Lagrangian multiforms paths from classical to quantum

Mats Vermeeren

RAQIS Annecy

September 3, 2024

Engineering and Physical Sciences Research Council

Lagrangian multiform theory

Variational principle for classical integrable systems, applicable to:

- ▶ Liouville-integrable ODEs
- ▶ Hierarchies of integrable PDEs
	- $E_{\rm g}$ KdV, AKNS, KP, ...
- ▶ Semi-discrete systems

E.g. Toda lattice

▶ Fully discrete systems Integrable maps, partial difference equations

Main contributors:

- ▶ Frank Nijhoff, Vincent Caudrelier (University of Leeds)
- ▶ Yuri Suris (TU Berlin)

Contents

2 [Paths to quantisation](#page-22-0)

- · Defining a multi-time propagator
- [Quantum system with classical symmetries](#page-28-0)

Contents

1 [Lagrangian multiforms in the classical setting](#page-3-0)

[Paths to quantisation](#page-22-0)

- · Defining a multi-time propagator
- [Quantum system with classical symmetries](#page-28-0)

Liouville integrability

A Hamiltonian system with Hamilton function $H:\,T^\ast Q \cong \mathbb{R}^{2N} \to \mathbb{R}$ is Liouville integrable if there exist N functionally independent Hamilton functions $H=H_1,H_2,\ldots H_N$ such that $\{H_i,H_j\}=0.$

- \blacktriangleright Each H_i defines its own flow $\phi_{H_j}^t$: N dynamical systems
- \blacktriangleright Each H_i is a conserved quantity for all flows
- ▶ Each common level set (if compact and nondegenerate) is a torus
- \blacktriangleright The flows commute

Liouville integrability

A Hamiltonian system with Hamilton function $H:\,T^\ast Q \cong \mathbb{R}^{2N} \to \mathbb{R}$ is Liouville integrable if there exist N functionally independent Hamilton functions $H=H_1,H_2,\ldots H_N$ such that $\{H_i,H_j\}=0.$

- \blacktriangleright Each H_i defines its own flow $\phi_{H_j}^t$: N dynamical systems
- \blacktriangleright Each H_i is a conserved quantity for all flows
- ▶ Each common level set (if compact and nondegenerate) is a torus
- \blacktriangleright The flows commute

We can consider (q,p) as a function of multi-time, $\mathbb{R}^{\textit{N}}\rightarrow\mathcal{T}^{\ast}Q$:

$$
(t_1, \ldots, t_N) \mapsto (q(t_1, \ldots, t_N), p(t_1, \ldots, t_N))
$$
\n
$$
\downarrow
$$

Suppose we have Lagrange functions L_i associated to H_i . Consider

 $q:\mathbb{R}^{\textsf{N}}\rightarrow Q$ $\;\;($ multi-time to configuration space)

Suppose we have Lagrange functions L_i associated to H_i . Consider

 $q:\mathbb{R}^{\textsf{N}}\rightarrow Q$ $\;\;($ multi-time to configuration space)

Pluri-Lagrangian principle

Combine the L_i into a 1-form

$$
\mathcal{L}[q] = \sum_{i=1}^N L_i[q] dt_i.
$$

Look for dynamical variables $q(t_1, \ldots, t_N)$ such that the action

$$
S_{\Gamma} = \int_{\Gamma} \mathcal{L}[q]
$$

is critical w.r.t. variations of q , simultaneously over every curve **Γ** in multi-time \mathbb{R}^{N}

The Lagrangian multiform principle considers variations of the curve too

Mats Vermeeren [Lagrangian multiforms](#page-0-0) September 3, 2024 3 / 19

 t_2

Suppose we have Lagrange functions L_i associated to H_i . Consider

 $q:\mathbb{R}^{\textsf{N}}\rightarrow Q$ $\;\;($ multi-time to configuration space)

Pluri-Lagrangian principle

Combine the L_i into a 1-form

$$
\mathcal{L}[q] = \sum_{i=1}^N L_i[q] dt_i.
$$

Look for dynamical variables $q(t_1, \ldots, t_N)$ such that the action

$$
S_{\Gamma} = \int_{\Gamma} \mathcal{L}[q]
$$

is critical w.r.t. variations of q , simultaneously over every curve **Γ** in multi-time \mathbb{R}^{N}

