On the nested algebraic Bethe ansatz for closed spin chains with simple g symmetry

Allan John Gerrard

Department of Physics Tokyo University of Science

RAQIS, September 2024

arXiv:2405.20177

1/26

On the problem of the ABA for simple g

Give me a rational, g-symmetric, "regular" R-matrix on $V \otimes V$. Then I can write down:

▶ a g-symmetric integrable spin chain Hamiltonian on $M = V \otimes \cdots \otimes V$ with nearest neighbour interactions,

$$
H \propto \sum_{s \in \mathbb{Z}_L} (R_{s,s+1}(0))^{-1} R'_{s,s+1}(0);
$$

 \blacktriangleright the Bethe equations of the resulting integrable system,

$$
\frac{P_i^M(v_k^{(i)} + \hbar d_i)}{P_i^M(v_k^{(i)})} = -\prod_{j=1}^r \prod_{l=1}^{m^{(j)}} \frac{v_k^{(i)} - v_l^{(j)} + \frac{\hbar}{2}(\alpha_i, \alpha_j)}{v_k^{(i)} - v_l^{(j)} - \frac{\hbar}{2}(\alpha_i, \alpha_j)};
$$

[Ogievetsky and Wiegmann 1986]

 \triangleright and the generators and relations of the associated quantum group, the Yangian, in Drinfel'd's current presentation.

On the problem of the ABA for simple g

What about the Bethe eigenvector?

 \triangleright Well-understood for \mathfrak{sl}_n cases; less and less is known as we deviate from these.

 \triangleright No method (as far as I am aware) for the exceptional cases. Today: attempt to develop the nested algebraic Bethe ansatz for simple g.

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 Q Q + 3/26

Steps of the NABA

Start: monodromy matrix $T(u) \in End(V \otimes M)$ satisfying RTT.

Non-universality of the NABA

Barriers to universality

The key to the algebraic Bethe ansatz is that all relations stem from the RTT relation.

$$
R(u) = \begin{pmatrix} R_{00}^{00}(u) & R_{01}^{00}(u) & \dots \\ R_{00}^{01}(u) & R_{01}^{01}(u) & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}
$$

studied cases \longrightarrow The R-matrix consists of familiar P and P^t matrices

general case \longrightarrow we cannot hope for the R-matrix to be made from "familiar" matrices decomposition possible by hand but rather tedious!

Barriers to universality

The key to the algebraic Bethe ansatz is that all relations stem from the RTT relation.

$$
R(u) = \begin{pmatrix} R_{00}^{00}(u) & R_{01}^{00}(u) & \cdots \\ R_{00}^{01}(u) & R_{01}^{01}(u) & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}
$$

studied cases \longrightarrow The R-matrix consists of familiar P and P^t matrices

general case \longrightarrow we cannot hope for the R-matrix to be made from "familiar" matrices decomposition possible by hand but rather tedious!

 \rightarrow alternative method which does not use the blocks directly!

Nesting

Decomposition of V

4 ロ → 4 레 → 4 로 → 4 로 → 2 로 → 9 Q O + 7/26

Nesting

Nesting

4 ロ → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레 → 4 레

The removed simple root

Simple roots correspond to sets of Bethe roots $\{v^{(p)}\} \leftrightarrow \alpha_p$. If we remove α_p , schematically we will have Bethe vector

$$
\Phi(\lbrace v \rbrace) = B(v_1^{(p)}) \cdots B(v_{m_p}^{(p)}) \Phi'(\lbrace v \rbrace).
$$

 \blacktriangleright It seems that any one simple root may be removed (cf. [Kosmakov and Tarasov (2024)]), but for simplicity we consider only the case where ℓ is simple (so consider only roots on the ends of the Dynkin diagram).

Removing a simple root

Example: consider the case $g \cong s \mathfrak{o}_{12}$ with auxiliary space $V \cong 12$, the vector representation.

