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General philosophy

Develop an algebraic approach to the reflection equation (boundary
Yang-Baxter equation) which:

@ is universal and uniform;
@ is useful for quantum integrable systems;

@ extends the approach to the Yang-Baxter equation in terms of
quasitriangular Hopf algebras.
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General philosophy

Develop an algebraic approach to the reflection equation (boundary
Yang-Baxter equation) which:

@ is universal and uniform;
@ is useful for quantum integrable systems;

@ extends the approach to the Yang-Baxter equation in terms of
quasitriangular Hopf algebras.

We will consider a pair of symmetry algebras:
(Uq(9), Bo) quantum affine symmetric pair
where g is a fin.dim. simple Lie algebra, g the 1-dim. central extension

of g ® C[t,t] and U,(g) the corresponding quantum affine algebra.

The “new” ingredient is a suitable involutive automorphism 6 : g — g,
using which one defines a coideal subalgebra By C Ugy(g), also known as
affine 1-quantum group, q-deforming the Hopf subalgebra U(g%) c U(g).
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@ Cylindrical structures on quasitriangular bialgebras
© Trigonometric K-matrices from quantum affine symmetric pairs

© Tensor K-matrices and their applications
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@ Cylindrical structures on quasitriangular bialgebras

Key reference:

[AV20] A. Appel & B. Vlaar, Universal K-matrices for quantum
Kac-Moody algebras. Representation Theory of the American
Mathematical Society 26 (2022) and at arXiv:2007.09218.
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R-matrices and the Yang-Baxter equation

Recall, a bialgebra A with coproduct A: A — A® A is called
quasitriangular if there exists R € (A® A)* (universal R-matrix)
satisfying

R-A(a) = A°®(a)- R forall ac A,

(A & Id)(R) Ri3 - Ros, Id & A R R13 - Ryo.
= universal Yang-Baxter \
equation (YBE)
Ri2-R13-Ro3 = Ro3- Ri3- Rz \ “'P Ruw
EADAD A LA <)
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R-matrices and the Yang-Baxter equation

Recall, a bialgebra A with coproduct A: A — A® A is called
quasitriangular if there exists R € (A® A)* (universal R-matrix)
satisfying

R-A(a) = A°®(a)- R forall ac A,

(A & Id)(R) Ri3 - Ros, Id & A R R13 Ry».
= universal Yang-Baxter \
equation (YBE)
Ri2-R13-Ro3 = Ro3- Ri3- Rz “'l’ Ruw
CEARARA. W v u,

In many cases, R arises as canonical element of nondegenerate bialgebra
pairing between two “halves” of A. Example: Drinfeld-Jimbo quantum
group A = Ug(£) where £ is a Kac-Moody Lie algebra,

R € completion of Uy(£)=0 @ U,(£)=°

acting on tensor products of suitable modules.
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Yang-Baxter equation (YBE) with spectral parameter:

R(£)12 R(£)13 - R(£)23 = R(£)23 - R(£)13 - R($)12

where R(z) € End(V ® V) for some finite-dimensional C-linear space V/,
depending on a parameter z.

The universal R-matrix of Drinfeld-Jimbo quantum groups of affine type
lies at the origin of a range of solutions R(z) with rational dependence
on z, called trigonometric R-matrices.

Example (XXZ/6-vertex R-matrix, associated to Uq(;[z), vV =C?)

1 0 0 0 1 0 0 0
0 q(1—2z) (qul L) 0 sin(u) sin(n)e‘/jl" 0
R(Z) _ G2 —z G2 —z — sin(u+n) sin(u+n)
0 -1 g(l-2) 0 sin(n)ef\/jl” sin(u)
G2 —z -z sin(u+n) sin(u+n)
0 O 0 1 0 0 0

where z = e2V—1u, qg=eV —In,
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Reflection equation

(Left) reflection equation with spectral parameter:

R(2)a1 - K(2)2- R(yz) - K(y)1 = K(y)1 - R(yz)as - K(2)2 - R(Z)

where K(z) € End(V) (Cherednik, '84) (Sklyanin, '88).
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Reflection equation

(Left) reflection equation with spectral parameter:
R(2)a1 - K(2)2 - R(y2) - K1 = K(y)1 - Ryz)ar - K(2)2 - R(Z)
where K(z) € End(V) (Cherednik, '84) (Sklyanin, '88).