The Lagrangian multiform principle considers variations of the curve too

Mats Vermeeren [Lagrangian multiforms](#page-0-0) September 3, 2024 3 / 19

Suppose we have Lagrange functions L_i associated to H_i . Consider

 $q:\mathbb{R}^{\textsf{N}}\rightarrow Q$ $\;\;($ multi-time to configuration space)

Pluri-Lagrangian principle

Combine the L_i into a 1-form

$$
\mathcal{L}[q] = \sum_{i=1}^N L_i[q] dt_i.
$$

Look for dynamical variables $q(t_1, \ldots, t_N)$ such that the action

$$
S_{\Gamma} = \int_{\Gamma} \mathcal{L}[q]
$$

is critical w.r.t. variations of q , simultaneously over every curve **Γ** in multi-time \mathbb{R}^{N}

The Lagrangian multiform principle considers variations of the curve too

Multi-time Euler-Lagrange equations

Assume that

$$
L_1[q] = L_1(q, q_{t_1}),
$$

\n
$$
L_i[q] = L_i(q, q_{t_1}, q_{t_i}), \quad i \neq 1
$$

Then the multi-time Euler-Lagrange equations for

$$
\mathcal{L} = \sum_i L_i[q] dt_i
$$

are:

Usual Euler-Lagrange equations: $\frac{\partial L_i}{\partial \boldsymbol{q}} - \frac{\mathsf{d}}{\mathsf{d} \, t}$ dt_i ∂Lⁱ $\frac{\partial P_i}{\partial q_{t_i}} = 0$? $\frac{\partial L_i}{\partial x}$ $rac{\partial}{\partial q_{t_1}} = 0, \qquad i \neq 1$ Compatibility conditions: $\frac{\partial L_i}{\partial q_{t_i}} = \frac{\partial L_j}{\partial q_{t_j}}$ ∂q_{t_j}

Example: Kepler Problem

Take

$$
L_1 = \frac{1}{2}|q_{t_1}|^2 + \frac{1}{|q|}
$$

\n
$$
L_2 = q_{t_1} \cdot q_{t_2} + (q_{t_1} \times q) \cdot \hat{v}
$$
 (\hat{v} fixed unit vector)

In general, for systems of Newtonian type, $L_i = q_{t_1} q_{t_i} - H_i(q,q_{t_1})$

Example: Kepler Problem

Take

$$
L_1 = \frac{1}{2}|q_{t_1}|^2 + \frac{1}{|q|}
$$

\n
$$
L_2 = q_{t_1} \cdot q_{t_2} + (q_{t_1} \times q) \cdot \hat{v}
$$
 (\hat{v} fixed unit vector)

In general, for systems of Newtonian type, $L_i = q_{t_1} q_{t_i} - H_i(q,q_{t_1})$

Multi-time Euler-Lagrange equations of $\mathcal{L} = L_1 dt_1 + L_2 dt_2$

$$
\frac{\partial L_1}{\partial q} - \frac{d}{dt_1} \frac{\partial L_1}{\partial q_{t_1}} = 0 \Rightarrow q_{t_1 t_1} = -\frac{q}{|q|^3} \quad \text{(Keplerian motion)}
$$
\n
$$
\frac{\partial L_2}{\partial q} - \frac{d}{dt_2} \frac{\partial L_2}{\partial q_{t_2}} = 0 \Rightarrow q_{t_1 t_2} = \hat{v} \times q_{t_1}
$$
\n
$$
\frac{\partial L_2}{\partial q_{t_1}} = 0 \Rightarrow q_{t_2} = \hat{v} \times q \quad \text{(Rotation)}
$$
\n
$$
\frac{\partial L_1}{\partial q_{t_1}} = \frac{\partial L_2}{\partial q_{t_2}} \Rightarrow q_{t_1} = q_{t_1}
$$

Consider a Lagrangian one-form $\mathcal{L} = \sum L_i[q] \, \mathsf{d} \mathsf{t}_i$, with i $L_1[q] = L_1(q, q_{t_1}),$ $L_i[q] = L_i(q, q_{t_1}, q_{t_i}), \quad i \neq 1$

Lemma

If the action $\int_{\Gamma} \mathcal{L}$ is critical on all stepped curves Γ in $\mathbb{R}^{\textsf{N}}$, then it is critical on all smooth curves.

