On the nested algebraic Bethe ansatz for closed
spin chains with simple g symmetry

Allan John Gerrard

Department of Physics
Tokyo University of Science

RAQIS, September 2024

arXiv:2405.20177

1/26



On the problem of the ABA for simple g

Give me a rational, g-symmetric, “regular’ R-matrix on V ® V.
Then | can write down:

P> a g-symmetric integrable spin chain Hamiltonian on
M=V ®---® V with nearest neighbour interactions,

H Z (Rs,erl(O))_l ;75—‘,—1(0);

SEZy

» the Bethe equations of the resulting integrable system,

P'M(V;E’)) j=11=1 V/S) - V/(J) - %(a,-,aj)

[Ogievetsky and Wiegmann 1986]

» and the generators and relations of the associated quantum
group, the Yangian, in Drinfel'd’s current presentation.
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On the problem of the ABA for simple g

What about the Bethe eigenvector?

» Well-understood for sl,, cases; less and less is known as we
deviate from these.

» No method (as far as | am aware) for the exceptional cases.

Today: attempt to develop the nested algebraic Bethe ansatz for
simple g.
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Steps of the NABA

Start: monodromy matrix T (u) € End(V ® M) satisfying RTT.

Decompose the auxiliary space V/,
cutting the monodromy matrix
A(u) | B(u
o ()
T
Obtain the block relations between B
operators and the A operators
A(w)B(v) =...
1

Using B operators as creation operators,
build the Bethe vector

({v)) = B(v1) - B(vm)?"

T
Act with A blocks and

obtain the nested monodromy matrix

|

Qo
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Non-universality of the NABA

Kulish and Reshetikhin (1981); de Vega and
Gonzalez-Ruiz (1993); Galleas and Martins
(2005); Belliard and Ragoucy (2008); Belliard
and Ragoucy (2009)

T(u)= type a

Reshetikhin (1985); Reshetikhin (1988); de
Vega and Karowski (1987); Gombor and Palla
(2016); G., MacKay and Regelskis (2019); G.
and Regelskis (2020)

T(u) = type b, ¢, 0

Martins and Ramos (1997); Galleas and
Martins (2004); Li, Shi and Yue (2004); Li,
Shi and Yue (2005); Babujian, Foerster and
Karowski (2012); Gombor (2018)

T(u)

type b, ¢, 0
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Barriers to universality

The key to the algebraic Bethe ansatz is that all relations stem
from the RTT relation.

Reg(u)  ReP(u)
R(u) = | Réo(u) REL(u)

The R-matrix consists of familiar P

studied cases — : .
and P matrices

we cannot hope for the R-matrix to

general case @—— PR .
be made from “familiar” matrices

decomposition possible by hand but rather tedious!
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Barriers to universality

The key to the algebraic Bethe ansatz is that all relations stem
from the RTT relation.

Reg(u)  ReP(u)
R(u) = | Réo(u) REL(u)

The R-matrix consists of familiar P

studied cases — : .
and P matrices

we cannot hope for the R-matrix to

general case @—— PR .
be made from “familiar” matrices

decomposition possible by hand but rather tedious!

— alternative method which does not use the blocks directly!
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Nesting

Decomposition
of V

7
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Nesting

Subalgebra
t<g

| Decomposition

of V

7
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Nesting

Removing one
simple root

Subalgebra
t<g

Decomposition
of V

Qo
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The removed simple root

Removing one Subalgebra Decomposition
simple root E<g of V

> Simple roots correspond to sets of Bethe roots {v(P)} <+ a,.
If we remove a,, schematically we will have Bethe vector

& ({v}) = B - B! ({v}).

» It seems that any one simple root may be removed (cf.
[Kosmakov and Tarasov (2024)]), but for simplicity we consider
only the case where £ is simple (so consider only roots on the
ends of the Dynkin diagram).
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Removing a simple root

Example: consider the case g = so1o with auxiliary space V = 12,
the vector representation.

@000l

5010 < §012 5[6 < 5012

125012 = 15010 @ 105010 S5 15010 125012 = 65[6 ¥ 65[6

T(u) = T(u) =
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The U(1) charge

Removing a simple root means specifically
8= (hili # p) + (exal(e, @y) = 0).

The following basis vector of the Cartan subalgebra of g commutes
with €
[hwg,{»} —0.

