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To begin, recall that the classical Sutherland Hamiltonian,

Htrig−Suth(q, p) ≡
1

2

n∑
k=1

p2k +
1

8

∑
j ̸=k

x2

sin2((qj − qk)/2)
,

admits two kinds of spin extensions. The first one contains Lie algebraic (‘collective’)
spin variables,

Hspin−Suth(q, p, ξ) =
1

2

n∑
k=1

p2k +
1

8

∑
j ̸=k

|ξjk|2

sin2((qj − qk)/2)
,

where ξ ∈ u(n)∗, with zero diagonal part. These models exist for all simple Lie
algebras,

Hspin−Suth(q, p, ξ) =
1

2
⟨p, p⟩+

1

8

∑
α∈∆

2

|α|2
|ξα|2

sin2(α(q)/2)
,

and arise from Hamiltonian reduction of the cotangent bundle T ∗G of the corre-
sponding compact Lie group. (Here, we use the Killing form and the set of roots
∆ = {α} of the complexified Lie algebra GC.) The spin variables matter up to gauge
transformation by the maximal torus G0 < G.
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The second kind of generalization is the Gibbons–Hermsen (1984) model

HG−H =
1

2

n∑
j=1

p2j +
1

8

∑
j ̸=k

|(SjS
†
k)|2

sin2((qj − qk)/2)
.

The complex row-vector Sj := [Sj1, . . . , Sjd] ∈ Cd, d ≥ 2, is attached to the particle
with coordinate qj, representing internal degrees of freedom. The overall phases of
the spin vectors Sj can be changed by gauge transformations. This model descends
from the extended cotangent bundle T ∗U(n)× Cn×d.

The purpose of the talk is to explain that generalizations of these models arise if one
replaces the cotangent bundles by the so-called Heisenberg doubles, which are their
Poisson–Lie analogues. We shall mainly focus on the first kind of models.

The talk is based on the following papers:

• LF, Poisson–Lie analogues of spin Sutherland models, Nucl. Phys. B 949,
114807 (2019)

• LF, Poisson–Lie analogues of spin Sutherland models revisited, J. Phys A: Math.
Theor. 57, 205202 (2024)

• Fairon, L.F. and Marshall, Trigonometric real form of the spin RS model of
Krichever and Zabrodin, Ann. Henri Poincaré 22, 615-675 (2021)
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Let G be a (connected and simply connected) compact Lie group with simple Lie
algebra G. Denote GC and GC the complexifications, and define P := exp(iG) ⊂ GC.
Example: G = SU(n), GC = SL(n,C), P = {X ∈ SL(n,C) | X† = X, X positive}.

One has the following 3 ‘classical doubles’ of G:

Cotangent bundle T ∗G ≃ G× G∗ ≃ G× G =: M1

Heisenberg double GC
R ≃ G×G∗ ≃ G×P =: M2

Internally fused quasi-Poisson double G×G =: M3

The pull-backs of the relevant rings of invariants

C∞(G)G, C∞(G)G, C∞(P)G

give rise to two ‘master integrable systems’ on each double.

The group G acts on these phase spaces by ‘diagonal conjugations’, i.e., by the
diffeomorphisms

Ai
η : (x, y) 7→ (ηxη−1, ηyη−1), ∀(x, y) ∈ Mi (i = 1,2,3), η ∈ G.

The G-invariant functions form closed Poisson algebras, and thus the quotient space
Mred

i ≡ Mi/G becomes a (singular) Poisson space, which carries the corresponding
reduced integrable systems.
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Plan of the rest of the talk

• The (well known) case of the cotangent bundle T ∗G

• Spin RS type models from Heisenberg doubles

• Krichever–Zabrodin type generalizations of the Gibbons–Hermsen

model (if time permits)

• Conclusion
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The example of the cotangent bundle

The canonical Poisson bracket on the cotangent bundle

M := G× G = {(g, J) | g ∈ G, J ∈ G} has the form

{F ,H}(g, J) = ⟨∇1F , d2H⟩ − ⟨∇1H, d2F⟩+ ⟨J, [d2F , d2H]⟩,
where the G-valued derivatives are taken at (g, J). Here, ⟨X,Y ⟩ is the Cartan-Killing
inner product on G. The derivative d2F ∈ G w.r.t. the second variable J ∈ G is the
usual gradient, while the derivative ∇1F ∈ G w.r.t. first variable g ∈ G is defined by

d

dt

∣∣∣∣
t=0

F(etXg, J) =: ⟨X,∇1F(g, J)⟩, ∀X ∈ G.