Variations are local, so it is sufficient to look at one corner $\Gamma = \Gamma_i \cup \Gamma_i$ at a time.

On one of the straight pieces, Γ_i ($i \neq 1$), we get

$$
\delta \int_{\Gamma_i} L_i dt_i = \int_{\Gamma_i} \left(\frac{\partial L_i}{\partial q} \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} + \frac{\partial L_i}{\partial q_{t_i}} \delta q_{t_i} \right) dt_i \qquad \qquad \Gamma_j \Bigg|_{\mathcal{C}} \qquad \qquad \frac{\Gamma_j}{\overline{t}_i} \Bigg|_{\mathcal{C}}
$$

 t_j

 \mathbf{r}

On one of the straight pieces, Γ_i ($i \neq 1$), we get

$$
\delta \int_{\Gamma_i} L_i dt_i = \int_{\Gamma_i} \left(\frac{\partial L_i}{\partial q} \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} + \frac{\partial L_i}{\partial q_{t_i}} \delta q_{t_i} \right) dt_i
$$

Integration by parts (wrt t_i only) yields

$$
\delta \int_{\Gamma_i} L_i dt_i = \int_{\Gamma_i} \left(\left(\frac{\partial L_i}{\partial q} - \frac{d}{dt_i} \frac{\partial L_i}{\partial q_{t_i}} \right) \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} \right) dt_i + \frac{\partial L_i}{\partial q_{t_i}} \delta q \Big|_{C}
$$

Since p is an interior point of the curve, we cannot set $\delta q(C) = 0!$

 t_j

 t_i

 \mathcal{C}

 Γ_i Γ_j

On one of the straight pieces, Γ_i ($i \neq 1$), we get

$$
\delta \int_{\Gamma_i} L_i dt_i = \int_{\Gamma_i} \left(\frac{\partial L_i}{\partial q} \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} + \frac{\partial L_i}{\partial q_{t_i}} \delta q_{t_i} \right) dt_i
$$

Integration by parts (wrt t_i only) yields

$$
\delta \int_{\Gamma_i} L_i dt_i = \int_{\Gamma_i} \left(\left(\frac{\partial L_i}{\partial q} - \frac{d}{dt_i} \frac{\partial L_i}{\partial q_{t_i}} \right) \delta q + \frac{\partial L_i}{\partial q_{t_1}} \delta q_{t_1} \right) dt_i + \frac{\partial L_i}{\partial q_{t_i}} \delta q \Big|_C
$$

 t_i

 \mathcal{C}

 Γ_i Γ_j

 t_j

Since p is an interior point of the curve, we cannot set $\delta q(C) = 0!$ Arbitrary $\delta \boldsymbol{q}$ and $\delta \boldsymbol{q}_{t_1}$, so we find:

Multi-time Euler-Lagrange equations

\n
$$
\frac{\partial L_i}{\partial q} - \frac{d}{dt_i} \frac{\partial L_i}{\partial q_{t_i}} = 0, \qquad \frac{\partial L_i}{\partial q_{t_1}} = 0, \qquad \frac{\partial L_i}{\partial q_{t_i}} = \frac{\partial L_j}{\partial q_{t_i}}
$$
\nMats Vermeeren

\nLagrangian multipforms

\nSertember 3, 2024

\nZ1/19

Variational principle for PDEs $(d = 2)$

Pluri-Lagrangian principle

Given a 2-form $\mathcal{L}[q]=\sum_{i,j}L_{ij}[q]$ d $t_i\wedge$ d $t_j,$ find $q:\mathbb{R}^{\mathcal{N}}\to\mathbb{R}$, such that Z Γ $\mathcal{L}[q]$ is critical on all surfaces $\mathsf \Gamma$ in multi-time $\mathbb R^{\mathsf N},$

with respect to variations of q

Example: potential KdV hierarchy. We obtain evolutionary equations:

$$
q_{t_2} = q_{xxx} + 3q_x^2,
$$

\n
$$
q_{t_3} = q_{xxxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3,
$$
 ...

