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Lagrangian multiform theory

Variational principle for classical integrable systems, applicable to:
» Liouville-integrable ODEs
» Hierarchies of integrable PDEs
E.g. KdV, AKNS, KP, ...
» Semi-discrete systems
E.g. Toda lattice
» Fully discrete systems
Integrable maps, partial difference equations

Main contributors:
» Frank Nijhoff, Vincent Caudrelier (University of Leeds)
» Yuri Suris (TU Berlin)
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@ Lagrangian multiforms in the classical setting



Liouville integrability

A Hamiltonian system with Hamilton function H: T*Q = R?N — R is
Liouville integrable if there exist N functionally independent Hamilton
functions H = Hy, Ho, ... Hy such that {H;, H;} = 0.

» Each H; defines its own flow gzﬁf_,j: N dynamical systems
» Each H; is a conserved quantity for all flows

» Each common level set (if compact and nondegenerate) is a torus
» The flows commute
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Liouville integrability

A Hamiltonian system with Hamilton function H: T*Q = R2N S Ris
Liouville integrable if there exist N functionally independent Hamilton
functions H = Hy, Ho, ... Hy such that {H;, H;} = 0.

» Each H; defines its own flow gzﬁf_,j: N dynamical systems
» Each H; is a conserved quantity for all flows

» Each common level set (if compact and nondegenerate) is a torus

» The flows commute

We can consider (g, p) as a function of multi-time, RN — T*Q:
(tr, .o tn) = (q(te, - oo tn), p(t, - - - t))

by N (9(t1, t2), p(t1, t2))

_.-7! independent of path

through multi-time
Initial condition

(q(O,O)vp(OaO)) g > tl
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Variational principle for commuting flows
Suppose we have Lagrange functions L; associated to H;. Consider

qg:RN - Q (multi-time to configuration space)
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Variational principle for commuting flows

Suppose we have Lagrange functions L; associated to H;. Consider

qg:RN - Q (multi-time to configuration space)

Pluri-Lagrangian principle

Combine the L; into a 1-form

N
Llql = Li[q]dt:
i=1

Look for dynamical variables ¢(ti,...

such that the action

Sr= /rﬁ[q]

is critical w.r.t. variations of g, simultaneously

over every curve [ in multi-time RV

7tN)

to

The Lagrangian multiform principle considers variations of the curve too
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qg:RN - Q (multi-time to configuration space)
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Combine the L; into a 1-form
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Llql = Li[q]dt: ,
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Variational principle for commuting flows

Suppose we have Lagrange functions L; associated to H;. Consider
qg:RN - Q (multi-time to configuration space)

Pluri-Lagrangian principle

Combine the L; into a 1-form

t2y -Srszzdtz

N
Llql = Li[q]dt:
i=1

Look for dynamical variables q(ti,...,ty)
such that the action

5 = /r £lq] MEL ol

is critical w.r.t. variations of g, simultaneously ! t
over every curve [ in multi-time RV

The Lagrangian multiform principle considers variations of the curve too
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Multi-time Euler-Lagrange equations

Assume that

Ll [q] — Ll(q7 qt1)7
Ll[q] — Li(q7 qt; s qt,’)a ] 75 1

Then the multi-time Euler-Lagrange equations for

L= Z L,-[q] dt;

are:
. oL; d 0L;
Usual Euler-Lagrange equations; — — —— =10
Hel BHIETTagTangs SaUHO 9q T dt; gy,
oL;
7 L =0, i#1
8qt‘l
o .. oL; OL;
Compatibility conditions: —— = —~
8qf.‘i 8qtj
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Example: Kepler Problem

Take 1

1
b= laul+
217 q]

Ly =qy - qe, + (qy, x q)- 0 (¥ fixed unit vector)

In general, for systems of Newtonian type, Li = qt, qr, — Hi(q, q,)
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Example: Kepler Problem

Take 1

1
b= laul+
19| q]

Ly =qt - qr, +(qy, X q) -V (¥ fixed unit vector)

In general, for systems of Newtonian type, Li = qt, qr, — Hi(q, q,)

Multi-time Euler-Lagrange equations of £ = L;dt; + L,dt,

aLl d 8L1 q . .
dq dt; 0gs, At t, _|C/|3 (Keplerian motion)
8L2 d 8L2 N
. T . =0 = =
0q dty 6qt2 Ayt vV X4y
oL .
=0 = =V Rotat
aqt, g SV X g (Rotation)
aLl . 8[.2 N _
8qt1 - 3% dt, = 4y
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Derivation of the multi-time Euler-Lagrange equations