12so¹² [∼]⁼ ¹so¹⁰ [⊕] ¹⁰so¹⁰ [⊕] ¹so¹⁰ T(u) =

$$
\textbf{12}_{\mathfrak{so}_{12}}\cong\textbf{6}_{\mathfrak{sl}_6}\oplus\overline{\textbf{6}}_{\mathfrak{sl}_6}
$$

T(u) =

4 ロ ▶ 4 레 ▶ 4 페 ▶ 4 페 ▶ → 페 카 메 코 → 이익(2) 9/26

The $U(1)$ charge

Removing a simple root means specifically

$$
\mathfrak{k}\cong\langle h_i|i\neq p\rangle+\left\langle e_{\pm\alpha}|(\alpha,\varpi_p^\vee)=0\right\rangle.
$$

The following basis vector of the Cartan subalgebra of g commutes with k :

$$
\left[h_{\varpi_{\rho}^{\vee}},\mathfrak{k}\right] =0.
$$

This will be referred to as the **charge**, and it institutes a \mathbb{Z} -grading on g and its representations.

For example, the adjoint representation

$$
\mathfrak{g}\cong\mathfrak{g}^{(-n_{p})}\oplus\cdots\oplus\left(\mathfrak{k}\oplus\mathbb{C}\mathit{h}_{\varpi_{p}^{\vee}}\right)\oplus\cdots\oplus\mathfrak{g}^{(n_{p})}
$$

10 → 11 → 12 → 12 → 12 → 26

Charge decomposition

We have decomposition of the auxiliary space into charge eigenspaces, which are also ℓ -reps:

$$
V\cong V^0\oplus V^1\oplus\cdots\oplus V^N.
$$

The tensor product representation may be similarly partitioned according to total charge

The R matrix preserves the *total charge*, giving it a block diagonal form.

The R-matrix and the block relations

The R matrix preserves the total charge, giving it a block diagonal form.

$$
R(u) = \left(\begin{array}{cc|cc} R_{00}^{00}(u) & & & \\ \hline & R_{01}^{01}(u) & R_{10}^{01}(u) \\ & R_{01}^{10}(u) & R_{10}^{10}(u) \\ \hline & & & & \ddots \end{array}\right)
$$

So now we can write down the block relations, right?

$$
R_{ab}(u-v)T_a(u)T_b(v)=T_b(v)T_a(u)R_{ab}(u-v)
$$

$$
\mathcal{T}(u) = \begin{pmatrix} A_0^0(u) & B_1^0(u) & \cdots & B_N^0(u) \\ C_0^1(u) & A_1^1(u) & \cdots & B_N^1(u) \\ \vdots & \vdots & \ddots & \vdots \\ C_0^N(u) & C_1^N(u) & \cdots & A_N^N(u) \end{pmatrix}
$$

The block relations

Sure, we can write down the block relations.
(((rtt // blockRels3) // Flatten // TableForm) // ddist)