Example (K-matrices for the XXZ/6-vertex R-matrix)

Classification, up to symmetries, of invertible symmetrizable solutions
K(z) (with V = C? and R(z) given by the XXZ R-matrix):

o1 Z o0p—01Z 7=z 1 0_1 1 0
(Hop1—2)(Hoz—p1) z—z71 00—012_1 ’ Oégiz ’ 01

with free parameters o; = u; + ul-_l € Cand £ € C*.
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Reflection equation

(Left) reflection equation with spectral parameter:

R(2)a1 - K(2)2- R(yz) - K(y)1 = K(y)1 - R(yz)as - K(2)2 - R(Z)

where K(z) € End(V) (Cherednik, '84) (Sklyanin, '88).

Example (K-matrices for the XXZ/6-vertex R-matrix)

Classification, up to symmetries, of invertible symmetrizable solutions
K(z) (with V = C? and R(z) given by the XXZ R-matrix):

o1 Z o0p—01Z 7=z 1 0_1 1 0
(Hop1—2)(Hoz—p1) z—z71 00—012_1 ’ Oégiz ’ 01

with free parameters o; = u; + ul-_l € Cand £ € C*.

Analogous classification for Uq(;[,,) R-matrices, see (Regelskis & V.,
'18): many independent solutions (~ n?), no “most general” solution.
There are also independent solutions of triangular type, whose algebraic
origin is far from clear.
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Obstacle for universality & uniformity

There is an important variant of the RE (crossed RE, e.g. Olshanskii,
'90) which cannot always be rewritten as the ordinary RE.

Bart Vlaar The reflection equation: from algebra to application



Obstacle for universality & uniformity

There is an important variant of the RE (crossed RE, e.g. Olshanskii,
'90) which cannot always be rewritten as the ordinary RE.

Generalized reflection equation (Cherednik,'92).
Also see (Freidel & Maillet,'91) and (Kulish & Sklyanin,'92)

R™7(2)an - K(2)2- R (yz) - K(yh =
= K(y)1 R *(yz)a1- K(2)2- R*(3)

Special cases:

R** = R: ordinary RE

Rt =R, R~ = (R-1)t,
R~ = R™%: crossed RE

The three R-matrices satisfy mixed Yang-Baxter equations, e.g.
R (- R (s R (s =R ()3 - R (Ehs- R (D2
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Twisted modules

It looks like we have different representations of a symmetry algebra A
on the same vector space V. We should think of a K-matrix as an
invertible intertwiner: V — V¥ where in V¥ the action is preceded by

an algebra automorphism 1, called twist map.
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Twisted modules

It looks like we have different representations of a symmetry algebra A
on the same vector space V. We should think of a K-matrix as an
invertible intertwiner: V — V¥ where in V¥ the action is preceded by

an algebra automorphism 1, called twist map.

1. Identify what structure to add to a quasitriangular bialgebra (A, A, R)
to produce a solution K € A* of the universal reflection equation

(wa)zl Ky -RY - Ky =
IK1-(R¢)21-K2-R€A®A % %
with RY := (y®id)(R), R¥* := (v@1)(R).

2. Find examples of such algebraic structures.

3. Explain how it leads to trigonometric matrix solutions
(note: a nontrivial ¢ is necessary to get parameter inversion z s z~1).
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For a € A and an A-module V, ay := action of aon V.
E.g. if v : A— Ais an algebra automorphism, a\» = ¥(a)y.
For X € A® A and A-modules V and W, Xy v := action of X on
VeoW. Eg if AtA— A® Ais a coproduct, ayew = A(a)v,w.

How do these candidate intertwiners Ky : V — V¥ act on tensor
products? In other words, what should A(K) be?
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For a € A and an A-module V, ay := action of aon V.
E.g. if v : A— Ais an algebra automorphism, a\» = ¥(a)y.
For X € A® A and A-modules V and W, Xy v := action of X on
VeoW. Eg if AtA— A® Ais a coproduct, ayew = A(a)v,w.

How do these candidate intertwiners Ky : V — V¥ act on tensor
products? In other words, what should A(K) be?

Vew

oo~ (8
\

(vow?

\
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For a € A and an A-module V, ay := action of aon V.
E.g. if v : A— Ais an algebra automorphism, a\» = ¥(a)y.
For X € A® A and A-modules V and W, Xy v := action of X on
VeoW. Eg if AtA— A® Ais a coproduct, ayew = A(a)v,w.

How do these candidate intertwiners Ky : V — V¥ act on tensor
products? In other words, what should A(K) be?

vew

Kvew = 6/ = ¢

X
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For a € A and an A-module V, ay := action of aon V.
E.g. if v : A— Ais an algebra automorphism, a\» = ¥(a)y.
For X € A® A and A-modules V and W, Xy v := action of X on
VeoW. Eg if AtA— A® Ais a coproduct, ayew = A(a)v,w.

