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Lagrangian multiform theory

Variational principle for classical integrable systems, applicable to:

▶ Liouville-integrable ODEs

▶ Hierarchies of integrable PDEs

E.g. KdV, AKNS, KP, . . .

▶ Semi-discrete systems

E.g. Toda lattice

▶ Fully discrete systems

Integrable maps, partial di�erence equations
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▶ Yuri Suris (TU Berlin)
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Liouville integrability

A Hamiltonian system with Hamilton function H : T ∗Q ∼= R2N → R is
Liouville integrable if there exist N functionally independent Hamilton
functions H = H1,H2, . . .HN such that {Hi ,Hj} = 0.

▶ Each Hi de�nes its own �ow ϕt
Hj
: N dynamical systems

▶ Each Hi is a conserved quantity for all �ows

▶ Each common level set (if compact and nondegenerate) is a torus

▶ The �ows commute

We can consider (q, p) as a function of multi-time, RN → T ∗Q:

(t1, . . . , tN) 7→ (q(t1, . . . , tN), p(t1, . . . , tN))

t1

t2

•
Initial condition
(q(0, 0), p(0, 0))

• (q(t1, t2), p(t1, t2))
independent of path
through multi-time
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Variational principle for commuting �ows

Suppose we have Lagrange functions Li associated to Hi . Consider

q : RN → Q (multi-time to con�guration space)

Pluri-Lagrangian principle

Combine the Li into a 1-form

L[q] =
N∑
i=1

Li [q] dti .

Look for dynamical variables q(t1, . . . , tN)
such that the action

SΓ =

∫
Γ
L[q]

is critical w.r.t. variations of q, simultaneously
over every curve Γ in multi-time RN

t1

t2

The Lagrangian multiform principle considers variations of the curve too
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Multi-time Euler-Lagrange equations

Assume that

L1[q] = L1(q, qt1),

Li [q] = Li (q, qt1 , qti ), i ̸= 1

Then the multi-time Euler-Lagrange equations for

L =
∑
i

Li [q] dti

are:

Usual Euler-Lagrange equations:
∂Li
∂q

− d

dti

∂Li
∂qti

= 0

? :
∂Li
∂qt1

= 0, i ̸= 1

Compatibility conditions:
∂Li
∂qti

=
∂Lj
∂qtj
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Example: Kepler Problem

Take
L1 =

1

2
|qt1 |2 +

1

|q|
L2 = qt1 · qt2 + (qt1 × q) · v̂ (v̂ �xed unit vector)

In general, for systems of Newtonian type, Li = qt1qti − Hi (q, qt1)

Multi-time Euler-Lagrange equations of L = L1dt1 + L2dt2

∂L1
∂q

− d

dt1

∂L1
∂qt1

= 0 ⇒ qt1t1 = − q

|q|3
(Keplerian motion)

∂L2
∂q

− d

dt2

∂L2
∂qt2

= 0 ⇒ qt1t2 = v̂ × qt1

∂L2
∂qt1

= 0 ⇒ qt2 = v̂ × q (Rotation)

∂L1
∂qt1

=
∂L2
∂qt2

⇒ qt1 = qt1
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Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form L =
∑
i

Li [q] dti , with

L1[q] = L1(q, qt1),

Li [q] = Li (q, qt1 , qti ), i ̸= 1

Lemma

If the action
∫
Γ L is critical on all stepped curves Γ

in RN , then it is critical on all smooth curves.

Variations are local, so it is su�cient to look at one
corner Γ = Γi ∪ Γj at a time.

ti

tj

Γi

Γj

C
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, Γi (i ̸= 1), we get

δ

∫
Γi

Li dti =

∫
Γi

(
∂Li
∂q

δq +
∂Li
∂qt1

δqt1 +
∂Li
∂qti

δqti

)
dti

Integration by parts (wrt ti only) yields

ti

tj

Γi

Γj

C

δ

∫
Γi

Li dti =

∫
Γi

((
∂Li
∂q

− d

dti

∂Li
∂qti

)
δq +

∂Li
∂qt1

δqt1

)
dti +

∂Li
∂qti

δq

∣∣∣∣
C

Since p is an interior point of the curve, we cannot set δq(C ) = 0!

Arbitrary δq and δqt1 , so we �nd:

Multi-time Euler-Lagrange equations

∂Li
∂q

− d

dti

∂Li
∂qti

= 0,
∂Li
∂qt1

= 0,
∂Li
∂qti

=
∂Lj
∂qtj
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Variational principle for PDEs (d = 2)

Pluri-Lagrangian principle

Given a 2-form L[q] =
∑

i ,j Lij [q] dti ∧ dtj , �nd q : RN → R, such that∫
Γ
L[q] is critical on all surfaces Γ in multi-time RN ,

with respect to variations of q.