able Form=

 $- (a [0, 0]_2 \cdot a [0, 0]_1 \cdot r0000 [u]_{1,2}) + r0000 [u]_{1,2} \cdot a [0, 0]_1 \cdot a [0, 0]_2$ $- (a[0, 0]_2 \cdot b[0, 1]_1 \cdot r1001[u]_{1,2}) - b[0, 1]_2 \cdot a[0, 0]_1 \cdot r0101[u]_{1,2} + r0000[u]_{1,2} \cdot a[0, 0]_1 \cdot b[0, 1]_2$ $- (a \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, b \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, r1010 \begin{bmatrix} u \\ u \end{bmatrix}, r) - b \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, a \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, r0110 \begin{bmatrix} u \\ u \end{bmatrix}, r10000 \begin{bmatrix} u \\ u \end{bmatrix}, r1010 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, r20000 \begin{bmatrix} u \\ u \end{bmatrix}, r30000 \begin{bmatrix} 0 \\ 1 \\ 1 \end{b$ $-[a[0, 0], [b, 2], [c, 2, 2]$ = $+[0, 1], [c, 1], [c, 1], [c, 1], [c, 1], [c, 1], [c, 2], [c, 2], [c, 0], [c, 0], [c, 2]$ $-\left(a\left[0, 0\right], \cdot b\left[0, 2\right], \cdot\right)$ $\left(2011\left[1\right], \cdot\right)$ $- b\left[0, 1\right], \cdot\left(b\left[0, 1\right], \cdot\right)$ $\left(111\left[1\right], \cdot\right)$ $- b\left[0, 2\right], \cdot\left(a\left[0, 0\right], \cdot\right)$ $\left(0211\left[1\right].$ $-\left(a\begin{bmatrix}0, 0\end{bmatrix}, b\begin{bmatrix}0, 2\end{bmatrix}, r2020\begin{bmatrix}u\end{bmatrix}, r\right) - b\begin{bmatrix}0, 1\end{bmatrix}, b\begin{bmatrix}0, 1\end{bmatrix}, r1120\begin{bmatrix}u\end{bmatrix}, r60, 2\end{bmatrix}, a\begin{bmatrix}0, 0\end{bmatrix}, u0220\begin{bmatrix}u\end{bmatrix}$ $-[b[0, 1], b[0, 2], -2112[u]_{1,2}] - [0, 2], b[0, 1], -1212[u]_{1,2} + r0000[u]_{1,2} + b[0, 1], b[0, 2],$ $-[b[0, 1], [b, 2], [b, 2], [c, 2, 1], [d, 2], -b[0, 2], -b[0, 1], -d[22][u], -b[0, 0, 2], -b[0, 2], -b[0, 1], -b[0,$ $-[b[0, 2]_2 \tcdot b[0, 2]_1 \tcdot r2222[u]_{1,2}] + r0000[u]_{1,2} \tcdot b[0, 2]_1 \tcdot b[0, 2]_2$ $- (c(1, 0)_2 \cdot a[0, 0]_1 \cdot r0000 [u]_{1,2}) + r0101 [u]_{1,2} \cdot a[0, 0]_1 \cdot c[1, 0]_2 + r0110 [u]_{1,2} \cdot c[1, 0]_1 \cdot a[0, 0]_2$ $-\left(a\left[0, 0\right], c\left[1, 0\right], r\right)$ + $\left(000\left[1\right], 0\right)$ + $r1001\left[1\right], 0.9\left[0, 0\right], c\left[1, 0\right]$ + $r1010\left[1\right], 0.0\left[1, 0\right], r\left[1, 0\right]$ $- (a(1, 1), a(0, 0), \cdot)$ (0.0 $(a(1, 1), a(0, 1))$ + $c(1, 0), b(0, 1), \cdot)$ (0.1 $(a(1, 1), a(0, 0), a(1, 1))$

But they're not really useful in this form, because we don't know what $R^{ij}_{kl}(u)$ are in general.

Hint: if we consider $R_{00}^{00}(u)$, it satisfies the Yang-Baxter equation (see [Chari-Pressley 1991]). This is easy to deduce from:

$$
(V\otimes V\otimes V)^0=V^0\otimes V^0\otimes V^0,
$$

14/26 14/26 - 4월 14/26 14/26

with the YBE for $R(u)$. So, we can use the uniqueness of *R*-matrices to work out $R_{00}^{00}(u)$.

We can use a similar idea to get some more info about $R(u)$.

The block Gauss decomposition

Consider the block Gauss decomposition of the R-matrix:

 $R(u) = U(u)D(u)L(u),$

where

10 H 1 1 마 시 프 H 시 코 H - 프 - 19 이야 - 15/26

The block Gauss decomposition

Consider the block Gauss decomposition of the R-matrix:

$$
R(u) = U(u)D(u)L(u),
$$

where

Proposition

The $D_{IJ}^{IJ}(u)$ satisfy the Yang-Baxter equations:

$$
D_{IJ}^{IJ}(u-v)D_{IK}^{IK}(u-w)D_{JK}^{JK}(v-w)=D_{JK}^{JK}(v-w)D_{IK}^{IK}(u-w)D_{IJ}^{IJ}(u-v).
$$

Identifying the D-matrices

So the matrix $D_{IJ}^{IJ}(u) \in \mathsf{End}(V^I \otimes V^J)$ is an R -matrix, which is something we know a lot about.