The equations of motion generated by the Hamiltonians H of the form H(g, J) = φ(J)
with φ ∈ C∞(G)G read

ġ = (dφ(J))g, J̇ = 0 =⇒ (g(t), J(t)) = (exp(tdφ(J(0)))g(0), J(0)).

The constants of motions are arbitrary functions of J and g−1Jg.

We reduce by going to the orbit space of M w.r.t. the conjugation action of G.
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We characterize the reduced system using a partial gauge fixing. Define

Mreg := {(g, J) ∈ M | g ∈ Greg}, Mreg
0 := {(Q, J) ∈ M | Q ∈ Greg

0 }.
Here, Greg contains the group elements whose centralizer is a maximal torus, and
G0 is a fixed maximal torus. Let N denote the normalizer of G0 < G, which is the
‘group of residual gauge transformations’.

Then, Mreg/G ≡ Mreg
0 /N, and the restriction of functions yields the isomorphism

C∞(Mreg)G ⇐⇒ C∞(Mreg
0 )N,

By transferring the Poisson bracket from C∞(Mreg)G to C∞(Mreg
0 )N, we get

{F,H}red(Q, J) = ⟨∇1F, d2H⟩ − ⟨∇1H, d2F ⟩+ ⟨J, [d2F, d2H]R(Q)⟩,
with [X,Y ]R ≡ [RX,Y ] + [X,RY ]. The ‘reduced evolution equations’ generated by
the invariant functions φ ∈ C∞(G)G can be written on Mreg

0 as

Q̇ = (dφ(J))0Q, J̇ = [R(Q)dφ(J), J].

Here, the subscript zero refers to the decomposition G = G0+G⊥
0 , and R(Q) ∈ End(G)

is the basic trigonometric solution of the modified classical dynamical Yang–Baxter
equation. R(Q) vanishes on G0 and, writing Q = exp(iq) with iq ∈ G0, is given on G⊥

0

by R(Q) = 1
2
coth( i

2
adq).

6



The (well known) spin Sutherland interpretation

Parametrize J ∈ G according to

J = −ip+
∑
α∈∆+

(
ξα

e−iα(q) − 1
Eα −

ξ∗α
eiα(q) − 1

E−α

)
, p ∈ iG0, ,

and take φ(J) = −1
2
⟨J, J⟩. Then (using ⟨Eα, E−α⟩ = 2/|α|2) we get

−
1

2
⟨J, J⟩ =

1

2
⟨p, p⟩+

1

8

∑
α∈∆

2

|α|2
|ξα|2

sin2(α(q)/2)
,

which is a standard spin Sutherland Hamiltonian Hspin−Suth(q, p, ξ). Here, we use the
Killing form and the root space decomposition of the complexified Lie algebra GC,
with the set of roots ∆ = {α} and corresponding root vectors Eα.

The ‘spin variable’ ξ =
∑

α∈∆+
(ξαEα − ξ∗αE−α) ∈ G⊥

0 matters up to conjugations by the
maximal torus G0. After dividing by G0, there remains a residual gauge symmetry
under the Weyl group W = N/G0, and the pertinent dense open subset of the reduced
phase space can be identified as

(
T ∗Greg

0 × (G∗//0G0)
)
/W .
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Spin RS type models from the Heisenberg double M := G×P

Let us realize G as a compact real form of a complex simple Lie algebra GC. Using
positive roots associated with the Cartan subalgebra GC

0 , consider the triangular de-
compositions GC = GC

< + GC
0 + GC

>. We also consider a corresponding connected and
simply connected Lie group GC.

The realification GC
R of GC decomposes as the vector space direct sum

GC
R = G + B with B := iG0 + GC

>.

G and B are isotropic subalgebras with respect to the invariant, symmetric, non-
degenerate, real bilinear form ⟨−,−⟩I on GC

R defined by the imaginary part of the
complex Killing form of GC. If G = su(n), then X ∈ B is upper-triangular with real
diagonal entries. For any Z = Z1 +iZ2 in GC

R, with Z1, Z2 ∈ G, we let Z† := −Z1 +iZ2.