How do these candidate intertwiners Ky : V — V¥ act on tensor
products? In other words, what should A(K) be?

Vew vew
W
4 K‘loﬂu
: Tlv".u =ﬂr-R\,~(W
KV@U = = K Ky O Ty
weut ‘
Sl
(i) = Bt
(vowy (vewY

Jv,w

Wanted: an invertible A-intertwiner (V @ W)¥ == WY @ V¥. Similar
to K’va, assume that Jv\/,W = flipo Jy,w for some J € (A® A)*.
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The intertwining condition on J means

Jvw - A@(@)vw = W @) (A@)w,v - Jvw  Va€EA,

which is guaranteed if we assume

(b@9p)oAPoy™)(a)=J-Aa)-J1  VacA
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The intertwining condition on J means
Jvw - B@@)vw =@ @Y)(A@)wy - Jvw  Va€eA,
which is guaranteed if we assume
(wey)oAPoyp ) a)=J -A(a)-Jt VacA

We conclude that Ad(J) o A defines a coproduct on A. This requires
that J is a Drinfeld twist, i.e. a normalized solution of

o (A®id)(J) = s - ([d2A)J) EARARA,
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The intertwining condition on J means
Jvw-A@@)vw =@ o) (A@)wy-Jvw  VacA,

which is guaranteed if we assume

(wey)oAPoyp ) a)=J -A(a)-Jt VacA
We conclude that Ad(J) o A defines a coproduct on A. This requires
that J is a Drinfeld twist, i.e. a normalized solution of

Ji2 - (A®id)(J) = Joz - (id @ A)(J) EARA®A.
This constraint on (1, J) naturally extends to the universal R-matrix.
We call (¢, J) a twist pair on (A, A, R) if

(Y @Y)oA®Porypt =Ad(J)od,  (R")a=Jo-R-J7L
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The intertwining condition on J means
Jvw-A@@)vw =@ o) (A@)wy-Jvw  VacA,

which is guaranteed if we assume

(wey)oA®Poypt)(a)=J-Aa)-JF VacA
We conclude that Ad(J) o A defines a coproduct on A. This requires
that J is a Drinfeld twist, i.e. a normalized solution of

Ji2 - (A®id)(J) = Joz - (id @ A)(J) EARA®A.
This constraint on (1, J) naturally extends to the universal R-matrix.
We call (¢, J) a twist pair on (A, A, R) if

WoY)oA®Porp t =Ad(J)od,  (R¥)a=Jun-R-JL

Suppose K € A* satisfies A(K) = J™!- K- RY - Ky and that (¢, J) is a
twist pair. Then the universal RE holds.
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The intertwining condition on J means
Jvw-A@@)vw =@ o) (A@)wy-Jvw  VacA,

which is guaranteed if we assume

(wey)oA®Poypt)(a)=J-Aa)-JF VacA
We conclude that Ad(J) o A defines a coproduct on A. This requires
that J is a Drinfeld twist, i.e. a normalized solution of

Ji2 - (A®id)(J) = Joz - (id @ A)(J) EARA®A.
This constraint on (1, J) naturally extends to the universal R-matrix.
We call (¢, J) a twist pair on (A, A, R) if

(Y@1)oA®Poryp L =Ad(S)od,  (R¥¥)o = Joy-R-J7L

Suppose K € A* satisfies A(K) = J™!- K- RY - Ky and that (¢, J) is a
twist pair. Then the universal RE holds.

(R¥)o1 - Kz - RY - Ky = (R¥¥)a1 - J- A(K) = Jo1 - R- A(K)
= Jo1 - A®(K)-R = K1 - (R%)21- Kz - R.
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Cylindrical structures on quasitriangular bialgebra

Recall that R € (A® A)* satisfies a linear relation:
R-A(a)=A°(a)-R forallac A
In other words, R-b=flip(b)- R forall be A(A)C AR A.

Let us generalize this to the K-matrix and require that there exists a
subalgebra B C A such that

K-b=1(b) K for all b € B.

This means Ky : V — V¥ is a B-intertwiner (for all A-modules V).
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Cylindrical structures on quasitriangular bialgebra

Recall that R € (A® A)* satisfies a linear relation:
R-A(a)=A°(a)-R forallac A
In other words, R-b=flip(b)- R forall be A(A)C AR A.

