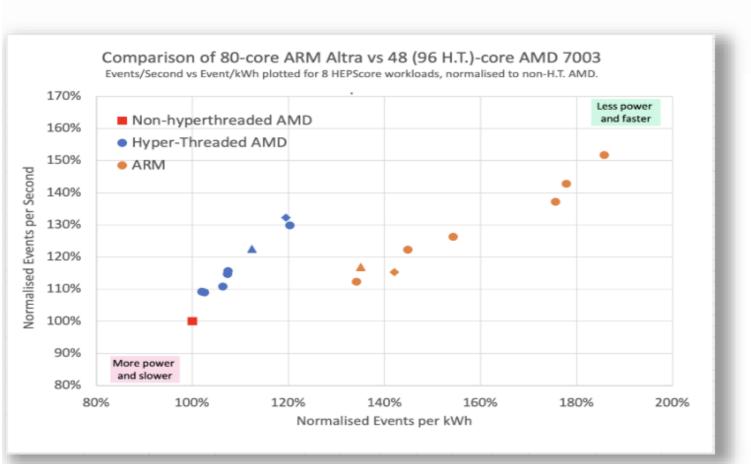
ARM, une solution viable pour les pledges 2025?

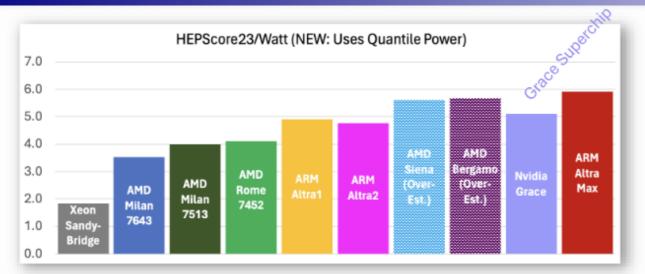
D. Bouvet L. Duflot

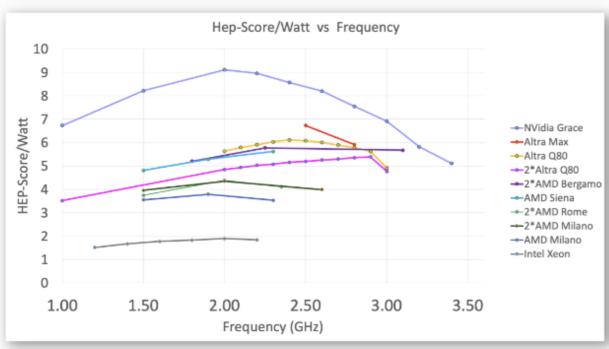


Les études ARM existantes

Compared two *same-price* (but different core-count) machines: AMD EPYC 7643 48C/96T @ 2.3GHz TDP 225W, 48-cores (96 HT). ARM Q80-30 80 core 210W TDP processor, 80-cores (no HT).

Ran 8 candidate HEPScore workloads:


- On AMD, HT improves speed (efficiency) by up to 30% (20%) depending on workload.
- On ARM, average speed is a little quicker, but average efficiency is notably better.



Les études ARM existantes

- Top plot is a comparison of different boxes running at max frequency (except Siena and Bergamo).
- But this is not the full story!
 Efficiency (and, of course, HS) depends on clock speed.
- Comparison and optimisation is complex!
- Need to consider:
 - Cost
 - Carbon (Scope 2 + 3)
 - Performance (HS23)
 - Efficiency (HS23/Watt)
- Optimisation will not always be the same but it's clear that both AMD and ARM are viable.

David Britton, University of Glasgow

GDB, June 2024

ARM

Slide 4 of 7

Les études ARM existantes

- ◆ GLASGOW: 2 clusters
 - 1760 cores dual socket Altra Q80-30
 - 2304 cores single socket Altra-Max Q128-30 (nouvel achat)
 - GRACE
 - ◆ Car pénalité non négligeable du dual socket (-17%)
- ♦ INFN-T1:
 - Altra Max, GRACE, GRACE/HOPPER
 - Pas trouvé de vendeur avec support sur site, ni avec des machines facilement configurables
 - BMC et firmware instables
 - Pb pas vu dans les autres sites
- ◆ CERN:
 - 48 serveurs Altra Max 80-30 de 3 vendeurs