For a real f ∈ C∞(G) we define its B-valued left- and right-derivatives by

⟨Df(g), X⟩I + ⟨D′f(g), Y ⟩I :=
d

dt

∣∣∣∣
t=0

f(etXgetY ), ∀X,Y ∈ G.

For a real function ϕ ∈ C∞(P) we define its GC
R-valued derivative Dϕ by

⟨X,Dϕ(L)⟩I :=
d

dt

∣∣∣∣
t=0

ϕ(etXLetX
†
) and ⟨Y,Dϕ(L)⟩I :=

d

dt

∣∣∣∣
t=0

ϕ(etYLe−tY )

∀X ∈ B and ∀Y ∈ G.
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The phase space M = G×P = {(g, L)} carries the following Poisson structure:

{F ,H}(g, L) = ⟨D2F , (D2H)G⟩I −
〈
gD′

1Fg−1,D1H
〉
I + ⟨D1F ,D2H⟩I − ⟨D1H,D2F⟩I ,

where the derivatives of F ,H ∈ C∞(M) are evaluated at (g, L) ∈ M.

The Hamiltonian H(g, L) = ϕ(L), with ϕ ∈ C∞(P)G, generates the evolution equation

ġ = (Dϕ(L))g, L̇ = 0, solved by (g(t), L(t)) = (exp (tDϕ(L(0))) g(0), L(0)) .

L and g−1Lg are constants of motion, and we obtained an integrable system on M.

Similarly to the cotangent bundle case, we introduce

Mreg := {(g, L) ∈ M | g ∈ Greg} and Mreg
0 := {(Q,L) ∈ M | Q ∈ Greg

0 }.

The isomorphism C∞(Mreg)G ⇐⇒ C∞(Mreg
0 )N leads to the reduced Poisson bracket

on C∞(Mreg
0 )N:

{F,H}red(Q,L) = ⟨D1F,D2H⟩I−⟨D1H,D2F ⟩I+⟨R(Q)(D2H)G,D2F ⟩I−⟨R(Q)(D2F )G,D2H⟩I
The derivatives D1F ∈ B0 and D2F ∈ GC

R are taken at (Q,L), and R(Q) ∈ End(G) is
the standard dynamical r-matrix.

For ϕ ∈ C∞(P)G one has Dϕ(L) ∈ G, and the ‘reduced evolution equations’ can be
written on Mreg

0 as

Q̇ = (Dϕ(L))0Q, L̇ = [R(Q)Dϕ(L), L].
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Canonically conjugate pairs and ‘spin’ variables. Let B0 and B+ be the sub-
groups of B associated with the subalgebras in B = B0 + B>. Any b ∈ B is uniquely
decomposed as b = epb+ with p ∈ B0, b+ ∈ B+ and any L ∈ P can be written as
L = bb†.

Then, we introduce new variables by means of the map

ζ : Mreg
0 → Greg

0 × B0 ×B+

ζ : (Q,L = epb+b†+ep) 7→ (Q, p, λ) with λ := b−1
+ Q−1b+Q.

The map ζ is a diffeomorphism.

In terms of the new variables introduced via the map ζ, the reduced Poisson bracket
acquires the following ‘decoupled form’:

{F,H}red(Q, p, λ) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I + ⟨λD′
λFλ−1, DλH⟩I,

where the derivatives of F,H ∈ C∞(Greg
0 × B0 ×B+)N are taken at (Q, p, λ).

Using the identification (B+)∗ ≃ G⊥
0 , the derivatives DλF,D

′
λF ∈ G⊥

0 are defined by

⟨X,DλF (Q, p, λ)⟩I + ⟨Y,D′
λF (Q, p, λ)⟩I =

d

dt

∣∣∣∣
t=0

F (Q, p, etXλetY ), ∀X,Y ∈ B>.

We obtained a non-linear analogue of the Poisson structure of the spin Sutherland
model coming from T ∗G. The term ⟨λD′

λFλ−1, DλH⟩I represents the reduction of the
Poisson–Lie group B = G∗ with respect to G0 < G, at the zero value of the moment
map for the G0-action on B (given by conjugations). One may restrict λ to a dressing
orbit of G in B, and taking the minimal dressing orbit of SU(n) results in the standard
(spinless) real, trigonometric Ruijsenaars–Schneider model.
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Interpretation as spin RS model: Consider the new variable λ = b−1
+ Q−1b+Q using

λ = eσ, b+ = eβ, σ =
∑
α>0

σαEα, β =
∑
α>0

βαEα, Q = eiq.