Exterior derivative of \mathcal{L}

Revisit the Kepler problem: $\mathcal{L} = L_1 dt_1 + L_2 dt_2$ with

$$
L_1[q] = \frac{1}{2}|q_{t_1}|^2 + \frac{1}{|q|}
$$

\n
$$
L_2[q] = q_{t_1} \cdot q_{t_2} + (q_{t_1} \times q) \cdot \hat{v} \qquad (\hat{v} \text{ fixed unit vector})
$$

Multi-time Euler-Lagrange equations:

$$
q_{t_1t_1} = -\frac{q}{|q|^3}
$$

$$
q_{t_2} = \hat{v} \times q
$$

Coefficient of $d\mathcal{L}$ dL_2 $\frac{\mathsf{d}L_2}{\mathsf{d}t_1}-\frac{\mathsf{d}L_1}{\mathsf{d}t_2}$ $\frac{\mathsf{d} \, \mathsf{L}_1}{\mathsf{d} \, t_2} = \bigg(q_{t_1 t_1} + \frac{q}{|q|}$ $|q|^3$ $\Bigg)\left(q_{t_2}-\hat{v}\times q\right)$

 $d\mathcal{L}$ has a double zero on solutions.

Interpretation of closedness condition

If $d\mathcal{L} = 0$, the action is invariant wrt variations in geometry

Lagrangian multiform principle

Require that

- \blacktriangleright pluri-Lagrangian principle holds (action critical wrt variations of q),
- \blacktriangleright deforming the curve of integration leaves action invariant.

Interpretation of closedness condition

 $d\mathcal{L}$ provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves, i.e. boundaries of a surface D.

Then

$$
\delta\int_{\partial D}\mathcal{L}=-\int_D\delta\text{d}\mathcal{L},
$$

hence the pluri-Lagrangian principle is equivalent to $\delta d\mathcal{L}=0$.

Interpretation of closedness condition

 $d\mathcal{L}$ provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves, i.e. boundaries of a surface D.

Then

$$
\delta\int_{\partial D}\mathcal{L}=-\int_{D}\delta\mathrm{d}\mathcal{L},
$$

hence the pluri-Lagrangian principle is equivalent to $\delta d\mathcal{L}=0$.

↕

Double zero property:

$$
d\mathcal{L}=\sum\left(\ldots\right)\left(\ldots\right)
$$

Contents

1 [Lagrangian multiforms in the classical setting](#page-3-0)

2 [Paths to quantisation](#page-22-0)

- · Defining a multi-time propagator
- [Quantum system with classical symmetries](#page-28-0)

Path integrals in multitime and configuration space

Nijhoff (INI meeting 2013) proposed a multi-time propagator of the form

$$
K(\vec{q}_b, \vec{t}_b, s_b; \vec{q}_a, \vec{t}_a, s_a) = \int_{\vec{t}(s_a) = \vec{t}_a}^{\vec{t}(s_b) = \vec{t}_b} \left[\mathcal{D}\vec{t}(s) \right] \int_{\vec{q}(\vec{t}_a) = \vec{q}_a}^{\vec{q}(\vec{t}_b) = \vec{q}_b} \left[\mathcal{D}\vec{q}(\vec{t}) \right] \exp\left(\frac{i}{\hbar} \int_{\Gamma} \mathcal{L}[\vec{q}]\right)
$$

Path in multi-time Path in configuration space

Path integrals in multitime and configuration space

Nijhoff (INI meeting 2013) proposed a multi-time propagator of the form

$$
K(\vec{q}_b, \vec{t}_b, s_b; \vec{q}_a, \vec{t}_a, s_a) = \int_{\vec{t}(s_a) = \vec{t}_a}^{\vec{t}(s_b) = \vec{t}_b} \left[\mathcal{D}\vec{t}(s) \right] \int_{\vec{q}(\vec{t}_a) = \vec{q}_a}^{\vec{q}(\vec{t}_b) = \vec{q}_b} \left[\mathcal{D}\vec{q}(\vec{t}) \right] \exp\left(\frac{i}{\hbar} \int_{\Gamma} \mathcal{L}[\vec{q}]\right)
$$

 \blacktriangleright Treats dependent variables and independent variables the same way

▶ What is the physical meaning of such a propagator?