If we assume that each V' is an irreducible representation of the Yangian (quite restrictive, but still includes all as-yet studied cases, as well as many more), then we have, by uniqueness:

$$
D_{IJ}^{IJ}(u) = d^{IJ}(u)R^{V^{\prime}V^J}(u - w_{IJ}).
$$

Actually, from the Yang-Baxter equation we have $w_{11} = w_1 - w_1$ for each I,J.

Bonus: we can determine the shift w_1 associated to each space V^J using the Baxter polynomials of the representation V.

What does this give us?

We are ready to state the block relations:

$$
\mathcal{T}(u) = \begin{pmatrix} A_0^0(u) & B_1^0(u) & \cdots & B_N^0(u) \\ C_0^1(u) & A_1^1(u) & \cdots & B_N^1(u) \\ \vdots & \vdots & \ddots & \vdots \\ C_0^N(u) & C_1^N(u) & \cdots & A_N^N(u) \end{pmatrix}
$$

 $C_J^I(u)$ for each I, J are annihilation operators, so will consider terms mod C, where C consists of terms ending in matrix elements of annihilation operators.

The RTT relation is (we omit the spectral parameter for clarity)

$$
[UDL]\mathcal{T}_a\mathcal{T}_b=\mathcal{T}_b\mathcal{T}_a[UDL].
$$

Now we can do some trickery:

$$
\underbrace{DLT_aT_bL^{-1}}_{\text{lower triangular mod } C} = \underbrace{U^{-1}T_bT_aUD}_{\text{upper triangular mod } C}.
$$

Result I: RAA relations

Looking at the diagonal blocks of this relation, we obtain

$$
D^{IJ}(u-v) A^I_l(u)_a A^J_l(v)_b = A^J_l(v)_b A^I_l(u)_a D^{IJ}(u-v) \mod C
$$

This is the RTT relation for the diagonal blocks of the monodromy matrix!

- \blacktriangleright It confirms that the nested system will have a Yangian underlying algebra.
- \blacktriangleright It also confirms that each of the nested transfer matrices commute.

Result II: The AB relations

We can use the same technique to show:

$$
(A'_{l})_{a}(B'_{J+1})_{b} = (D^{J,J})^{-1}(B'_{J+1})_{b}(A'_{l})_{a}D^{J,J+1}
$$

$$
- L^{J,J}_{l-1,J+1}(B'^{J-1}_{l})_{a}(A'^{J+1}_{J+1})_{b}
$$

$$
+ (B'_{l+1})_{a}(A'^{J}_{J})_{b}L^{J+1,J}_{l,J+1} \mod C
$$

Practitioners of the Bethe ansatz will recognise the "wanted" and "unwanted" terms.

Very important caveat: This technique works for the first excitation only. After the first one, we can't count on C terms vanishing. This means that, in general, the higher level terms need to be generated from a relation like $RRRTTT = TTTRRR$.

The nested Bethe vector

Recall the schematic $(M$ is the spin chain state space):

$$
\Phi(\lbrace v \rbrace) = B(v_1^{(p)}) \cdots B(v_{m_p}^{(p)}) \Phi'(\lbrace v \rbrace) \in M.
$$

What exactly are $\Phi'\left(\{\nu\}\right)$ and $B(\nu)$ here?

 \blacktriangleright We should have some *auxiliary site V^{aux}* for each excitation:

$$
B(v) \in \text{Hom}(V^{aux}, \mathbb{C}) \otimes \text{End}(M).
$$

 \triangleright We also need, in order to use the previous results,

$$
C\cdot\Phi'\left(\left\{v\right\}\right)=0;
$$

this can be achieved with

$$
\Phi'\left(\left\{v\right\}\right)\in(V^{aux})^{\otimes m_p}\otimes M^0
$$

-
20/26 20/26 - 수출 시험 시험 시험 수 있어 20

The B operator

Let us focus on just one excitation.

We have multiple *different* creation operators for one excitation:

$$
B_1^0(v)
$$
 or $B_2^1(v)$ or $B_3^2(v)$,...