We find βα in terms of σ and eiq: βα = σα

e−iα(q)−1
+

∑
k≥2

∑
φ1,...,φk

fφ1,...,φk
(eiq)σφ1 . . . σφk

,

where α = φ1 + · · ·+ φk and fφ1,...,φk
depends rationally on eiq.

Take any finite dimensional irreducible representation ρ : GC → SL(V ), with a G-
invariant inner product on V . Then, the character ϕρ(L) = trρ(L) := cρtrρ(L) gives
an element of C∞(P)G. (Here, cρ is a constant, so that trρ(XY ) := cρtr(ρ(X)ρ(Y )) = ⟨X,Y ⟩.)
Using the variables (Q, p, σ), Hρ(L) = ϕρ(L) = trρ(epb+b†+ep) can be expanded as

Hρ(eiq, p, σ) = trρ
(
e2p

(
1ρ +

1

4

∑
α∈∆+

|σα|2EαE−α

sin2(α(q)/2)
+ o2(σ, σ

∗)
))
.

By expanding e2p, we get

Hρ(eiq, p, σ) = cρdimρ +2trρ(p
2) +

1

2

∑
α∈∆+.

1

|α|2
|σα|2

sin2(α(q)/2)
+ o2(σ, σ

∗, p).

The leading term matches the spin Sutherland Hamiltonian Hspin−Suth. The reduced
Poisson bracket and the Lax matrix are also deformations of those pertaining to the
spin Sutherland models. For example,

L(eiq, p, σ) = 1+2p+
∑
α∈∆+

(
σα

e−iα(q) − 1
Eα +

σ∗
α

eiα(q) − 1
E−α

)
+o(σ, σ∗, p).

Our ‘spin RS type models’ turn into the spin Suthrerland models by a certain
scaling limit, akin to the c → ∞ limit.
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Time permitting, we now sketch the idea of a generalization of the trigonometric
Gibbons–Hermsen model. For this, recall the GH model is obtained by Hamiltonian
reduction from

T ∗U(n)× Cn×d

The second factor encodes nd (d ≥ 2) copies of the symplectic vector space R2.
Denote the general element of Cn×d as the matrix Saj, and let (g, J) stand for the
general element of the cotangent bundle, trivialized by right-translations. Then the
following formula gives a Poisson map into u(n) ≃ u(n)∗,

Φ(g, J, S) = J − g−1Jg + iSS†.

This is the moment map for the Hamiltonian action of U(n) given by

Aη : (g, J, S) 7→ (ηgη−1, ηJη−1, ηS), ∀η ∈ U(n).

Now, reduce by imposing the moment map constraint Φ(g, J, S) = ic1n, with c > 0. On
a dense open subset, one can employ the partial gauge fixing where g = exp(iq) ∈ Tn

reg
with the maximal torus Tn < U(n). Then, one gets

Jab = ipaδab − i(1− δab)
SaS

†
b

1− exp(i(qb − qa))
, with arbitrary pa ∈ R.

In this gauge, the ‘free’ Hamiltonian gives H = −1
2
tr(J2) = 1

2

∑n
a=1 p

2
a +

1
8

∑
a̸=b

|SaS
†
b |2

sin2 qa−qb
2

,

and the moment map constraint implies SaS
†
a = c. The residual gauge transformations

are given by the torus Tn and by the permutation group Sn, and the pertinent open
dense subset of the full reduced phase space can be identified as(

T ∗Tn
reg × (CPd−1 × · · · × CPd−1)

)
/Sn,

with n-copies of the complex projective space. (If d = 1, then one gets the spinless
Sutherland model.)
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For generalization, take the unreduced phase space M := GL(n,C)×Cn×d, where the
real manifold GL(n,C) ≃ U(n) × P(n) is the Heisenberg double of the Poisson–Lie
group U(n) and the d columns of Cn×d carry a U(n) covariant Poisson structure,