This will be referred to as the charge, and it institutes a Z-grading
on g and its representations.
For example, the adjoint representation

g%g(*”p)@...@(E@(Chwg)@...@g(”p)
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Charge decomposition

We have decomposition of the auxiliary space into charge

eigenspaces, which are also £-reps:

veVigvig...ao VN,

The tensor product representation may be similarly partitioned

according to total charge

charge 0

The R matrix preserves the total charge, giving it a block diagonal

form.

vig VO
oVig vi

charge 1

oVieg Vvt
aVo® V2

charge 2
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The R-matrix and the block relations

The R matrix preserves the total charge, giving it a block diagonal

form.
R0 (u)

Rl = R2(u) RIS(w)

So now we can write down the block relations, right?

Raop(u— v)To(u) Tp(v) = Tp(v) Ta(u)Rap(u — v)

550 0 8
T(u) = 0. 1: N:
G'(u) GY(v) AN(v)
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The block relations

Sure, we can write down the block relations.
(((rtt // blockRels3) // Flatten // TableForm) // ddist)

ableForm=

~(a[0, 0], -a[0, 0], - 10000 [u]; ,) +r0O00[U]; ,-a[@, 0], -2[0, 0],
- (a[0, 0], 5[0, 1], 71001 [u], ;) - 5[0, 1], -2[0, O], -rO101[u], , + 0000 [u], ,-a[0, O], - 4[0, 1
- (al0, 0], - b[0, 1], -r1010[u]; ) -4[0, 1], -a[0, 0], -r0110[u], , +r0000 [u], ,- 5[0, 1], -a[0, O
- (al0, 0]2 - h[0, 2]1+r2002[u]y,5) - 5[0, 1], - 5[0, 1];-r1102[u]y,2 -5[0, 2], -a[0, 0] 70202 [u]:
~(al0, 0], - b[0, 2], -r2011[u], ,) 5[0, 1], -b[0, 1], -r1111[u], , - 5[0, 2], -a[0, O], - r6211[u].
- (a0, 0], - 5[0, 2], -r2020[u]; ,) - 5[0, 1], - 5[0, 1], -r1120[u]; , -4[0, 2], -a[6, 0], - 40220 [u]
- (p10, 1], - 5[0, 2], -r2112[u]; 5) 5[0, 2], - 5[0, 1]; -r1212[u]; , +r0000[U]; , - [0, 1], - 5[0, 2
- (p[0, 1], - 5[0, 2]; 12121 (U] ,) - 5[0, 2], - 5[0, 1]; -ul221[u], , +r0000 U], , - b0, 2], - 5[0, 1
- (b0, 2]2 - 5[0, 2]1-r2222([u]1 ) +r0000[u]1 250, 2]1-b[0, 2],
-(cl1, 0], -a[®, O], -r0000 U], ;) +r0101] 2-a[®, 0], -c[1, 0], +r0110[u], ,-c[1, 0], -a[0, ®
(11[0 0], - c[1, 0], -r0000 U], ) +rl0OL[ 2-2[0, 0], -c[1, 0], +r1010[u], ,-c[1, 0], -2[0, O
- (a1, 1]5-2[0, 0], - 0101 (U], 5) - b[E) 1], -r1001[u], , +r0101(u];,-a(0, 0], -a[l, 1

But they're not really useful in this form, because we don’'t know
what R},(u) are in general.
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The block relations

Hint: if we consider R3S (u), it satisfies the Yang-Baxter equation
(see [Chari-Pressley 1991]). This is easy to deduce from:

(VeaVeVvYl=Vle Vg Vo

with the YBE for R(u). So, we can use the uniqueness of
R-matrices to work out R3S (u).

We can use a similar idea to get some more info about R(u).
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The block Gauss decomposition

Consider the block Gauss decomposition of the R-matrix:

where

D (u
D(u) = " i
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The block Gauss decomposition
Consider the block Gauss decomposition of the R-matrix:

R(u) = U(u)D(u)L(v),

I I
/ I U ()
L(u) = Lw) 1 U(u) = I

DG (u)

where

Proposition
The D}Y(u) satisfy the Yang-Baxter equations:

Dij (u—v)Di (u=w) D3 (v—w) = D3 (v—w) Dji¢ (u—w) Dy (u—v).