Consider a Lagrangian one-form £ = Z Li[q] dt;, with

Ll [q] - Ll(q7 qf1)7
L:[q] = Li(q7 aty qt,')a i 7é 1

Lemma 7Q

If the action er is critical on all stepped curves '
in RN, then it is critical on all smooth curves. Zan

Variations are local, so it is sufficient to look at one
corner [ =T;UT; at a time.
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, I'; (i # 1), we get tj

oL; oL; oL;
5/ L,'dt,'Z/ < L5g+ —6 + =16 .>dt,'
r; r, \9q 7 qr, 90T 9, 7"

i
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, I'; (i # 1), we get

oL; (3' oL;
5/ L,'dt,'Z/ < d 5 —5 .>dt,'
I r 6q 8 qu G oq, 7

Integration by parts (wrt t; only) yields

oL; d 0OL; oL; oL;
5/L,’dt,'=/<< L — I>5 — )dt,’—l- L
I I 8q dtl 8qt,' q a t1 qtl 8qt 9

tj

Since p is an interior point of the curve, we cannot set §q(C) = 0!
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Derivation of the multi-time Euler-Lagrange equations

On one of the straight pieces, I'; (i # 1), we get tj

oL; (3' oL;
5/ L;dt,'Z/ < d 5 —5 .>dt,'
I r 6q 8 qu G oq, 7

Integration by parts (wrt t; only) yields

oL; d 0OL; oL; oL;
5/L,’dl’i=/<< L — I>5 — )dt,’—l- L
I I 8q dtl 8qt,' q a t1 qtl 8qf 9

Since p is an interior point of the curve, we cannot set §q(C) = 0!

Arbitrary 6g and dqy,, so we find:

Multi-time Euler-Lagrange equations

oL d oL o oL L oL
aq dtl 8%,- ’ aqtl ’ aqi‘,' 8qu
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Variational principle for PDEs (d = 2)
Pluri-Lagrangian principle
Given a 2-form L[q] = >, ; L;[q]dt; Adt;, find g : RN — R, such that

/ﬁ[q] is critical on all surfaces I' in multi-time R",
-

with respect to variations of g.

Example: potential KdV hierarchy. We obtain evolutionary equations:

At, = Gox + 3q>2<7
Qi3 = Qxxxxx + 10qquxx + 5q)2<x + 10q)?:7
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Exterior derivative of L

Revisit the Kepler problem: £ = Lydt; + Lrdt, with

1 1
Lila] = 51aal +
L[gl=qt, - g, + (g, X q) -V (V fixed unit vector)

Multi-time Euler-Lagrange equations:

de;t :—i
o lql®
qtzz‘l}xq

Coefficient of dC

dL2 dL1 . q &
dt;,  dt (qt‘“ i |q|~°’> (4 =9 xa)

dL has a double zero on solutions.
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Interpretation of closedness condition

If d£ =0, the action is invariant wrt variations in geometry

to JU——
/z’ (]
r2/ l’

/, D II

/ ’

// I'r

’ o 1

Py -

______

> 11
/E—/ E:/dL:O
I I D

Lagrangian multiform principle
Require that
» pluri-Lagrangian principle holds (action critical wrt variations of g),

» deforming the curve of integration leaves action invariant.
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Interpretation of closedness condition
dL provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves,
i.e. boundaries of a surface D.

o L’— /5d£

hence the pluri-Lagrangian pr|nC|p|e is equivalent to 4dL = 0.

Then
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Interpretation of closedness condition
dL provides an alternative derivation of the EL equations:

WLOG, we can restrict the variational principle to simple closed curves,
i.e. boundaries of a surface D.

Then
) L’ = / odL,

hence the pluri-Lagrangian pr|nC|p|e is equivalent to 4dL = 0.

!