{wk, wl} = i sgn(k − l)wkwl, ∀1 ≤ k, l ≤ n,

{wk, wl} = i δkl(2 + |w|2) + iwkwl + i δkl

n∑
r=1

sgn(r − k)|wr|2 .

which is due to Zakrzewski (1996), and is actually symplectic. Consider the following
Iwasawa decompositions of g ∈ GL(n,C) and the factorization of (1n + ww†) ∈ P(n):

g = kLb
−1
R = bLk

−1
R , 1n + ww† = b(w)b(w)†

where kL, kR ∈ U(n) and bL, bR,b(w) ∈ B(n): the upper-triangular subgroup of GL(n,C)
with positive diagonal. Then, define the Poisson map Λ : M → B(n) ≡ U(n)∗ by

Λ(g, w1, . . . , wd) := bLbRb(w
1)b(w2) · · ·b(wd), with (w1, w2, . . . , wd) ∈ Cn×d.

This generates an action of the Poisson–Lie group U(n) on M, and we obtain the
reduced phase space

Mred = Λ−1(eγ1n)/U(n),

which is a smooth symplectic manifold for any γ > 0.

The unreduced phase space carries the commuting Hamiltonians

Hj := tr(Lj) with L := bRb
†
R, j = 1, . . . , n.

They have very simple flows and yield an integrable system on M, quite similar to
the cotangent bundle case.
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We can go to the gauge slice where kR becomes a diagonal matrix, Q ∈ Tn
reg.

Decomposing b ∈ B(n) as b = b0b+, with diagonal and unipotent factors, we write

bR = b0b+ and b(w1)b(w2) · · ·b(wd) =: S(W ) =: S0(W )S+(W ).

Then the moment map condition becomes equivalent to the following constraints:

S0(W ) = eγ1n and b+S+(W ) = Q−1b+Q.

The first equation constraints W = (w1, . . . , wd) only, while the second one permits us
to express b+ in terms of Q = eiq ∈ Tn

reg and S+(W ) ∈ Cn×d. (Same eq. as b+λ = Q−1b+Q.)

Q ∈ Tn
reg and b0 ≡ exp(p), with p = diag(p1, . . . , pn), are arbitrary, and a dense open

subset of the reduced phase space is parametrized by Q, p and the constrained ‘primary
spins’, W , up to the usual residual gauge transformations.

The reduction of the spectral invariants of L = bRb
†
R yields an integrable system.
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To connect our reduced system with the Gibbons–Hermsen model, we introduce a
positive ‘scaling parameter’ ϵ and make the replacements

p → ϵp, W → ϵ
1

2W, Q → Q, ΩM → ϵ−1ΩM, γ → ϵγ,

where ΩM is the symplectic form on M. With L := bRb
†
R and bR = exp(ϵp)b+(Q, ϵ

1

2W ),

writing Q = diag(eiq1, . . . , eiqn) and letting wi denote the i-th row of W ∈ Cn×d, we get

lim
ϵ→0

1

8ϵ2
(tr(L) + tr(L−1)− 2n) =

1

2
tr(p2) +

1

32

∑
i̸=j

|wiw
†
j|2

sin2 qi−qj
2

,

lim
ϵ→0

ϵ−1 (Ωred) =
n∑

j=1

dpj ∧ dqj +
i

2

n∑
j=1

d∑
α=1

dwα
j ∧ dwα

j ,

reproducing the Hamiltonian and symplectic form of the Gibbons–Hermsen model.

Details are explained in Fairon, L.F. and Marshall: Trigonometric real form of the
spin RS model of Krichever and Zabrodin, Ann. Henri Poincaré 22, 615-675 (2021)

Our construction is a ‘real form’ of earlier reduction treatments of the holomorphic
spin RS models of Krichever–Zabrodin (1995), which are due to Chalykh and Fairon
and to Arutyunov and Olivucci. (As far as I know, the connection to the Gibbons–
Hermsen model was not analysed in those papers.)
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Remark on multi-Hamiltonian structure. Let us consider the space of primary spins

Cn×d = {(w1, w2, . . . , wd)},
and define on it the commuting vector fields Vj (j = 1, . . . , d) that, as derivations of
the evaluation functions, satisfy

Vj[w
k] = iδj,kw

k.