15/26



|dentifying the D-matrices

So the matrix D/Y(u) € End(V! ® V) is an R-matrix, which is
something we know a lot about.

If we assume that each V! is an irreducible representation of the
Yangian (quite restrictive, but still includes all as-yet studied cases,
as well as many more), then we have, by uniqueness:

DH(u) = d“(u)RV'Y" (u — wyy).

Actually, from the Yang-Baxter equation we have w;; = w; — wy
for each /,J.

Bonus: we can determine the shift w; associated to each space
V7 using the Baxter polynomials of the representation V.
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What does this give us?
We are ready to state the block relations:
8 99 -
u U e
T(u) = 0o 1 N

Py M) - Alw)

AN~
SRS
~——

CJ’(u) for each /, J are annihilation operators, so will consider
terms mod C, where C consists of terms ending in matrix

elements of annihilation operators.
The RTT relation is (we omit the spectral parameter for clarity)

[UDL) T, Ty = T, T,[UDL].

Now we can do some trickery:

DLT,T,L™' = U 'T,T,UD
N—_—————

lower triangular mod C upper triangular mod C
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Result I: RAA relations

DLT,T,L™Y = U 'T,T,UD
—_——— —_———
lower triangular mod C upper triangular mod C

Looking at the diagonal blocks of this relation, we obtain
DY (u—v) Al(u)a AJ(v)p = AJ(V)b Al(1)2 DY (u — v) mod C

This is the RTT relation for the diagonal blocks of the monodromy
matrix!

» It confirms that the nested system will have a Yangian
underlying algebra.

» It also confirms that each of the nested transfer matrices
commute.
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Result Il: The AB relations

We can use the same technique to show:

(ADa(B711)s = (D) H(B141)s(A])a D"
1J _
L (B/™1)a(ATT1)b

1-1,J+41
/ N
+ (Bj41)a(A3)bL, 77 mod C

Practitioners of the Bethe ansatz will recognise the “wanted” and
“unwanted” terms.

Very important caveat: This technique works for the first
excitation only. After the first one, we can't count on C terms
vanishing. This means that, in general, the higher level terms need
to be generated from a relation like RRRTTT = TTTRRR.
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The nested Bethe vector
Recall the schematic (M is the spin chain state space):
@ ({v}) = B()- - BUA)Y ({v}) € M.

What exactly are &' ({v}) and B(v) here?

» We should have some auxiliary site V3“* for each excitation:

B(v) € Hom(V** C) ® End(M).
> We also need, in order to use the previous results,
C-' ({v}) =0

this can be achieved with

¥ ({v}) € (V)P & M°
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The B operator

Let us focus on just one excitation.
We have multiple different creation operators for one excitation:

BY(v) or Bi(v) or B3(v),...

It is expected that they all produce equivalent excitations (see e.g.
[Melo and Martins (2009)]). But in our case, they all have a
different shape

Bj,1(v) € Hom(V'*1, V') @ End(M)
In fact we will use
By41,7(v) € Hom(V/*' @ V/,C) ® End(M)

How can we square this with B(v) € Hom(V?**, C) ® End(M)?
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The auxiliary site

Assertion: The auxiliary site V@ must be isomorphic to the rep
g(l). That is, the vector space spanned by generators

Evidence I: For each /, there is an intertwiner of ¢ representations

r/+1,/‘ : g(1) o VI g VT

Indeed, gV @ V! — V/*1 simply from restricting the action of g
on V.

This means that we can act with any B operator on the nested
Bethe vector.

o' ({v}) = T 0 ({v)}) = By 7(v) - T o' ({v))
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The auxiliary site

Assertion: The auxiliary site V@ must be isomorphic to the rep
g(l). That is, the vector space spanned by generators
<e_oé\(a,wg) = 1>.

Evidence Il: There is a way we could have predicted this from the
Bethe equations. Assuming the NABA is successful, we must have
the following equivalence:

Bethe equations for v(P) | Top level BEs
Bethe equations | | Bethe equations for v(P~1) ,
for system Bethe equations
on M ; for nested system

: on (Vaux)®mp ® MO

Bethe equations for v(1)

This is consistent if the highest weight of V2“* is m(—ay), where 7
is the projector from the weight lattice of g to that of ¢.
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The one-excitation state

Finally, this puts us in a position to define the one-excitation state.
Choose B 5(v) as the creation operator

O({v}) = Byg(v) - M0 &/ ({v}).
Now act with the transfer matrix t(u) = tr, To(u) = Y, tr) Al(u):
Ztr (v) - T o/ ({v}).
Ztr[D“ V(D" (u = v)) ™) Aj(u)] T ({v}).