Example: potential KdV hierarchy. We obtain evolutionary equations:

qt2 = qxxx + 3q2x ,

qt3 = qxxxxx + 10qxqxxx + 5q2xx + 10q3x , . . .
Mats Vermeeren Lagrangian multiforms September 3, 2024 8 / 19



Exterior derivative of L
Revisit the Kepler problem: L = L1dt1 + L2dt2 with

L1[q] =
1

2
|qt1 |2 +

1

|q|
L2[q] = qt1 · qt2 + (qt1 × q) · v̂ (v̂ �xed unit vector)

Multi-time Euler-Lagrange equations:

qt1t1 = − q

|q|3

qt2 = v̂ × q

Coe�cient of dL
dL2
dt1

− dL1
dt2

=

(
qt1t1 +

q

|q|3

)
(qt2 − v̂ × q)

dL has a double zero on solutions.
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Interpretation of closedness condition

If dL = 0, the action is invariant wrt variations in geometry

t1

t2

•

•

Γ1

Γ2

D

∫
Γ1

L −
∫
Γ2

L =

∫
D
dL = 0

Lagrangian multiform principle

Require that

▶ pluri-Lagrangian principle holds (action critical wrt variations of q),

▶ deforming the curve of integration leaves action invariant.
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Interpretation of closedness condition

dL provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves,
i.e. boundaries of a surface D.

Then

δ

∫
∂D

L = −
∫
D
δdL,

hence the pluri-Lagrangian principle is equivalent to δdL = 0.

↕

Double zero property:

dL =
∑

(. . .) (. . .)
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Path integrals in multitime and con�guration space

Nijho� (INI meeting 2013) proposed a multi-time propagator of the form

K (q⃗b, t⃗b, sb; q⃗a, t⃗a, sa) =

∫ t⃗(sb)=t⃗b

t⃗(sa)=t⃗a

[
Dt⃗(s)

]∫ q⃗(t⃗b)=q⃗b

q⃗(t⃗a)=q⃗a

[
Dq⃗

(
t⃗
)]

exp

(
i

ℏ

∫
Γ
L[q⃗]

)

s
sa sb• •

t3

t2

t1

t⃗(s)

•

•
Γ = {q⃗(⃗t(s))}•

•

Path in multi-time Path in con�guration space

▶ Treats dependent variables and independent variables the same way

▶ What is the physical meaning of such a propagator?
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Multiform propagators for harmonic oscillators
[King & Nijho�. Quantum variational principle and quantum multiform structure:
the case of quadratic Lagrangians. Nuclear Physics B, 2019]

s
sa sb• •

t3

t2

t1

t⃗(s)

•

•
Γ = {q⃗(⃗t(s))}•

•

For quadratic Lagrangians, the closure property (path independence) does
not need equations of motion, so all paths Γ in multi-time have the same
action: ∫ t⃗(sb)=t⃗b

t⃗(sa)=t⃗a

[
Dt⃗(s)

]
= Id

Hence:

K (q⃗b, t⃗b, sb; q⃗a, t⃗a, sa) =

∫ q⃗(t⃗b)=q⃗b

q⃗(t⃗a)=q⃗a

[
Dq⃗

(
t⃗
)]

exp

(
i

ℏ

∫
Γ
L[q⃗]

)
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Semi-classical approximation to avoid path-dependence
[Kongkoom Yoo-kong. Quantum integrability: Lagrangian 1-form case. Nuclear
Physics B, 2023]

Semi-classical approximation: only count contributions of classical solutions
toward the path integral.

Use the property that dL = 0 on classical solutions to remove the integral∫ t⃗(sb)=t⃗b

t⃗(sa)=t⃗a

[
Dt⃗(s)

]
This also leads to the propagator

K (q⃗b, t⃗b, sb; q⃗a, t⃗a, sa) =

∫ q⃗(t⃗b)=q⃗b

q⃗(t⃗a)=q⃗a

[
Dq⃗

(
t⃗
)]

exp

(
i

ℏ

∫
Γ
L[q⃗]

)

Can you really study integrable systems in semi-classical approximation?
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When is semiclassical approximation exact?