Multiform propagators for harmonic oscillators [King & Nijhoff. Quantum variational principle and quantum multiform structure: the case of quadratic Lagrangians. Nuclear Physics B, 2019]

For quadratic Lagrangians, the closure property (path independence) does not need equations of motion, so all paths Γ in multi-time have the same action:

$$
\int_{\vec{t}(s_a)=\vec{t}_a}^{\vec{t}(s_b)=\vec{t}_b} \left[\mathcal{D}\vec{t}(s) \right] = \mathsf{Id}
$$

Hence:

$$
\mathcal{K}(\vec{q}_b,\vec{t}_b,s_b;\vec{q}_a,\vec{t}_a,s_a) = \int_{\vec{q}(\vec{t}_a)=\vec{q}_a}^{\vec{q}(\vec{t}_b)=\vec{q}_b} \left[\mathcal{D}\vec{q}(\vec{t}) \right] \exp\left(\frac{i}{\hbar} \int_{\Gamma} \mathcal{L}[\vec{q}] \right)
$$

Semi-classical approximation to avoid path-dependence [Kongkoom Yoo-kong. Quantum integrability: Lagrangian 1-form case. Nuclear Physics B, 2023]

Semi-classical approximation: only count contributions of classical solutions toward the path integral.

Use the property that $d\mathcal{L} = 0$ on classical solutions to remove the integral

$$
\int_{\vec{t}(s_a)=\vec{t}_a}^{\vec{t}(s_b)=\vec{t}_b}\left[{\cal D}\vec{t}(s)\right]
$$

This also leads to the propagator

$$
\mathcal{K}(\vec{q}_b,\vec{t}_b,s_b;\vec{q}_a,\vec{t}_a,s_a) = \int_{\vec{q}(\vec{t}_a)=\vec{q}_a}^{\vec{q}(\vec{t}_b)=\vec{q}_b} \left[\mathcal{D}\vec{q}(\vec{t}) \right] \exp\left(\frac{i}{\hbar} \int_{\Gamma} \mathcal{L}[\vec{q}] \right)
$$

Can you really study integrable systems in semi-classical approximation?

When is semiclassical approximation exact?

▶ Geodesics on SO(3)

[Schulman. A path integral for spin. Physical Review. 1968]

▶ Geodesics on Lie groups

[Dowker. When is the `sum over classical paths' exact? Journal of Physics A: General Physics. 1970]

Is exactness of semiclassical approximation an attribute of integrability? Or is this too restrictive?

Quantum system with classical symmetries

In the classical setting, $d\mathcal{L}$ has a double zero on solutions: d $\mathcal{L} = \sum(\ldots)(\ldots)$ where each (\ldots) vanishes on solutions.

Hence $d\mathcal{L} = 0$ and the action S_{Γ} is independent of the path Γ in multi-time as soon as all but one of the equations of motion are satisfied.

Quantum system with classical symmetries

In the classical setting, $d\mathcal{L}$ has a double zero on solutions: d $\mathcal{L} = \sum(\ldots)(\ldots)$ where each (\ldots) vanishes on solutions.

Hence d $\mathcal{L}=0$ and the action S_{Γ} is independent of the path Γ in multi-time as soon as all but one of the equations of motion are satisfied.

One quantum Hamiltonian with N classical symmetries

- ▶ Classical symmetries $\Rightarrow d\mathcal{L}=0$
	- \Rightarrow all (homotopy-equiv) paths on a Liouville torus have same action.
	- \Rightarrow Multi-time propagator independent of path through multi-time.
- \blacktriangleright Pick the "easiest" path to evaluate the physical t_1 -propagator.

Path integral with fixed energies

All phase space paths that lie in a common level set of the classical integrals of motion ("energies") have the same action/propagator.

Maupertuis' principle: the classical trajectory is critical, among all trajectories of the same fixed energy, for the action $\int \bm\rho\,\mathsf{d}\bm q$

Is there a path integral formulation based on Maupertuis' principle?

Contents

1 [Lagrangian multiforms in the classical setting](#page-3-0)

[Paths to quantisation](#page-22-0)

- Defining a multi-time propagator
- [Quantum system with classical symmetries](#page-28-0)

Summary

- \blacktriangleright Lagrangian multiform theory well-studied in classical domain (ODEs, PDEs, discrete systems)
- ▶ Initial attempts at quantum formulation (multi-time propagator) are of limited scope, their physical interpretation is not fully clear
- ▶ Idea: use multiforms as a tool to evaluate traditional path integrals

Summary

- \blacktriangleright Lagrangian multiform theory well-studied in classical domain (ODEs, PDEs, discrete systems)
- ▶ Initial attempts at quantum formulation (multi-time propagator) are of limited scope, their physical interpretation is not fully clear
- ▶ Idea: use multiforms as a tool to evaluate traditional path integrals

Questions for the audience:

- ▶ Exactness of semi-classical approximation vs integrability?
- ▶ Path integrals à la Maupertuis?