~
nested transfer matrix on Vaux@ MO

We have omitted unwanted terms.
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Fusion

Expected nested transfer matrix expression:
tr [RI’VB“X(U - v)Af(u)} acting on V3% @ MP°
But what we got was:
tr | D" (u = v)((D"°(u = v))™1) Al(u)]

The missing piece of the puzzle must be fusion! This occurs if the
above pair of D matrices are at the fusion point.

Conjecture: The matrix [(D°(0))~!]% is a projector to

Vaux — vl ®W.

Note: this condition appears in Reshetikhin (1988), which
considers the case N = 2.

24/26



Conclusions

Here's a quick recap.

» The decomposition of the auxiliary space is induced from the
removal of a single simple root.

» The subsequent block Gauss decomposition of the R-matrix
reveals D-matrices which satisfy the Yang-Baxter equation;
this is enough to prove the RTT relation for the nested
system, as well as the wanted term.

P> The auxiliary site appearing in the nested system has
representation g(1), determined from the nesting. We
conjecture that a particular D-matrix evaluated at O gives a
projector to this representation.

This is just about enough to construct the Bethe vector for one
excitation.
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Discussion

There is a lot that has not been completed yet.
> We need to prove the conjecture.

» We need to show that the unwanted terms disappear if the
Bethe equations are satisfied — need to understand the
properties of U(u) and L(u) from the block Gauss
decomposition.

> We need to generalise to multiple excitations — simple for

N = 2, but difficult in general due to existence of BY(v) etc.

Thank you

Let's work together! Feel free to contact me on researchgate etc.

web: allangerrard.com orcid: 0000-0001-9933-8682

email: allan. j.gerrard®gmail.com
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Decomposition of some reps

g ap ot | % Vo vt %% v3
a, a1 a1 | M%(w;) M¥(w;) M (wit1)n/2
b o b M8(wi) 1 ME(w1)n 1
TN MO(w) MYwee1)  MY(wr—1)an
o a1 ¢o1 | MS(w) 1 ME(w1)p/2 1
¢ ar a1 | M3(wr) M (wy) Mk(WrE—l)(r+2)h 2
Mg(wl) 1 M (wl)h 2 1
0, a1 0,1 Mg(w,,l) ME Wr72) ME(UJr—l/)h
0 ar a1 | M(w1)  Miwi)  MMwr1)i-2m2
s a5 s M3(w1)  M(wr) M (ws)31/2 1
M®(ws) 1 M¥(wa)s/2 M*(w1)2n
6 a5 | MU(w1)  M(w) M*(wa)3n/2 M*(w1)3n
ez a7 e M?(w7) 1 M (w6 )52 M¥(w1)sp/2 1
ez ar O M8 (wr) M¥(w1) M (ws)2n M*(w1)an
ez a2 G M2 (wr) M*(ws) M* (w2)2n MY (ws)7nse MU (wi)iing2
fa o1 3 | M(ws)  M(wr) M*(w2)sn/2 M (w1)sn
g2 a4 M8 (wy) ME(w) ME(2w)oy, M (w)sn
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The nested Bethe equations
Explicitly, the Bethe equations are, for 1 </ <'r,

Pi(v + nd;) HH V/U)Jr%(ai,oéj).
P(Vk j=11=1 Vk V/(J) %(a;,og)

Suppose «,, is removed. The Bethe equations, for i # p are:

1 m(P) i r mY) i
P+ hd) T )=+ B a) T ) v+ Blainay)
Pi(VIE’)) I=1 V;E’) - V/(p) - %(O‘h ap) j=11=1 V/EI) - V/U) (al?aj)

These must be equivalent to the full Bethe equations for the nested
system. That is:

; (p) i
Pi(V;El) +hd;) T () - /(p) — 2ai,ap) _ H é + L(ai, qy)
Pi("lE’)) I=1 V/E) - V/(p) + ?(anap) j=1I=1 V;E - V/ %(ai,aj)
i#p

Drinfel'd polys for aux. sites!
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