It is expected that they all produce equivalent excitations (see e.g. [Melo and Martins (2009)]). But in our case, they all have a different shape

$$
B_{l+1}^I(v) \in \mathsf{Hom}(V^{l+1},V^l) \otimes \mathsf{End}(M)
$$

In fact we will use

$$
B_{I+1,\overline{I}}(v) \in \text{Hom}(V^{I+1}\otimes \overline{V^{I}},\mathbb{C})\otimes \text{End}(M)
$$

How can we square this with $B(v) \in \text{Hom}(V^{aux}, \mathbb{C}) \otimes \text{End}(M)?$

The auxiliary site

Assertion: The auxiliary site V^{aux} must be isomorphic to the rep $\mathfrak{g}^{(1)}.$ That is, the vector space spanned by generators $\big\langle \text{e}_{-\alpha} | (\alpha, \omega_{\boldsymbol{\rho}}^{\vee}) = 1 \big\rangle$.

Evidence I: For each *I*, there is an intertwiner of ℓ representations

$$
\Gamma^{I+1,\bar{I}}: \mathfrak{g}^{(1)} \hookrightarrow V^{I+1}\otimes \overline{V^I}.
$$

Indeed, $\mathfrak{g}^{(1)}\otimes V^I\to V^{I+1}$, simply from restricting the action of $\mathfrak g$ on V.

This means that we can act with any B operator on the nested Bethe vector.

$$
\Phi'(\{v\}) \to \Gamma^{I+1,\bar{I}} \cdot \Phi'(\{v\}) \to B_{I+1,\bar{I}}(v) \cdot \Gamma^{I+1,\bar{I}} \cdot \Phi'(\{v\})
$$

The auxiliary site

Assertion: The auxiliary site V^{aux} must be isomorphic to the rep $\mathfrak{g}^{(1)}.$ That is, the vector space spanned by generators $\big\langle \textit{e}_{-\alpha} | (\alpha, \omega_{\boldsymbol{\rho}}^{\vee}) = 1 \big\rangle.$

Evidence II: There is a way we could have predicted this from the Bethe equations. Assuming the NABA is successful, we must have the following equivalence:

This is consistent if the highest weight of V^{aux} is $\pi(-\alpha_p)$, where π is the projector from the weight lattice of g to that of ℓ .

The one-excitation state

Finally, this puts us in a position to define the one-excitation state. Choose $B_{1,\bar{0}}(\nu)$ as the creation operator

$$
\Phi(\lbrace v \rbrace) = B_{1,\bar{0}}(v) \cdot \Gamma^{1,\bar{0}} \cdot \Phi'(\lbrace v \rbrace).
$$

Now act with the transfer matrix $t(u) = \text{tr}_a T_a(u) = \sum_l \text{tr}_l A_l^l(u)$:

$$
t(u)\Phi(\lbrace v \rbrace) = \sum_{l} \operatorname{tr}(A'_l(u))B_{1,\overline{0}}(v) \cdot \Gamma^{1,\overline{0}} \cdot \Phi'(\lbrace v \rbrace).
$$

$$
= B_{1,\overline{0}}(v) \sum_{I} \underbrace{\mathrm{tr}\left[D^{I,1}(u-v)((D^{I,0}(u-v))^{-1})^{t_0} A_I'(u)\right]}_{\text{nested transfer matrix on } V^{aux}\otimes M^0} \cdot \Gamma^{1,\overline{0}} \cdot \Phi'(\{v\}).
$$

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q Q + 23/26

We have omitted unwanted terms.

Fusion

Expected nested transfer matrix expression:

$$
\mathop{\rm tr}\limits_{I}\Big[R^{I,V_{\mathsf{aux}}}(u-v)A_{I}'(u)\Big]\text{ acting on }V^{\mathsf{aux}}\otimes M^0
$$

But what we got was:

$$
\mathop{\rm tr}\limits_{I} \left[D^{I,1}(u-v)((D^{I,0}(u-v))^{-1})^{t_0} A^I_l(u)\right]
$$

The missing piece of the puzzle must be fusion! This occurs if the above pair of D matrices are at the fusion point.