▶ Geodesics on SO(3)

[Schulman. A path integral for spin. Physical Review. 1968]

▶ Geodesics on Lie groups

[Dowker. When is the `sum over classical paths' exact? Journal of
Physics A: General Physics. 1970]

Is exactness of semiclassical approximation an attribute of integrability?

Or is this too restrictive?
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Quantum system with classical symmetries

In the classical setting, dL has a double zero on solutions:

dL =
∑

(. . .)(. . .) where each (. . .) vanishes on solutions.

Hence dL = 0 and the action SΓ is independent of the path Γ in multi-time
as soon as all but one of the equations of motion are satis�ed.

One quantum Hamiltonian with N classical symmetries

▶ Classical symmetries ⇒ dL = 0
⇒ all (homotopy-equiv) paths on a Liouville torus have same action.
⇒ Multi-time propagator independent of path through multi-time.

▶ Pick the �easiest� path to evaluate the physical t1-propagator.

s
sa sb

t3

t2

t1

t⃗(s)
q⃗(⃗t(s))
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Path integral with �xed energies

All phase space paths that lie in a common level set of the classical
integrals of motion (�energies�) have the same action/propagator.

Maupertuis' principle: the classical trajectory is critical, among all
trajectories of the same �xed energy, for the action

∫
p dq

Is there a path integral formulation based on Maupertuis' principle?

s
sa sb

t3

t2

t1

t⃗(s)
q⃗(⃗t(s))

Path in multi-time Path in con�guration space
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Summary

▶ Lagrangian multiform theory well-studied in classical domain (ODEs,
PDEs, discrete systems)

▶ Initial attempts at quantum formulation (multi-time propagator) are of
limited scope, their physical interpretation is not fully clear

▶ Idea: use multiforms as a tool to evaluate traditional path integrals

Questions for the audience:

▶ Exactness of semi-classical approximation vs integrability?

▶ Path integrals à la Maupertuis?

Thank you for your attention!
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Higher order Lagranigans Li [q] = Li(q, qti , qti tj , . . .)

For a string I = ti1 . . . tik of time variables, denote the corresponding
derivative by qI .

If I is empty then qI = q.

Denote by
δi
δqI

the variational derivative in the direction of ti wrt qI :

δiLi
δqI

=
∞∑
α=0

(−1)α
dα

dtαi

∂Li
∂qItαi

=
∂Li
∂qI

− d

dti

∂Li
∂qIti

+
d2

dt2i

∂Li
∂qIt2i

− . . .

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations:
δiLi
δqI

= 0 ∀I ̸∋ ti ,

Additional conditions:
δiLi
δqIti

=
δjLj
δqItj

∀I ,
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Example: Potential KdV hierarchy

qt2 = qxxx + 3q2x ,

qt3 = qxxxxx + 10qxqxxx + 5q2xx + 10q3x ,

where we identify t1 = x .

The di�erentiated equations qxti =
d

dx (· · · ) are Lagrangian with

L12 =
1

2
qxqt2 −

1

2
qxqxxx − q3x ,

L13 =
1

2
qxqt3 −

1

2
q2xxx + 5qxq

2
xx −

5

2
q4x .

A suitable coe�cient L23 of

L = L12 dt1 ∧ dt2 + L13 dt1 ∧ dt3 + L23 dt2 ∧ dt3

can be found (nontrivial task!).
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Multi-time EL equations

for L[q] =
∑
i ,j

Lij [q] dti ∧ dtj

δijLij
δqI

= 0 ∀I ̸∋ ti , tj ,

δijLij
δqItj

=
δikLik
δqItk

∀I ̸∋ ti ,

δijLij
δqIti tj

+
δjkLjk
δqItj tk

+
δkiLki
δqItk ti

= 0 ∀I .

Where
δijLij
δqI

=
∞∑
α=0

∞∑
β=0

(−1)α+β dα

dtαi

dβ

dtβj

∂Lij
∂q

Itαi tβj
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Example: Potential KdV hierarchy

▶ The equations
δ12L12
δq

= 0 and
δ13L13
δq

= 0 yield

qxt2 =
d

dx

(
qxxx + 3q2x

)
,

qxt3 =
d

dx

(
qxxxxx + 10qxqxxx + 5q2xx + 10q3x

)
.

▶ The equations
δ12L12
δqx

=
δ32L32
δqt3

and
δ13L13
δqx

=
δ23L23
δqt2

yield

qt2 = qxxx + 3q2x ,

qt3 = qxxxxx + 10qxqxxx + 5q2xx + 10q3x ,

the evolutionary equations!

▶ All other multi-time EL equations are corollaries of these.
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