Summary

- \blacktriangleright Lagrangian multiform theory well-studied in classical domain (ODEs, PDEs, discrete systems)
- ▶ Initial attempts at quantum formulation (multi-time propagator) are of limited scope, their physical interpretation is not fully clear
- ▶ Idea: use multiforms as a tool to evaluate traditional path integrals

Questions for the audience:

- ▶ Exactness of semi-classical approximation vs integrability?
- ▶ Path integrals à la Maupertuis?

Thank you for your attention!

Selected references on Lagrangian multiform theory

- Discrete Lagrangian 2-forms: Lobb, Nijhoff. Lagrangian multiforms and multidimensional consistency. J Phys A, 2009.
- Discrete and continuous 1-forms: Suris. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. J Geom Mech, 2013
- Continuous 2-forms: Suris, V. On the Lagrangian structure of integrable hierarchies. In: Advances in Discrete Differential Geometry, Springer, 2016.
- Lax pairs: Sleigh, Nijhoff, Caudrelier. A variational approach to Lax representations. Journal of Geometry and Physics, 2019.
- Hamiltonian vs Lagrangian perspectives: V. Hamiltonian structures for integrable hierarchies of Lagrangian PDEs. OCNMP, 2021.
- Semi-discrete Lagrangian multiforms: Sleigh, V. Semi-discrete Lagrangian 2-forms and the Toda hierarchy. J Phys A, 2022.
- Classical Gaudin models: Caudrelier, Dell'Atti, Singh. Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems. LMP. 2024
- Quantum multiforms: King, Nijhoff. Quantum variational principle and quantum multiform structure. Nuclear Physics B, 2019.
- Kongkoom, Yoo-kong. Quantum integrability: Lagrangian 1-form case. Nuclear Physics B, 2023.

Higher order Lagranigans $L_i[q] = L_i(q, q_{t_i}, q_{t_i t_j}, \ldots)$

For a string $I = t_{i_1} \dots t_{i_k}$ of time variables, denote the corresponding derivative by *q_I*

If I is empty then $q_1 = q$.

Denote by $\frac{\delta_i}{\delta_i}$ $\frac{\partial f}{\partial q_1}$ the variational derivative in the direction of t_i wrt q_1 : $\delta_i L_i$ $\frac{\delta_i L_i}{\delta q_l} = \sum_{\alpha=0}^{\infty}$ $\alpha = 0$ $(-1)^{\alpha} \frac{d^{\alpha}}{dt^{\alpha}}$ dt_i^{α} ∂Lⁱ $\partial q_{\bm{l} \bm{t}^{\alpha}_i}$ $=\frac{\partial L_i}{\partial x}$ $\frac{\partial L_i}{\partial \boldsymbol{q_I}} - \frac{\mathsf{d}}{\mathsf{d} t}$ dt_i ∂Lⁱ $\frac{\partial L_i}{\partial q_{lt_i}} + \frac{d^2}{dt_i^2}$ $\overline{\mathrm{d}t_i^2}$ i ∂Lⁱ $\frac{\partial P_1}{\partial q_{lt_i^2}} - \ldots$ i

Multi-time Euler-Lagrange equations

Usual Euler-Lagrange equations:

Additional conditions:

$$
\frac{\delta_i L_i}{\delta q_I} = 0 \qquad \forall I \not\ni t_i,
$$

$$
\frac{\delta_i L_i}{\delta q_{lt_i}} = \frac{\delta_j L_j}{\delta q_{lt_j}} \qquad \forall I,
$$

$$
q_{t_2} = q_{xxx} + 3q_x^2,
$$

\n
$$
q_{t_3} = q_{xxxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3,
$$

\nwhere we identify $t_1 = x$.

