Exact loop densities in the $O(1)$ dense loop model on an infinite cylinder of odd circumference

Anastasiia Trofimova work in collaboration with Alexander Povolotsky arXiv:2406.15133

Annecy 2024 - Recent Advances in Quantum Integrable Systems 2024

つへへ

Outline

O [Problem](#page-1-0)

 299

メロトメ 倒 トメ ミトメ ミト

 $O(n)$ dense loop model

Consider a two-dimensional square lattice. In every vertex put one out of two local vertex configurations equiprobably

Configuration of the model is a set of paths distributed according to a unnormalized measure in a finite domain

$$
weight(C) = n^{\#loops}.
$$

$$
Z^{(DLM)} = \sum_{\eta \in \Omega} n^{\#loops(\eta)}
$$

What is the average density of loops $\nu(L)$ per lattice size?

つへへ

Outline

2 [Motivation](#page-3-0)

 299

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Motivation: study of a **phase transition**

• Critical Edge-percolation on 2d-square lattice Potts Model at $Q = 1$

 \bullet $O(1)$ dense loop model XXZ quantum spin chain at $\Delta = \frac{1}{2}$ $\frac{1}{2}$ Figure: $p_c = \frac{1}{2}$

(ロ) (_ワ) (ヨ) (ヨ)

Observable: average number of connected clusters ρ Boundary conditions: infinite cylinder of arbitrary circumference L

つへへ

Even case $L = 2N$: $O(1)$ DLM \longleftrightarrow critical percolation

There is a one-to-one correspondence between configurations of

 $O(1)$ DLM on a cylinder of size L

critical percolation configurations on square lattice rotated 45◦ on a cylinder of size $\frac{L}{2}$.

つへへ

Even case $L = 2N$: $O(1)$ DLM \longleftrightarrow critical percolation

There is a one-to-one correspondence between configurations of

The density of loops $\nu(L)$ and of finite percolation clusters are equal.

$$
\nu(L) = \nu_c(L) + \nu_{nc}(L) = \nu_{\text{inscribed}}(L) + \nu_{\text{circumscribed}}(L) + \nu_{nc}(L) = \rho_c(L) + \rho_{nc}(L)
$$

つひひ

Odd case: Critical percolation \longleftrightarrow $O(1)$ DLM

 $L = 2N + 1$. There is one path going to infinity called a defect line. Thus, there is no non-contractible loops.

Can we still map it to any version of percolation?

Odd case: Critical percolation \longleftrightarrow $O(1)$ DLM

 $L = 2N + 1$. There is one path going to infinity called a defect line. Thus, there is no non-contractible loops.

Can we still map it to any version of percolation?

Odd case: Critical percolation \longleftrightarrow $O(1)$ DLM

 $L = 2N + 1$. There is one path going to infinity called a defect line. Thus, there is no non-contractible loops.

Can we still map it to any version of percolation? Yes! Place two copies!

$$
\nu(L) = \nu_{\text{insertbed}}(L) + \nu_{\text{circumscribed}}(L) = \rho_{\text{clusters}}(L)
$$

Anastasiia Trofimova [Exact loop densities in the O\(1\) DLM](#page-0-0) 10 \neq 25

History of study $\nu(L)$

approximate methods gave exact infinite plane limits of $\nu(L)$

(Sykes, Essam, 1964; Baxter, Temperley and Ashley, 1978)

exact methods at p_c (Baxter, 2016), in particular gave exact infinite plane limit

$$
\lim_{L\to\infty}\nu(L)\approx 0.098076211
$$

(Lieb, Baxter, 1971, Baxter, Temperley, Ashley 1978)

Coulomb gas theory predicts the universality in the finite-size corrections (depending on BC)

$$
\nu(L) = \frac{3\sqrt{3}-5}{2} + C_1 L^{-2} + O(L^{-4}).
$$

(Ziff, Finch, 1997; Adamchik, Kleban, Ziff, 1998)

The ground state of Markov chain associated with the $O(1)$ DLM has a remarkable combinatorial structure discovered by Razumov and Stroganov.

(L. Cantini, A. Sportiello, J.de Gier, P. Zinn-Justin, P. di Francesco)

Anastasiia Trofimova **[Exact loop densities in the O\(1\) DLM](#page-0-0)** 11 / 25

 Ω

∢ ロ ▶ ④ 那 ▶ ④ ヨ ▶ ④ ヨ ▶ ...