Les études ARM existantes: CC-IN2P3

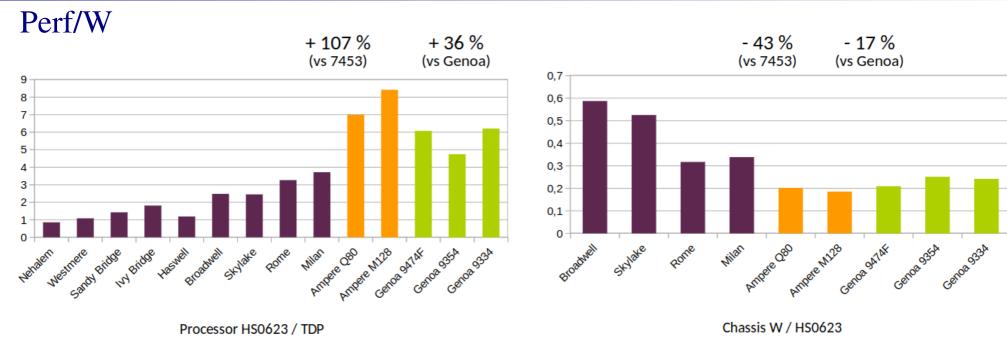
ARM vs EPYC Milan & Genoa

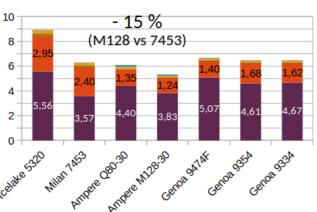
Benchmarked platforms:

- HPE Proliant RL300 Gen11 with Ampère Altra Q80-30 and Ampère Altra Max Q128-30
- HPE Proliant DL385 Gen11 with AMD EPYC Genoa 9474F / 9354 / 9334
- HPE Apollo 2k Gen10+ with AMD EPYC Milan 7453 (last production batch)

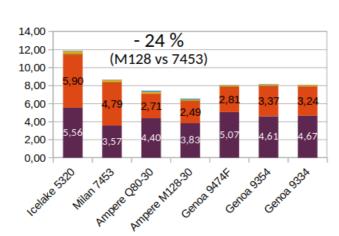
CPU model	freq (GHz)	cores/ sock	thread/sock	sockets	TDP	Process (nm)	Release
Ampere Altra Max (M128-30)	3	128	128	1	250	7	2021
Ampere Altra (Q80-30)	3	80	80	1	210	7	2020
AMD EPYC Milan 7453	2.75	28	56	2	225	7	2021
AMD EPYC Genoa 9474F	3.6	48	96	2	360	5	2022
AMD EPYC Genoa 9354	3.25	32	64	2	280	5	2022
AMD EPYC Genoa 9334	2.7	32	64	2	210	5	2022

Gamme	min cores	max cores	min TDP	max TDP
Ampere Altra	32	128	45	230
EPYC Milan	8	64	155	280
EPYC Genoa	16	96	200	360

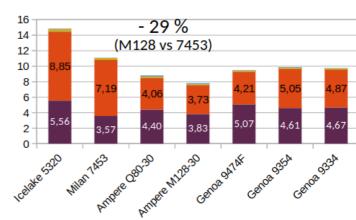

29/11/2023 ARM evaluation



Les études ARM existantes: CC-IN2P3



TCO


10 cts / kW.h

20 cts / kW.h

30 cts / kW.h

GDB: ALICE

- ◆ Validation de simulation MC (dec 23)
- ◆ Ensuite pb specifique de seg fault avec un kernel précis (probablement compris)
- En cours:
 - Data
 - Jobs d'analyse
- Position:
 - Favorable mais pas totalement validé
 - Peut être validé à l'automne

•

GDB: ATLAS

- ◆ Validation de simulation MC, digitisation et reconstruction
- Derivation: tourne mais pas validé
- ◆ Analyse: pas commencé, au contraire d'ALICE/LHCb pas de trains d'analyses donc compilation pas sous le contrôle d'ATLAS
- Position:
 - Les workflows validés représentent env 60% du CPU
 - Les pledges sur ARM sont possible dès maintenant (max 50%)

•

GDB: CMS

- ◆ Validation de simulation MC: GEN+SIM et RECO
- ◆ Reconstruction des data: différences significatives
 - Mais pas 100% les mêmes evts
- ◆ => validation recommence avec plus de ressources
- ◆ Résultats cet été

GDB: LHCb

- ◆ La version de simulation (11) en développement a été testée
 - Différences vues dans la simulation du calorimètre
 - Mais pourrait être utilisé pour simulation tracking upgrade II
 - SIM11 en prod à la fin de l'année
- ◆ SIM10 à valider après que les différences pour le calo aient été comprises
- Position:
 - Pas de workflow validé et utilisable en prod avant la fin de l'année