Conjecture: The matrix $[(D^{10}(0))^{-1}]^{t_0}$ is a projector to $V^{aux} \subset V^1 \otimes \overline{V^0}.$ Note: this condition appears in Reshetikhin (1988), which considers the case $N = 2$.

Conclusions

Here's a quick recap.

- ▶ The decomposition of the auxiliary space is induced from the removal of a single simple root.
- \blacktriangleright The subsequent block Gauss decomposition of the R -matrix reveals D-matrices which satisfy the Yang-Baxter equation; this is enough to prove the RTT relation for the nested system, as well as the wanted term.
- \blacktriangleright The auxiliary site appearing in the nested system has representation $g^{(1)}$, determined from the nesting. We conjecture that a particular D-matrix evaluated at 0 gives a projector to this representation.

This is just about enough to construct the Bethe vector for one excitation.

Discussion

There is a lot that has not been completed yet.

- \blacktriangleright We need to prove the conjecture.
- \triangleright We need to show that the unwanted terms disappear if the Bethe equations are satisfied – need to understand the properties of $U(u)$ and $L(u)$ from the block Gauss decomposition.
- \triangleright We need to generalise to multiple excitations simple for $N = 2$, but difficult in general due to existence of $B_2^0(v)$ etc.

Thank you

Let's work together! Feel free to contact me on researchgate etc.

web: allangerrard.com orcid: 0000-0001-9933-8682

email: allan.j.gerrard⊗gmail.com

Decomposition of some reps

The nested Bethe equations

Explicitly, the Bethe equations are, for $1 \le i \le r$,

$$
\frac{P_i(v_k^{(i)} + \hbar d_i)}{P_i(v_k^{(i)})} = -\prod_{j=1}^r \prod_{l=1}^{m^{(j)}} \frac{v_k^{(i)} - v_l^{(j)} + \frac{\hbar}{2}(\alpha_i, \alpha_j)}{v_k^{(i)} - v_l^{(j)} - \frac{\hbar}{2}(\alpha_i, \alpha_j)}.
$$

Suppose α_p is removed. The Bethe equations, for $i \neq p$ are:

$$
\frac{P_i(v_k^{(i)} + \hbar d_i)}{P_i(v_k^{(i)})} = -\prod_{l=1}^{m^{(p)}} \frac{v_k^{(i)} - v_l^{(p)} + \frac{\hbar}{2}(\alpha_i, \alpha_p)}{v_k^{(i)} - v_l^{(p)} - \frac{\hbar}{2}(\alpha_i, \alpha_p)} \prod_{\substack{j=1 \ j \neq p}}^{r} \prod_{l=1}^{m^{(j)}} \frac{v_k^{(i)} - v_l^{(j)} + \frac{\hbar}{2}(\alpha_i, \alpha_j)}{v_k^{(i)} - v_l^{(j)} - \frac{\hbar}{2}(\alpha_i, \alpha_j)}.
$$

These must be equivalent to the full Bethe equations for the nested system. That is:

$$
\frac{P_i(v_k^{(i)} + \hbar d_i)}{P_i(v_k^{(i)})} \prod_{\substack{l=1 \ \text{prime}}^{m^{(p)}}}^{m^{(p)}} \frac{v_k^{(i)} - v_l^{(p)} - \frac{\hbar}{2}(\alpha_i, \alpha_p)}{v_k^{(i)} - v_l^{(p)} + \frac{\hbar}{2}(\alpha_i, \alpha_p)} = - \prod_{\substack{j=1 \ l \neq p}}^{r} \prod_{l=1 \ \text{prime}}^{m^{(j)}} \frac{v_k^{(i)} - v_l^{(j)} + \frac{\hbar}{2}(\alpha_i, \alpha_j)}{v_k^{(i)} - v_l^{(j)} - \frac{\hbar}{2}(\alpha_i, \alpha_j)}.
$$
Drinfeld' d polys for aux. sites!

26/26