Outline

8 [Results](#page-11-0)

Anastasiia Trofimova **[Exact loop densities in the O\(1\) DLM](#page-0-0)** 12 / 25

 299

イロト イ部 トイモト イモト

Results

Odd case $L = 2N + 1$.

$$
\nu(2N+1) = \frac{1}{1+2N} \left(\frac{\Gamma(\frac{N}{2})\Gamma(\frac{3}{2}+\frac{3N}{2})}{\Gamma(\frac{3N}{2})\Gamma(\frac{1}{2}+\frac{N}{2})} + \frac{\Gamma(\frac{1}{2}+\frac{N}{2})\Gamma(2+\frac{3N}{2})}{\Gamma(1+\frac{N}{2})\Gamma(\frac{1}{2}+\frac{3N}{2})} \right) - \frac{5}{2}
$$

= $\frac{1}{12}, \frac{37}{400}, \frac{597}{6272}, \frac{2441}{25344}, \frac{78035}{805376} \dots$

Even case $L = 2N$. The density of loops/percolation clusters is given by the following formula (Povolotsky, 2021)

$$
\nu_c(2N) = \frac{3\Gamma(\frac{N}{2})\Gamma(\frac{1}{2} + \frac{3N}{2})}{4\Gamma(\frac{3N}{2})\Gamma(\frac{1}{2} + \frac{N}{2})} + \frac{9\Gamma(\frac{1}{2} + \frac{N}{2})\Gamma(\frac{3N}{2})}{4\Gamma(\frac{N}{2})\Gamma(\frac{1}{2} + \frac{3N}{2})} - \frac{5}{2}.
$$

$$
\nu_{nc}(2N) = \frac{2^{2(N-2)}\Gamma(N)}{N\pi^2\Gamma(3N)} \left(3^{3N}\Gamma\left(\frac{N}{2} + \frac{1}{6}\right)^2\Gamma\left(\frac{N}{2} + \frac{5}{6}\right)^2 - \frac{12\pi^2\Gamma\left(\frac{3N}{2}\right)^2}{\Gamma\left(\frac{N}{2}\right)^2}\right)
$$

 2980

イロト イ押 トイヨ トイヨトー

Results

Odd case $L = 2N + 1$.

$$
\nu(2N+1) = \frac{1}{1+2N} \left(\frac{\Gamma(\frac{N}{2})\Gamma(\frac{3}{2}+\frac{3N}{2})}{\Gamma(\frac{3N}{2})\Gamma(\frac{1}{2}+\frac{N}{2})} + \frac{\Gamma(\frac{1}{2}+\frac{N}{2})\Gamma(2+\frac{3N}{2})}{\Gamma(1+\frac{N}{2})\Gamma(\frac{1}{2}+\frac{3N}{2})} \right) - \frac{5}{2}
$$

= $\frac{1}{12}, \frac{37}{400}, \frac{597}{6272}, \frac{2441}{25344}, \frac{78035}{805376} \dots$

Even case $L = 2N$. The density of loops/percolation clusters is given by the following formula (Povolotsky, 2021)

$$
\nu_c(2N) = \frac{3\Gamma(\frac{N}{2})\Gamma(\frac{1}{2} + \frac{3N}{2})}{4\Gamma(\frac{3N}{2})\Gamma(\frac{1}{2} + \frac{N}{2})} + \frac{9\Gamma(\frac{1}{2} + \frac{N}{2})\Gamma(\frac{3N}{2})}{4\Gamma(\frac{N}{2})\Gamma(\frac{1}{2} + \frac{3N}{2})} - \frac{5}{2}.
$$

$$
\nu_{nc}(2N) = \frac{2^{2(N-2)}\Gamma(N)}{N\pi^2\Gamma(3N)} \left(3^{3N}\Gamma\left(\frac{N}{2} + \frac{1}{6}\right)^2 \Gamma\left(\frac{N}{2} + \frac{5}{6}\right)^2 - \frac{12\pi^2\Gamma(\frac{3N}{2})^2}{\Gamma(\frac{N}{2})^2}\right)
$$

イロト イ押ト イヨト イヨト

Odd case $L = 2N + 1$.

$$
\nu(2N+1) = \frac{1}{1+2N} \left(\frac{\Gamma(\frac{N}{2})\Gamma(\frac{3}{2}+\frac{3N}{2})}{\Gamma(\frac{3N}{2})\Gamma(\frac{1}{2}+\frac{N}{2})} + \frac{\Gamma(\frac{1}{2}+\frac{N}{2})\Gamma(2+\frac{3N}{2})}{\Gamma(1+\frac{N}{2})\Gamma(\frac{1}{2}+\frac{3N}{2})} \right) - \frac{5}{2}
$$