Let us generalize this to the K-matrix and require that there exists a
subalgebra B C A such that

K-b=1(b) K for all b € B.
This means Ky : V — V¥ is a B-intertwiner (for all A-modules V).
Definition [AV20]

We call (v, J, K) a cylindrical structure on a quasitriangular bialgebra
(A, A, R) with respect to a subalgebra B C A if (¢, J) is a twist pair
and K € A*, called basic universal K-matrix, satisfies

K-b=1(b)-K  forall be B,
AK)=J1 Ky -RY - K.




Gauge transformations

Before we discuss the existence of cylindrical structures for
Drinfeld-Jimbo quantum groups, we make a useful observation.

Given a quasitriangular bialgebra (A, A, R) and a subalgebra B C A,
there is a natural group action of A* on cylindrical structures on
(A, A, R) with respect to B, called gauge transformation.

Namely for g € A set

g - (1.4, K) = ((conjugate by g) 0 v, (g @ 8) - J- Alg) g K).

We can use gauge transformations to replace a cylindrical structure by
another one with a particularly nice automorphism 1, or by one with a
universal K-matrix in a particularly nice subalgebra, etc.

Bart Vlaar The reflection equation: from algebra to application



Drinfeld-Jimbo quantum groups U,(£)

Fix a symmetrizable generalized Cartan matrix C = (¢jj); je; with / a
finite index set (Dynkin diagram). Kac-Moody Lie algebra:

£ =C({{ej, fi}ics, £2| relations defined by C)

where £0 is an abelian subalgebra of dimension 2|/| — rk(C).
Let £~ = ({fi}ics), £7 = ({ei}ic/). Then £ = £~ @ £2@® £F and there
is a nondegenerate invariant symmetric bilinear form which pairs

£20.— 0 p et and £50.= ¢~ ¢ 20,
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Drinfeld-Jimbo quantum groups U,(£)

Fix a symmetrizable generalized Cartan matrix C = (¢jj); je; with / a
finite index set (Dynkin diagram). Kac-Moody Lie algebra:

£ =C({{ej, fi}ics, £2| relations defined by C)

where £0 is an abelian subalgebra of dimension 2|/| — rk(C).
Let £~ = ({fi}ics), £7 = ({ei}ic/). Then £ = £~ @ £2@® £F and there
is a nondegenerate invariant symmetric bilinear form which pairs

£20.=e0qp et and £59:=g¢ @l
Let g € C*, not root of unity. There is a bialgebra
Uqg(L) = C{{Ei, Fitict, {th} heratticecgo | relations, defined by C)

such that Ug(£) 223 U(L). Then Ug(£) = Ug(£7) - Ug(£0) - Ug(£T).
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Drinfeld-Jimbo quantum groups U,(£)

Fix a symmetrizable generalized Cartan matrix C = (¢jj); je; with / a
finite index set (Dynkin diagram). Kac-Moody Lie algebra:

£ =C({{ej, fi}ics, £2| relations defined by C)
where £0 is an abelian subalgebra of dimension 2|/| — rk(C).
Let £~ = ({fi}ic)), £ = ({ei}ic/). Then £= £~ @ £2® £F and there
is a nondegenerate invariant symmetric bilinear form which pairs
£20:=%a et and £50:=¢ @£l
Let g € C*, not root of unity. There is a bialgebra
Uqg(L) = C{{Ei, Fitict, {th} heratticecgo | relations, defined by C)

such that Ug(£) 223 U(L). Then Ug(£) = Ug(£7) - Ug(£0) - Ug(£T).
The bilinear form induces a pairing between U,(£=°%) and U,(£=9).
The universal R-matrix is the canonical element of this pairing (hence,
in completion of U,(£=%) ® Uy(£29)). It acts on tensor products in
category O (e.g. h.w. modules with h.w. vector annihilated by all E;).
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Example (£ = ;[;Xt, C=(2%7))

~ext
5[;X is generated by ¢;, f;, h; for i = 0,1, and d subject to
[hl'a ei] = 2el'a [hi; f;] = _2f;a [el'; f;] = hi7
[hiaej] = _2eja [hm J] _2757 [eia fj-] :07 [hlahj] =0 Ifl;é_]
[ei’ [ela [elv ej]]] = [f;v [fh [f;v f]]] =0 7
[d,ei] = dioei, [d, fi] = —6iofi, [d, hi] = 0.
dentification with central extension of sl, ® C[t, t~!], with ad(d) = t&:
eo=(98)®t, =35 et hh=c—(§ %) @1,
e1=(85)®1, h=(33)®1, h=(5%)eL
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Example (£ = ;[;Xt, C=(2%7))