They are the infinitesimal generators of the natural U(1) action on the d-copies of
Cn. They are naturally extended to M = GL(n,C)×W, and the previously introduced
Poisson bivector PM admits the modification

PM → PM +
∑

1≤j<k≤d

xjkVj ∧ Vk

with arbitrary real parameters xjk. (The columns wj and wk no longer Poisson com-
mute if xjk ̸= 0.) The modified Poisson structure remains symplectic. It admits the
same Poisson–Lie moment map as for xjk ≡ 0, generating the same U(n) action, and
the flows of the ‘free Hamiltonians’ do not change.

As a result, we obtain a multi-Hamiltonian structure for the reduced system on
Λ−1(eiγ1n)/U(n). This procedure works for the Gibbons–Hermsen model as well.)

For a related system, this way of introducing a multi-Hamiltonian structure was
used in Fairon and L. F.: Integrable multi-Hamiltonian systems from reduction of an
extended quasi-Poisson double of U(n), Ann. Henri Poincaré 24, 3461-3529 (2023)
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Conclusion

1. I presented generalizations of the classical trigonometric spin Sutherland models
built on Lie algebraic spin variables and mentioned also the analogous generalization
of the classical spins Sutherland models of Gibbons–Hermsen type.

2. Quantization of the novel spin RS type models? Via quantum Hamiltonian
reduction or by other means? Any relation to other spin RS models?

3. The old models can be recovered as scaling limits of the novel models, like the
c → ∞ limit connecting Ruijsenaars–Schneider models to Sutherland models.

4. The second kind of models are related to the U(n) models of the first kind by
means of a realization of the ‘collective spin variable’ λ ∈ B+ in terms of ‘spin vectors’
attached to the particles, analogously to what happens in the linear case.

5. We note that the degenerate integrability of the first kind of models was shown
after restriction on the dense open subset of the phase space corresponding to the
principal orbit type for the G-action. Degenerate integrability of the trigonometric
Krichever–Zabrodin models was also proved.
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Appendix I: Recall of degenerate integrability on symplectic and Poisson manifolds

Definition 1. Suppose that M is a symplectic manifold of dimension 2m with
associated Poisson bracket {−,−} and two distinguished subrings H and F of C∞(M)
satisfying the following conditions:

1. The ring H has functional dimension r and F has functional dimension s such
that r + s = dim(M) and r < m.

2. Both H and F form Poisson subalgebras of C∞(M), satisfying H ⊂ F and {F ,H} =
0 for all F ∈ F, H ∈ H.

3. The Hamiltonian vector fields of the elements of H are complete.

Then, (M, {−,−},H,F) is called a degenerate integrable system of rank r. The
rings H and F are referred to as the ring of Hamiltonians and constants of motion,
respectively. (If r = 1, then this is the same as ‘maximal superintegrability’ of a
single Hamiltonian.)

Definition 2. Consider a Poisson manifold (M, {−,−}) whose Poisson tensor has
maximal rank 2m ≤ dim(M) on a dense open subset. Then, (M, {−,−},H,F) is called
a degenerate integrable system of rank r if conditions (1), (2), (3) of Definition 1
hold, and the Hamiltonian vector fields of the elements of H span an r-dimensional
subspace of the tangent space over a dense open subset of M.
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Appendix II: Explicit formulas for GC = SL(n,C): Now parametrize b+ ∈ B by its
matrix elements. We have b = epb+, and can find b+ from the relation

Q−1b+Q = b+λ,

where Q = diag(Q1, . . . , Qn) ∈ Greg
0 , λ ∈ B+ is the constrained ‘spin’ variable and b+ is

an upper triangular matrix with unit diagonal.

Denoting Ia,a+j :=
1

Qa+jQ
−1
a −1

, we have (b+)a,a+1 = Ia,a+1λa,a+1, and, for k = 2, . . . , n−a,

the matrix element (b+)a,a+k equals

Ia,a+kλa,a+k +
∑

m=2,...,k
(i1,...,im)∈Nm

i1+···+im=k

m∏
α=1

Ia,a+i1+···+iαλa+i1+···+iα−1,a+i1+···+iα.

Then H = tr(bb†) gives

H(eiq, p, λ) =
n∑

a=1

e2pa +
1

4

n−1∑
a=1

e2pa

n−a∑
k=1

|λa,a+k|2

sin2((qa+k − qa)/2)
+ o2(λ, λ

†).
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