Double zero property:

de=> (..)(
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Path integrals in multitime and configuration space

Nijhoff (INI meeting 2013) proposed a multi-time propagator of the form

N L - EE‘(Sb):E‘b . 6(?[,):6[, . I
Ko oo = [ (o) [ T a0 (7 [ 21a)
q

t(sa)=ta (ta)=d>
t3
t2
Sa Sp
——e— S —_— . —
t(s)
t1
Path in multi-time Path in configuration space
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Path integrals in multitime and configuration space

Nijhoff (INI meeting 2013) proposed a multi-time propagator of the form

N L - EE‘(Sb):E‘b . J(Fb):ab . I
Koo = [ (o] [ 0] e [ cia)
: q

—,

t(sa)=ta (t2)=qs
t3
t2
Sa Sp
——e— S —_— . —
t(s)
t1
Path in multi-time Path in configuration space

» Treats dependent variables and independent variables the same way J

> What is the physical meaning of such a propagator?
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Multiform propagators for harmonic oscillators

[King & Nijhoff. Quantum variational principle and quantum multiform structure:
the case of quadratic Lagrangians. Nuclear Physics B, 2019]

Sa Sb

t1

For quadratic Lagrangians, the closure property (path independence) does
not need equations of motion, so all paths I' in multi-time have the same

action: B B
t(so)=th
/ 'Di(s)] = Id
F(Sa):t_'.;

Hence: B
G(tp)=Gb

K(C_fbv Fbv Sb; Efav E?a Sa) = / N [DJ(E)] exp<7; / E[E]])
q(ta)=da r
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Semi-classical approximation to avoid path-dependence

[Kongkoom Yoo-kong. Quantum integrability: Lagrangian 1-form case. Nuclear
Physics B, 2023]

Semi-classical approximation: only count contributions of classical solutions
toward the path integral.

Use the property that dZ = 0 on classical solutions to remove the integral

t(sp)=th
[ oHs)
t(sa)=t,

This also leads to the propagator
G(t)=a»

K (o Bo 551 s Fas) = | [Dé’(f)]exp(;_l / c[c—,])
G(ta)=qa r

=,

Can you really study integrable systems in semi-classical approximation? )
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When is semiclassical approximation exact?

» Geodesics on SO(3)
[Schulman. A path integral for spin. Physical Review. 1968]

» Geodesics on Lie groups

[Dowker. When is the ‘sum over classical paths’ exact? Journal of
Physics A: General Physics. 1970]

Is exactness of semiclassical approximation an attribute of integrability?
Or is this too restrictive? J
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Quantum system with classical symmetries

In the cIassicaI setting, dL has a double zero on solutions:
dl = Z ) where each (...) vanishes on solutions.

Hence d£ = 0 and the action Sr is independent of the path I' in multi-time
as soon as all but one of the equations of motion are satisfied.
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Quantum system with classical symmetries

In the cIassicaI setting, dL has a double zero on solutions:
dl = Z ) where each (...) vanishes on solutions.

Hence d£ = 0 and the action Sr is independent of the path I' in multi-time
as soon as all but one of the equations of motion are satisfied.
One quantum Hamiltonian with N classical symmetries

» Classical symmetries = dL£ =0

= all (homotopy-equiv) paths on a Liouville torus have same action.
= Multi-time propagator independent of path through multi-time.

» Pick the “easiest” path to evaluate the physical t;-propagator.

t3
[2)
Sa Sp
————— S —_ —_—
t(s)
t1
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Path integral with fixed energies

All phase space paths that lie in a common level set of the classical
integrals of motion (“energies’) have the same action/propagator.

Maupertuis’ principle: the classical trajectory is critical, among all
trajectories of the same fixed energy, for the action [ pdq

Is there a path integral formulation based on Maupertuis’ principle?

ts
to
Sa Sp
————— S —_— —_—
t(s)
t1

Path in multi-time

Path in configuration space
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Summary

» Lagrangian multiform theory well-studied in classical domain (ODEs,
PDEs, discrete systems)

» Initial attempts at quantum formulation (multi-time propagator) are of
limited scope, their physical interpretation is not fully clear

» Idea: use multiforms as a tool to evaluate traditional path integrals
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Summary

» Lagrangian multiform theory well-studied in classical domain (ODEs,
PDEs, discrete systems)

» Initial attempts at quantum formulation (multi-time propagator) are of
limited scope, their physical interpretation is not fully clear

» Idea: use multiforms as a tool to evaluate traditional path integrals
Questions for the audience:
» Exactness of semi-classical approximation vs integrability?

» Path integrals a la Maupertuis?
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Summary

» Lagrangian multiform theory well-studied in classical domain (ODEs,
PDEs, discrete systems)

» Initial attempts at quantum formulation (multi-time propagator) are of
limited scope, their physical interpretation is not fully clear

» Idea: use multiforms as a tool to evaluate traditional path integrals
Questions for the audience:
» Exactness of semi-classical approximation vs integrability?

» Path integrals a la Maupertuis?

Thank you for your attention!