~ext
5[;X is generated by ¢;, f;, h; for i = 0,1, and d subject to
[hl'a ei] = 2el'a [hi; f;] = _2f;a [el'; f;] = hi7
[hia ej] = _2ej’ [hf7 fj] = 2f [eia fj-] = 0 [hia hj] =0 o o .
if i # j,
[en [ela [e,, ej]]] = [f;v [fh [ i» J]]] =0
[d,ei] = dioei, [d, fi] = —6iofi, [d, hi] = 0.
dentification with central extension of sl, ® C[t, t~!], with ad(d) = t&:
eo=(98)®t, =35 et hh=c—(§ %) @1,
e1=(85)®1, h=(33)®1, h=(5%)eL

ext

U, (5[2 ) is generated by E;, F;, t,-jEl for i =0,1, and tdil, subject to
4L
5 = a5, i = @ i, [, F] = =2

q—q—1’
tiEj:q_2Ejti7 tiFj:qQthia [EivFj]:07 [t,,tJ]ZO f7é .
irrzJ,
[Eia [Eia [Eh Ej]qz]l]q’2 = [FH [Fia [FH Fj]qz]lqu2 =0
taE; = q" Eitq, taFi = q~*°Fitq, tatj = titg.
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Quantum symmetric Kac-Moody pair (Uy(£), By)
Let 0 be any Lie algebra involution of £ of the second kind, viz.
dim(£T No(Lh)) < oo.
Consider the fixed-point Lie subalgebra
2l =X e g]o(X) = X}.

These maps and subalgebras can be explicitly prescribed by Satake
diagrams (decorated Dynkin diagrams).
Example: Chevalley involution w(e;) = —f;, w(f;) = —e;, w|go = —idgo

2% = C({f — ei}ier).
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Quantum symmetric Kac-Moody pair (Uy(£), By)
Let 0 be any Lie algebra involution of £ of the second kind, viz.
dim(£T No(Lh)) < oo.
Consider the fixed-point Lie subalgebra
2l =X e g]o(X) = X}.

These maps and subalgebras can be explicitly prescribed by Satake

diagrams (decorated Dynkin diagrams).

Example: Chevalley involution w(e;) = —f;, w(f;) = —e;, w|go = —idgo
2% = C({f — ei}ier).

The study of g-analogues of U(£%) C U(£) in the case dim(£) < oo

started in the 1990s (A. Gavrilik & A. Klimyk; T. Koornwinder; M.

Noumi et al.; G. Letzter). We follow the approach by (S. Kolb, '14) who

defined subalgebras By C Uy(£) with common properties:

e Right coideal: A(By) C By @ Ug(£);

o Maximal subspace of Uy(£) such that lim,_1 By = U(£%);

o Finite generating set, containing F; + element of Uq():zo), Viel.
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@ For any £, one can take # = w, yielding
B, = C{{F; — qi"teg‘”E,-tf1 + (scalar)t,fl},-e/>

It is straightforward to check that B, is a right coideal, noting that in
our conventions A satisfies

AE)=Eol+t0E, A(F)=Fot*+1eF, A =t"ot

When £ is of affine type, B, is also called (embedded) generalized
g-Onsager algebra (P. Baseilhac & S. Belliard, '10).

Example (g-Onsager algebra, cf. (P. Terwilliger, '93))

~ext

B, =C{Fi—qEt7! — (g — g V)oit; 1 Fico1) C Uy(sly ).
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@ For any £, one can take § = w, yielding
B, = C{{F; — qi"teg‘”E,-tf1 + (scalar)t,fl},-e/>

It is straightforward to check that B, is a right coideal, noting that in
our conventions A satisfies

AE)=Eol+t0E, A(F)=Fot*+1eF, A =t"ot

When £ is of affine type, B, is also called (embedded) generalized
g-Onsager algebra (P. Baseilhac & S. Belliard, '10).

Example (g-Onsager algebra, cf. (P. Terwilliger, '93))

~ext

B, =C{Fi—q 'Eit7* — (g — g oit; Yizo1) C Ug(sly ).

o Twisted g-Yangians/twisted quantum loop algebras: subalgebras of
Uq(gly) defined via a boundary analogue of the R-matrix realization
of quantum groups, see (A. Molev, E. Ragoucy & P. Sorba, '03) and
(H. Chen, N. Guay & X. Ma, '14).
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Theorem 1 [AV20]
The following defines a cylindrical structure on Uq(£) w.r.t. By.

