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O(n) dense loop model

Consider a two-dimensional square
lattice. In every vertex put one out
of two local vertex configurations
equiprobably

or .

Configuration of the model is a set of
paths distributed according to a
unnormalized measure in a finite
domain

weight(C ) = n#loops.

Z (DLM) =
∑
η∈Ω

n#loops(η)

What is the average density of loops ν(L) per lattice size?
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Motivation: study of a phase transition

• Critical Edge-percolation
on 2d-square lattice
Potts Model at Q = 1

• O(1) dense loop model
XXZ quantum spin chain at
∆ = 1

2 Figure: pc = 1
2

Observable: average number of connected clusters ρ
Boundary conditions: infinite cylinder of arbitrary circumference L
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Even case L = 2N : O(1) DLM ←→ critical percolation

There is a one-to-one correspondence between configurations of

O(1) DLM on a
cylinder of size L

critical percolation
configurations on

square lattice rotated
45◦ on a cylinder of

size L
2 .
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Even case L = 2N : O(1) DLM ←→ critical percolation

There is a one-to-one correspondence between configurations of

O(1) DLM on a
cylinder of size L

critical percolation
configurations on

square lattice rotated
45◦ on a cylinder of

size L
2 .

The density of loops ν(L) and of finite percolation clusters are equal.

ν(L) = νc(L) + νnc(L) = νinscribed(L) + νcircumscribed(L) + νnc(L)

= ρc(L) + ρnc(L)
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Odd case: Critical percolation ←→ O(1) DLM

L = 2N + 1. There is one path going to infinity called a defect line.
Thus, there is no non-contractible loops.

Can we still map it to any version of percolation?
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Odd case: Critical percolation ←→ O(1) DLM

L = 2N + 1. There is one path going to infinity called a defect line.
Thus, there is no non-contractible loops.

Can we still map it to any version of percolation? Yes! Place two copies!

ν(L) = νinscribed(L) + νcircumscribed(L) = ρclusters(L)
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History of study ν(L)

• approximate methods gave exact infinite plane limits of ν(L)
(Sykes, Essam, 1964; Baxter, Temperley and Ashley, 1978)

• exact methods at pc (Baxter, 2016), in particular gave exact infinite
plane limit

lim
L→∞

ν(L) ≈ 0.098076211

(Lieb, Baxter, 1971, Baxter, Temperley, Ashley 1978)

• Coulomb gas theory predicts the universality in the finite-size
corrections (depending on BC)

ν(L) =
3
√
3− 5

2
+ C1L

−2 + O(L−4).

(Ziff, Finch, 1997; Adamchik, Kleban, Ziff, 1998)

• The ground state of Markov chain associated with the O(1) DLM has
a remarkable combinatorial structure discovered by Razumov and
Stroganov.
(L. Cantini, A. Sportiello, J.de Gier, P. Zinn-Justin, P. di Francesco)
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Results

Odd case L = 2N + 1.

ν(2N + 1) =
1

1 + 2N

(
Γ(N2 )Γ(

3
2 + 3N

2 )

Γ(3N2 )Γ(12 + N
2 )

+
Γ(12 + N

2 )Γ(2 +
3N
2 )

Γ(1 + N
2 )Γ(

1
2 + 3N

2 )

)
− 5

2

=
1

12
,
37

400
,
597

6272
,
2441

25344
,
78035

805376
. . . .

Even case L = 2N. The density of loops/percolation clusters is given by
the following formula (Povolotsky, 2021)

νc(2N) =
3Γ(N2 )Γ(

1
2 + 3N

2 )

4Γ( 3N2 )Γ( 12 + N
2 )

+
9Γ( 12 + N

2 )Γ(
3N
2 )

4Γ(N2 )Γ(
1
2 + 3N

2 )
− 5

2
.

νnc(2N) = 22(N−2)Γ(N)
Nπ2Γ(3N)

(
33NΓ

(
N

2
+

1

6

)2

Γ

(
N

2
+

5

6

)2

−
12π2Γ

(
3N
2

)2
Γ
(
N
2

)2
)
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ν(2N + 1) =
1

1 + 2N

(
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This representation is suitable for an asymptotic expansion where the
application of Stirling formula for the gamma functions gives

ν(L) =
3
√
3− 5

2
− 1

4
√
3
L−2 +

35

144
√
3
L−4 + O(L−6).

comparing to

νc(L) =
3
√
3− 5

2
+

1

4
√
3
(2N)−2 − 23

48
√
3
(2N)−4 + O((2N)−6)

νnc(L) =
1√
3
(2N)−2 − 17

18
√
3
(2N)−4 + O((2N)−6)

(consistent with the results for continuous-time DLM obtained and Raise and Peel model)
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To calculate ν(L) define the free energy of DLM model

fL(n) = lim
H→∞

1

HL

∑
η∈Ω

n#loops(η).

Then,

ν(L) =

(
n
d

dn
fL(n)

) ∣∣∣
n=1

.

With our observable and BC

Step 1: one can use f
(6V )
L (n) instead due to relation to 6V model

Step 2: (algebraic) Bethe ansatz
Step 3: FSZ’s solution of Baxter T -Q equation
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Step 1: O(1) DLM ⇐⇒ six-vertex model

Six-vertex model is a family of ice-type models on a sq. lattice with local
vertex weights

a1 a2 b1 b2 c1 c2

Idea:

weight = weight + . . .