Mats Vermeeren Lagrangian multiforms September 3, 2024 18/19



Selected references on Lagrangian multiform theory

Discrete Lagrangian 2-forms: Lobb, Nijhoff. Lagrangian multiforms and
multidimensional consistency. J Phys A, 2009.

Discrete and continuous 1-forms: Suris. Variational formulation of commuting
Hamiltonian flows: multi-time Lagrangian 1-forms. J Geom Mech, 2013

Continuous 2-forms: Suris, V. On the Lagrangian structure of integrable
hierarchies. In: Advances in Discrete Differential Geometry, Springer, 2016.

Lax pairs: Sleigh, Nijhoff, Caudrelier. A variational approach to Lax
representations. Journal of Geometry and Physics, 2019.

Hamiltonian vs Lagrangian perspectives: V. Hamiltonian structures for integrable
hierarchies of Lagrangian PDEs. OCNMP, 2021.

Semi-discrete Lagrangian multiforms: Sleigh, V. Semi-discrete Lagrangian 2-forms
and the Toda hierarchy. J Phys A, 2022.

Classical Gaudin models: Caudrelier, Dell'Atti, Singh. Lagrangian multiforms on
coadjoint orbits for finite-dimensional integrable systems. LMP. 2024

Quantum multiforms: King, Nijhoff. Quantum variational principle and quantum
multiform structure. Nuclear Physics B, 2019.

—— Kongkoom, Yoo-kong. Quantum integrability: Lagrangian 1-form case.
Nuclear Physics B, 2023.

Mats Vermeeren Lagrangian multiforms September 3, 2024 19/19



Mats Vermeeren




Higher order Lagranigans L;[q] = Li(q, 95, 4t;, - - )

For a string | = t; .

.. tj, of time variables, denote the corresponding
derivative by g;.

If I is empty then q; = g.
Denote by 5—' the variational derivative in the direction of t; wrt g;:

qai
Sl d® 9L;
= —1)—
el ;( ) dt? aC{lltia
oL 7i8L; i oL;
B 0q; dt; Oqy, dt,-2 0q2

Multi-time Euler-Lagrange equations

iLi
Usual Euler-Lagrange equations: ((Ssq =0 VI Z t,
I
L. 5L
Additional conditions: Oili _ 9 v,
5q/t,' 5QItj
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Example: Potential KdV hierarchy
At, = Qo + 3q)2<7

Gt = Qrooxx T 10gxgxxx + 5q)2<x + 10q)?:7
where we identify t; = x.
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Example: Potential KdV hierarchy

Aty = Qxxx + 3q>2<>

Qt; = Qxxxxx + 10qquxx + 5CI)2<X + 10q)?;7
where we identify t; = x.

The differentiated equations gy, = %(- -+ ) are Lagrangian with

1
Li> = 50xqe, — 5 GG al,

2
1 1 5
2 2 4
L13 - Equt3 - § XXX + 5quXX - qu
Sy



Example: Potential KdV hierarchy

Jt, = Qxxx T 3q>2<7

Qt; = Qxxxxx + 10qquxx + 5CI)2<X + 10q)?;7
where we identify t; = x.
The differentiated equations gy, = %(- -+ ) are Lagrangian with

1
Li> = 50xqe, — 5 GG al,

2
1 1 5
L1z = quqt3 5 )2(XX + 5qu>2<x - Eqi-

A suitable coefficient L3 of

L=Lidt; Adto + Li3dt; Adts + Lasdtr, Adts

can be found (nontrivial task!).
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Multi-time EL equations
for L[q] = Z L,-J-[q] dt; A dtj
i
Gyl
— =0 VI & t;, t;,
dq 2t
(5,'J'L,'j _ Oi Lik
5qltj 5qltk
5,‘j/.,'j n 5jkl-jk i OpiLii
6qlt,'tj 5QItjtk 5‘7/tkt,-

VI 2 t;,

=0 vI.

Where

EE:EE: ppors 47 &7 0L

a B
a=05=0 dt dt 8qlaﬁ

Mats Vermeeren
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Example: Potential KdV hierarchy

d12L12 013L13

5q =0 and

» The equations

=0 yield
d 2
Dtz = 3~ (G + 345)
d
Qxts = d7 (qxxxxx + 10GxGxxx + 5q>2<x + 10q§) .

012L12  d32l32 013L13  do3loz .
and yield

» The equations = =
dqx dqt, dqx dqt,

At; = Qxxx + 3q>2<7
Qt; = Qxxxxx + 10qquxx + 5CI§X + 10q)?:7

the evolutionary equations!

» All other multi-time EL equations are corollaries of these.
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