Y = lift of 0 to algebra automorphism of U,(£),
J = R-matrix of maximal subbialgebra fixed pointwise by 6,

K = (Kv)veo in a completion of Uy(£20), essentially uniquely
defined by imposing
K-b=1y(b)-K for all b € By.

We call this cylindrical structure the standard one.

@ The resulting linear maps Ky satisfy the constant generalized RE.

The proof is uniform. No explicit formula for K is obtained, just
existence, analogous to Lusztig's proof of the existence of R.
Originally due to (H. Bao & W. Wang, '18) for certain subalgebras of
Uq(sln). This was generalized by (M. Balagovi¢ & S. Kolb, '19) to all
quantum symmetric pairs (Ug(£), By) with dim(£) < oo, who used
gauge transformations to produce a cylindrical structure with ¢ a
diagram automorphism, and K acting on fin.dim. U, (£)-modules.
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© Trigonometric K-matrices from quantum affine symmetric pairs

Key reference:

[AV22] A. Appel & B. Vlaar, Trigonometric K-matrices for
finite-dimensional representations of quantum affine algebras. Preprint
at arXiv:2203.16503.

J
A
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Let g be a simple fin.dim. Lie algebra of rank r, with Dynkin diagram
labelled by {1,...,r}. Let £ = g** the corresponding Kac-Moody
algebra of affine type with affine Dynkin diagram {0,1,...,r}. Consider
any quantum affine symmetric pair (Uq(£), Bp).

Outstanding task

Explain how the standard cylindrical structure leads to trigonometric
matrix solutions of the generalized RE.
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Let g be a simple fin.dim. Lie algebra of rank r, with Dynkin diagram
labelled by {1,...,r}. Let £ = g** the corresponding Kac-Moody
algebra of affine type with affine Dynkin diagram {0,1,...,r}. Consider
any quantum affine symmetric pair (Uq(£), Bp).

Outstanding task

Explain how the standard cylindrical structure leads to trigonometric
matrix solutions of the generalized RE.

Problem

| A\

Uq(g%*) has no interesting finite-dimensional modules.

The subalgebra Uy(g) C Uq(3%*) (remove the generators t3+ = g*9)
has many fin.dim. modules?, e.g. evaluation modules. How can we make
sense of an action of K on such modules?

“We will restrict our attention to so-called type-1 modules, which is standard.
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Formal spectral parameter

Let sp,s1,...,s, be nonnegative integers, not all zero. Consider the
bialgebra homomorphism, called grading shift:

T2 Ug(@%) = Ug(8®%) @ Clz, 27 ']
ZZ(E,') =E ®z%, ZZ(F,') =F®z %, Zz(th) =t 1.

Examples: homogeneous grading: s =1, s =... =5, =0,
principal grading: sp =s; =... =5, = 1.

Bart Vlaar The reflection equation: from algebra to application



Formal spectral parameter

Let sp,s1,...,s, be nonnegative integers, not all zero. Consider the
bialgebra homomorphism, called grading shift:

Y2 Ug(8%) = Ug(3) ® Clz, 2]

Y (E)=E®2z%, Y,(F)=F®z", Y (th) =th®1.
Examples: homogeneous grading: s =1, s =... =5, =0,
principal grading: sp =s; =... =5, = 1.

By (Drinfeld, '86), the coefficients of the formal power series
R(z) == (id ® X;)(R)

act on any tensor product V @ W of fin.dim. Uq(g)-modules V, W.
The resulting matrix-valued formal power series Ry y(z) satisfies YBE.
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Formal spectral parameter

Let sp,s1,...,s, be nonnegative integers, not all zero. Consider the
bialgebra homomorphism, called grading shift:

Y2 Ug(8%) = Ug(3) ® Clz, 2]

Y (E)=E®2z%, Y,(F)=F®z", Y (th) =th®1.
Examples: homogeneous grading: s =1, s =... =5, =0,
principal grading: sp =s; =... =5, = 1.

By (Drinfeld, '86), the coefficients of the formal power series
R(z) == (id ® X;)(R)

act on any tensor product V @ W of fin.dim. Uq(g)-modules V, W.
The resulting matrix-valued formal power series Ry y(z) satisfies YBE.

Consider the oo-dim. module W((z)) := W ® C((z)) with a € U,(g)
acting as ¥ ,(a). We obtain a Uq(g)-intertwiner

Rv.w(z) :=flip- Ry.w(z): Vo W((z)) = W((z)® V.
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K-matrices as formal series

Theorem 2 [AV22]

For every quantum affine symmetric pair (Uy(g®*), By) consider the
standard cylindrical structure (¢, J, K).