= $\frac{1}{12}, \frac{37}{400}, \frac{597}{6272}, \frac{2441}{25344}, \frac{78035}{805376} \dots$

This representation is suitable for an asymptotic expansion where the application of Stirling formula for the gamma functions gives

$$
\nu(L) = \frac{3\sqrt{3}-5}{2} - \frac{1}{4\sqrt{3}}L^{-2} + \frac{35}{144\sqrt{3}}L^{-4} + O(L^{-6}).
$$

comparing to

$$
\nu_c(L) = \frac{3\sqrt{3}-5}{2} + \frac{1}{4\sqrt{3}}(2N)^{-2} - \frac{23}{48\sqrt{3}}(2N)^{-4} + O((2N)^{-6})
$$

$$
\nu_{nc}(L) = \frac{1}{\sqrt{3}}(2N)^{-2} - \frac{17}{18\sqrt{3}}(2N)^{-4} + O((2N)^{-6})
$$

(consistent with the results for continuous-time DLM obtained and Raise and Peel [mo](#page-13-0)d[el\)](#page-15-0)

不満 あい

 OQ

Outline

4 [Solution](#page-15-0)

 299

メロトメ 倒 トメ ミトメ ミト

To calculate $\nu(L)$ define the free energy of DLM model

$$
f_L(n) = \lim_{H\to\infty} \frac{1}{H L} \sum_{\eta \in \Omega} n^{\# loops(\eta)}.
$$

Then,

$$
\nu(L) = \left(n \frac{d}{dn} f_L(n) \right) \Big|_{n=1}.
$$

With our observable and BC

Step 1: one can use $f_I^{(6V)}$ $L^{(0V)}(n)$ instead due to relation to 6V model Step 2: (algebraic) Bethe ansatz Step 3: FSZ's solution of Baxter T-Q equation

Step 1: $O(1)$ DLM \iff six-vertex model

Six-vertex model is a family of ice-type models on a sq. lattice with local vertex weights

The weight of an undirected loop $n=q+q^{-1}$ takes $n=1$ at ${\bf the}$ stochastic point $q=e^{\frac{i\pi}{3}}.$

 Ω

(ロト (何) (ヨ) (ヨ) (ヨ)

Step 1: $O(1)$ DLM \iff six-vertex model

The oriented configurations can be constructed of local or. vertices

Can we prescribe them local weights?

Step 1: $O(1)$ DLM \Longleftrightarrow six-vertex model

The oriented configurations can be constructed of local or. vertices z z 1 1 zq $rac{1}{2}$ q¹/₂ q $\mathsf{d}^{\frac{1}{2}}$ $rac{1}{2}$ zq⁻¹²

Can we prescribe them local weights? Yes!

If the weights $q^{\pm 1/4}$ are prescribed to every arc and the parameter z is auxiliary we have asymmetric 6V model

 \Rightarrow Attach the orientation of arcs to the bonds \Leftarrow Interpret the local bond directions as the ones of the local paths, which can be uncoupled

Anastasiia Trofimova [Exact loop densities in the O\(1\) DLM](#page-0-0) 19 / 25

Remark on Step 1: $O(1)$ DLM \iff six-vertex model

The weights of the defects

were set equal to one in $O(1)$ DLM. Now it is two.

This discrepancy does not affect the infinite cylinder limit of the average values of quantities like the loop densities, to which only the configurations with a single defect bring a non-vanishing contribution.

$$
\tilde{Z}^{(DLM)}(n)=Z^{(6V)}(q,1).
$$

tilda stands for modified $O(n)$ model = defect weights 2

Step 2: Algebraic Bethe ansatz of equiv. **symmetric** 6V

Define a space $\mathcal{H}=(\mathbb{C}^{2})^{\otimes L}$ that spans a spin basis $\{\uparrow,\downarrow\}^{\otimes L}.$ BA constructs a row-to-row transfer matrix $\mathbb{T}^{6V}_L(z)$: $\mathcal{H} \rightarrow \mathcal{H}$

$$
\mathbb{T}_{L}^{(6V)}(u) = tr_0 (R_{0L}(u) \dots R_{02}(u) R_{01}(u))
$$

in terms of

$$
R(u) = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & c & 0 \\ 0 & c & b & 0 \\ 0 & 0 & 0 & a \end{pmatrix}, \qquad c_1c_2 = c^2, \Delta = -\frac{1}{2}
$$

while the free energy

$$
f_L(n) = \lim_{H \to \infty} \frac{1}{LH} \log tr \left(\mathbb{T}_L^{(6V)}(n) \right)^H = \frac{1}{L} \log \Lambda_{max}^{(6V)}(1).
$$

Bethe ansatz gives eigenvalues, but

Which eigenvalue is the dominant one ?