︸ ︷︷ ︸
sum over all orientations of loops and a defect

The weight of an undirected loop n = q + q−1 takes n = 1 at the

stochastic point q = e
iπ
3 .
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Step 1: O(1) DLM ⇐⇒ six-vertex model

The oriented configurations can be constructed of local or. vertices

Can we prescribe them local weights?
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Step 1: O(1) DLM ⇐⇒ six-vertex model

The oriented configurations can be constructed of local or. vertices

z z 1 1 zq
1
2 q

1
2 q

1
2 zq−

1
2

Can we prescribe them local weights? Yes!

If the weights q±1/4 are prescribed to every arc and the parameter z is
auxiliary we have asymmetric 6V model

a = z a = z b = 1 b = 1 c1 = zq
1
2 + q−

1
2 c2 = q

1
2 + zq−

1
2

⇒ Attach the orientation of arcs to the bonds
⇐ Interpret the local bond directions as the ones of the local paths, which

can be uncoupled
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Remark on Step 1: O(1) DLM ⇐⇒ six-vertex model

weight = weight + . . .

︸ ︷︷ ︸
sum over all orientations of loops and a defect

The weights of the defects

were set equal to one in O(1) DLM. Now it is two.

This discrepancy does not affect the infinite cylinder limit of the average
values of quantities like the loop densities, to which only the
configurations with a single defect bring a non-vanishing contribution.

Z̃ (DLM)(n) = Z (6V )(q, 1).

tilda stands for modified O(n) model = defect weights 2
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Step 2: Algebraic Bethe ansatz of equiv. symmetric 6V

Define a space H = (C2)⊗L that spans a spin basis {↑, ↓}⊗L. BA
constructs a row-to-row transfer matrix T6V

L (z) : H → H

T(6V )
L (u) = tr0 (R0L(u) . . .R02(u)R01(u))

in terms of

R(u) =


a 0 0 0
0 b c 0
0 c b 0
0 0 0 a

 , c1c2 = c2,∆ = −1

2

while the free energy

fL(n) = lim
H→∞

1

LH
log tr

(
T(6V )
L (n)

)H
=

1

L
log Λ

(6V )
max (1).

Bethe ansatz gives eigenvalues, but
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Which eigenvalue is the dominant one ?

Conservation of spins in every horizontal row results in H = ⊕MHM

• Yang and Yang ’66, Lieb’67; for |∆| ≤ 1 Λ
(6V )
max (u) asymptotically belongs

to HL/2 in the odd case Λ
(6V )
L/2 (u) is doubly degenerate

• still no rigorous proofs for finite L

• at the stochastic point T(6V )
L (u) can be reduced to T(DLM)

L (u) (written in a
basis of link patterns) which is the transition prob. matrix of a Markov chain

(Here, sp. par. is changed z = u−q
1−qu ). The eigenvalues are

ΛM(u) =

(
u − q

1− qu

)L M∏
j=1

uj − q2u

q(u − uj)
+

M∏
j=1

u − q2uj
q(uj − u)

,

in terms of u1, . . . , uM , a solution of Bethe equations(
uj − q

1− quj

)L

= (−)M−1
M∏
k=1

uj − q2uk
uk − q2uj

, j = 1, . . .M.
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Step 3: Fridkin-Stroganov-Zagier’s solution

The Bethe equatinns can be reformulated in terms of a Q-polynomial

Q(u) =
M∏
k=1

(u − uk).

as one functional equation for polynomials T (u) and Q(u)

T (u)Q(u) = ϕ(q−1u)Q(q2u) + ϕ(qu)Q(q−2u)(−q)2M−L,

where ϕ(u) := (1− u)L, T (u) := Λ(u)ϕ(qu)(−q)M−L.

FSZ’s solution at stochastic point q3 = 1

T -Q eqn is equivalent to the homogenious system in Qk . It has rank one.

TkQk = ϕkQk+1 + ϕk+1Qk−1q
2, k = 0, 1, 2.

Tk = qϕk−1 ⇐⇒ T (u) = q(1 + u)L,

while Q(u) is found in terms of gamma functions.
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Step 3: Fridkin-Stroganov-Zagier’s solution

Introducing another polynomial P(u) of degree L−M one has

T (u)P(u) = (−q)2M−Lϕ(q−1u)P(q2u) + ϕ(qu)P(q−2u).

Quantum polynomial Wronskian relation

ϕ(u) =
Q(qu)P(q−1u)− Q(q−1u)P(qu)(−q)2M−L

(−q)2M−Lq − q−1
.

Then,

T (u) =
Q(q2u)P(q−2u)− Q(q−2u)P(q2u)(−q)4M−2L

(−q)2M−Lq − q−1
.

(coincides with eqs for ∆ = − 1
2 XXZ model found by Stroganov)

ν =
1

2
+

1

2Lq(1 + q)
+

1

L(1 + q)

[
d

dq
lnT (1)

] ∣∣∣
q=e

iπ
3

(T (u) is substituted in terms of Q(u) and P(u) found in terms of gamma

functions. Result follows.)
Anastasiia Trofimova Exact loop densities in the O(1) DLM 24 / 25



Thank You!
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