1. There exists a grading shift % such that £% o) =4 o Zg,l.

2. The coefficients of the formal Laurent series

K(z) = £(K)

have a well-defined action on any fin.dim. U,(g)-module V. The
resulting matrix-valued formal power series Ky (z) is a By-intertwiner:
V((2)) = V((2))¥ = V¥((z71)) and satisfies the generalized RE.
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K-matrices as formal series
Theorem 2 [AV22]

For every quantum affine symmetric pair (Uy(g®*), By) consider the
standard cylindrical structure (¢, J, K).

1. There exists a grading shift % such that £% o) =4 o Zg,l.

2. The coefficients of the formal Laurent series

K(z) = £(K)

have a well-defined action on any fin.dim. U,(g)-module V. The
resulting matrix-valued formal power series Ky (z) is a By-intertwiner:
V((2)) = V((2))¥ = V¥((z71)) and satisfies the generalized RE.

Towards a representation-theoretic approach for open Q-operators
At least for some By, the coefficients of the series K(z) actually act on
any Uq(,QZO)—moduIe, including those associated to Baxter Q-operators.
In (A. Cooper, BV & R. Weston, '24) we develop this for the case

6 = w o (diagram automorphism) for Ugy(sl>).
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Origin of trigonometric K-matrices

The By intertwining condition means:

Kv(z) - Z9(b)y =01 (b)yw - Ku(z)  forallbe By (¥)
This is a consistent finite linear system defined over C(z) C C((z)).
Hence 3 solution of (*) defined over C(z). Let's call it K|, 8(z).
Theorem 3 [AV22]
Let V be any irreducible finite-dimensional Uq(g)-module.

1. Vis irreducible as a module over Uq(£7) = C(Fo, F1,..., Fr), cf.
(Hernandez & Jimbo, '12).

2. V®C((2)) is irreducible as a Byp-module for the principal grading.
3. The solution space of (*) is one-dimensional.

4. Ky(z) = (Laurent series scalar) - K{J'8(z) and hence K\ 8(z) satisfies
the generalized RE.
5. Can make v involutive by gauge transforming. After rescaling,

KPM(z) = Kui(z ) s vz ) = V(2).

y
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@ The 1-dimensionality of the solution space of (*) gives an effective
method for computing trigonometric solutions of generalized REs as
twisted By-intertwiners for any irreducible fin.dim. Ugy(g)-module, cf.
(L. Mezincescu & R. Nepomechie, '98) (G. Delius & A. George, '02)
(G. Delius & N. Mackay, '03) (V. Regelskis & BV, '16). The RE
automatically holds and the description via Satake diagrams can be
used to methodically cover several cases.

@ By a gauge transformation, solutions of the “original” RE are
obtained for so-called Kirillov-Reshetikhin modules, subject to a
combinatorial condition on the Satake diagram. See (H. Kusano, M.
Okado & H. Watanabe, '24) for an alternative approach.

In this way one obtains, for the g-Onsager algebra B,, C Uq(glg),

trig _ o1 Z o0—01Z2 z —Z
Ky (2) (rop1—2)(oz—pi1) ( z—z71 ao—a1zl>
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Open problem 1: classification of solutions of the reflection equation

Quantum affine pseudo-symmetric pairs are more general pairs
(Uq(g%%), By), see [V. Regelskis & BV '21]. All results generalize.
Conjecture: given a trigonometric R-matrix for a quantum
untwisted-affine algebra, all invertible symmetrizable solutions of the
ordinary and crossed RE arise from the universal K-matrix associated to
some quantum affine pseudo-symmetric pair.

Open problem 2: meromorphicity

The action of R(z) on tensor product of fin.dim. modules is the series
expansion of a meromorphic linear map (I. Frenkel & N. Reshetikhin
'92) (P. Etingof & A. Moura '02). What about K(z)?

Open problem 3: infinite product

Universal R-matrices for quantum affine algebras have an infinite
product factorization (V. Tolstoy & S. Khoroshkin, '92). What about
universal K-matrices for quantum affine symmetric pairs?
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© Tensor K-matrices and their applications

Key reference:
[AV24] A. Appel & B. Vlaar, Tensor K-matrices and quantum symmetric
Kac-Moody pairs. Preprint at arXiv:2402.08258.

M VW M VW

Il
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What do we want?