Conservation of spins in every horizontal row results in $\mathcal{H} = \bigoplus_{M} \mathcal{H}_{M}$

- \bullet Yang and Yang '66, Lieb'67; for $|\Delta| \leq 1$ $\Lambda_{max}^{(6V)}(u)$ asymptotically belongs to $\mathcal{H}_{L/2}$ in the odd case $\Lambda_{L/2}^{(6V)}$ $\frac{(\mathsf{u},\mathsf{v})}{L/2}(u)$ is doubly degenerate
- still no rigorous proofs for finite L
- \bullet at the stochastic point $\mathbb{T}_L^{(6V)}$ $\mathcal{L}^{(6V)}(u)$ can be reduced to $\mathbb{T}^{(DLM)}_L$ $\mathcal{L}^{(DLW)}(u)$ (written in a basis of link patterns) which is the transition prob. matrix of a Markov chain

(Here, sp. par. is changed $z=\frac{u-q}{1-qu}$). The eigenvalues are

$$
\Lambda_M(u) = \left(\frac{u-q}{1-qu}\right)^L \prod_{j=1}^M \frac{u_j - q^2 u}{q(u-u_j)} + \prod_{j=1}^M \frac{u - q^2 u_j}{q(u_j-u)},
$$

in terms of u_1, \ldots, u_M , a solution of Bethe equations

$$
\left(\frac{u_j-q}{1-qu_j}\right)^L=(-)^{M-1}\prod_{k=1}^M\frac{u_j-q^2u_k}{u_k-q^2u_j}, \quad j=1,\ldots M.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

Step 3: Fridkin-Stroganov-Zagier's solution

The Bethe equatinns can be reformulated in terms of a Q-polynomial

$$
Q(u)=\prod_{k=1}^M(u-u_k).
$$

as one functional equation for polynomials $T(u)$ and $Q(u)$

$$
T(u)Q(u) = \phi(q^{-1}u)Q(q^2u) + \phi(qu)Q(q^{-2}u)(-q)^{2M-L},
$$

where $\phi(u) := (1-u)^L$, $T(u) := \mathbf{\Lambda}(u)\phi(qu)(-q)^{M-L}$.
FSZ's solution at stochastic point $q^3 = 1$

T-Q eqn is equivalent to the homogenious system in Q_k . It has rank one.

$$
T_k Q_k = \phi_k Q_{k+1} + \phi_{k+1} Q_{k-1} q^2, \quad k = 0, 1, 2.
$$

$$
T_k=q\phi_{k-1}\Longleftrightarrow T(u)=q(1+u)^L,
$$

while $Q(u)$ is found in terms of **gamma functi[on](#page-22-0)[s.](#page-24-0)**

Anastasiia Trofimova [Exact loop densities in the O\(1\) DLM](#page-0-0) 23 / 25

Step 3: Fridkin-Stroganov-Zagier's solution

Introducing another polynomial $P(u)$ of degree $L - M$ one has

$$
T(u)P(u) = (-q)^{2M-L}\phi(q^{-1}u)P(q^2u) + \phi(qu)P(q^{-2}u).
$$

Quantum polynomial Wronskian relation

$$
\phi(u) = \frac{Q(qu)P(q^{-1}u) - Q(q^{-1}u)P(qu)(-q)^{2M-L}}{(-q)^{2M-L}q - q^{-1}}.
$$

Then,

$$
T(u) = \frac{Q(q^2u)P(q^{-2}u) - Q(q^{-2}u)P(q^2u)(-q)^{4M-2L}}{(-q)^{2M-L}q - q^{-1}}.
$$

(coincides with eqs for $\Delta=-\frac{1}{2}$ XXZ model found by Stroganov)

$$
\nu = \frac{1}{2} + \frac{1}{2Lq(1+q)} + \frac{1}{L(1+q)} \left[\frac{d}{dq} \ln T(1) \right] \Big|_{q=e^{\frac{i\pi}{3}}}
$$

 $(T(u)$ is substituted in terms of $Q(u)$ and $P(u)$ found in terms of gamma functions. Result follows.) K ロ > K 個 > K 경 > K 경 > X 경

Thank You!

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → ⊙ Q @