$$
q_{t_2} = q_{xxx} + 3q_x^2,
$$

\n
$$
q_{t_3} = q_{xxxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3,
$$

\nwhere we identify $t_1 = x$

The differentiated equations $q_{\mathsf{x}t_i} = \frac{\mathsf{d}}{\mathsf{d}\mathsf{x}t_i}$ $\frac{a}{dx}(\cdots)$ are Lagrangian with

$$
L_{12} = \frac{1}{2} q_x q_{t_2} - \frac{1}{2} q_x q_{xxx} - q_x^3,
$$

$$
L_{13} = \frac{1}{2} q_x q_{t_3} - \frac{1}{2} q_{xxx}^2 + 5 q_x q_{xx}^2 - \frac{5}{2} q_x^4.
$$

$$
q_{t_2} = q_{xxx} + 3q_x^2,
$$

\n
$$
q_{t_3} = q_{xxxxx} + 10q_xq_{xxx} + 5q_{xx}^2 + 10q_x^3,
$$

\nwhere we identify $t_1 = x$.

The differentiated equations $q_{\mathsf{x}t_i} = \frac{\mathsf{d}}{\mathsf{d}\mathsf{x}t_i}$ $\frac{a}{dx}(\cdots)$ are Lagrangian with

$$
L_{12} = \frac{1}{2} q_x q_{t_2} - \frac{1}{2} q_x q_{xxx} - q_x^3,
$$

$$
L_{13} = \frac{1}{2} q_x q_{t_3} - \frac{1}{2} q_{xxx}^2 + 5 q_x q_{xx}^2 - \frac{5}{2} q_x^4.
$$

A suitable coefficient L_{23} of

$$
\mathcal{L} = L_{12} dt_1 \wedge dt_2 + L_{13} dt_1 \wedge dt_3 + L_{23} dt_2 \wedge dt_3
$$
 can be found (nontrivial task!).

Multi-time EL equations

$$
\text{for }\mathcal{L}[q] = \sum_{i,j} L_{ij}[q] \, \mathrm{d} t_i \wedge \mathrm{d} t_j
$$

$$
\begin{aligned}\n\frac{\delta_{ij}L_{ij}}{\delta q_l} &= 0 & \forall I \not\ni t_i, t_j, \\
\frac{\delta_{ij}L_{ij}}{\delta q_{lt_j}} &= \frac{\delta_{ik}L_{ik}}{\delta q_{lt_k}} & \forall I \not\ni t_i, \\
\frac{\delta_{ij}L_{ij}}{\delta q_{lt_jt_j}} + \frac{\delta_{jk}L_{jk}}{\delta q_{lt_jt_k}} + \frac{\delta_{ki}L_{ki}}{\delta q_{lt_kt_i}} &= 0 & \forall I.\n\end{aligned}
$$

Where

$$
\frac{\delta_{ij}L_{ij}}{\delta q_I} = \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} (-1)^{\alpha+\beta} \frac{d^{\alpha}}{dt_i^{\alpha}} \frac{d^{\beta}}{dt_j^{\beta}} \frac{\partial L_{ij}}{\partial q_{lt_i^{\alpha}t_j^{\beta}}}
$$

$$
\sum \text{ The equations } \frac{\delta_{12}L_{12}}{\delta q} = 0 \text{ and } \frac{\delta_{13}L_{13}}{\delta q} = 0 \text{ yield}
$$
\n
$$
q_{xt_2} = \frac{d}{dx} (q_{xxx} + 3q_x^2),
$$
\n
$$
q_{xt_3} = \frac{d}{dx} (q_{xxxx} + 10q_x q_{xxx} + 5q_{xx}^2 + 10q_x^3).
$$

$$
\sum \text{ The equations } \frac{\delta_{12}L_{12}}{\delta q_x} = \frac{\delta_{32}L_{32}}{\delta q_{t_3}} \text{ and } \frac{\delta_{13}L_{13}}{\delta q_x} = \frac{\delta_{23}L_{23}}{\delta q_{t_2}} \text{ yield}
$$
\n
$$
q_{t_2} = q_{xxx} + 3q_x^2,
$$
\n
$$
q_{t_3} = q_{x000x} + 10q_x q_{x0x} + 5q_{xx}^2 + 10q_x^3,
$$

the evolutionary equations!

▶ All other multi-time EL equations are corollaries of these.