To allow nontrivial modules M of the boundary symmetry algebra B,
which can form new B-modules by taking tensor products with
A-modules. To have an enriched notion of a cylindrical structure:
universal tensor K-matrix K acting on such tensor products.
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What do we want?

To allow nontrivial modules M of the boundary symmetry algebra B,
which can form new B-modules by taking tensor products with
A-modules. To have an enriched notion of a cylindrical structure:
universal tensor K-matrix K acting on such tensor products.

Axiomatics for quasitriangular bialgebras

| A\

The natural condition on B is the right coideal property A(B) C B ® A.
Then for a B-module M and an A-module V/, can define action of

b € B via bM®V = A(b)/\/],\/.

Using graphical calculus again, now assigning B-modules to the
“cylinder”, can formulate following identities for K € (B ® A)*:

(K1) K- A(b) = (id@)(A(b))- K  forall be B,
(K2)  (A®id)(K) = (RY)32-Kis - Ras,
(K3)  (id® A)(K) = 43! - Kiz - Ry - Kio.

v
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To go “down” from a universal tensor K-matrix K € B ® A to a basic
universal K-matrix K € A, force the trivial representation by acting with
the counit map: K = (e ® id)(K).
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To go “down” from a universal tensor K-matrix K € B ® A to a basic
universal K-matrix K € A, force the trivial representation by acting with
the counit map: K = (e ® id)(K).

Promoting K to K

Conversely, a natural candidate for a universal tensor K-matrix is
K:=(R")xu-(1®K)-R.

Automatically, it satisfies the three proposed axioms (K1) — (K3). The
only thing that needs to be checked is:

(R)21- (1@ K)-ReB®A.

Call a cylindrical structure (v, J, K) supported on B if this is the case.

w
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To go “down” from a universal tensor K-matrix K € B ® A to a basic
universal K-matrix K € A, force the trivial representation by acting with
the counit map: K = (e ® id)(K).

Promoting K to K

Conversely, a natural candidate for a universal tensor K-matrix is
K:=(R")xu-(1®K)-R.

Automatically, it satisfies the three proposed axioms (K1) — (K3). The
only thing that needs to be checked is:

(R)21- (1@ K)-ReB®A.

Call a cylindrical structure (v, J, K) supported on B if this is the case.

v

Note: for cylindrical structures supported on B we obtain a second proof
of the universal RE:

Ki-(R)21- Ko  R= (¢ ®id)((RY)1 - K2+ R) - Ki
— (wa)21 Ky - RY . Ki.
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Theorem 4 [AV24]

1. For a quantum symmetric Kac-Moody pair (Ug(£), By), the standard
cylindrical structure (J, 1, K) is supported on By. Then
K = (R¥%)21 - (1® K) - R acts on tensor products of “weight
By-modules” and modules in O with a locally nilpotent action of
those F; fixed by 6.

2. In the affine case, the coefficients of the formal Laurent series
(id © T0)(K) = R(2)%; - K(2)2 - R(2)

act on tensor products of weight By-modules and fin.dim.
Uq(g)-modules.

@ (S. Kolb, '20): tensor K for quantum symmetric pairs of finite type;

@ (S. Kolb & M. Yakimov, '20): a very general approach for symmetric pairs
based on Drinfeld doubles of Nichols algebras;

@ (G. Lemarthe, P. Baseilhac & A. Gainutdinov, '23): the same axiomatic
framework for comodule algebras, applied to an extension of the g-Onsager
algebra. Also see G. Lemarthe’s PhD thesis ('24).
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A possible strand of future work

1. (in progress) In addition, assume A is a balanced Hopf algebra and
consider a tensor K-matrix K € B ® A. For finite-dimensional
A-modules we can define universal 2-boundary transfer matrices

rv=Trv(1®K) -K¢cB.

Here K € A% is a “dual basic universal K-matrix" .

2. In the case (A, B) = (Uq(g), By) we should get 7v(z) € By((z)) and
a boundary analogue of the g-character map from (E. Frenkel & N.
Reshetikhin, '99) (E. Frenkel & E. Mukhin, '01), giving refined tools
to study finite-dimensional Ug(g)-modules. The missing piece is a
Harish-Chandra-type map for By, relying on its Drinfeld loop
presentation, see (M. Lu, W. Wang & W. Zhang, '21-'23).

3. Then boundary analogues could be explored for the works (D.
Hernandez & M. Jimbo, '12) (E. Frenkel, D. Hernandez, '15) on
prefundamental representation theory for Uq(g), TQ relations and
spectra; a major tool in this approach is the theory of g-characters.
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