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The open XXZ/XYZ chain with boundary fields

Hopen
XXZ =

L−1∑
m=1

[
σx
mσ

x
m+1 + σy

mσ
y
m+1 + ∆σz

mσ
z
m+1

]
+

∑
a∈{x,y,z}

[ha
+σ

a
1 + ha

−σ
a
L]

� space of states: H = ⊗L
n=1Hn with Hn ' C2

� σx,y,z
m ∈ End(Hn) : local spin-1/2 operators (Pauli matrices) at site m

� anisotropy parameter ∆ = cosh η

� boundary fields hx,y,z
± parametrised in terms of 6 boundary parameters

ς±, κ±, τ±, or alternatively ϕ±, ψ±, τ±:

hx
± = 2κ± sinh η

cosh τ±
sinh ς±

, hy
± = 2iκ± sinh η

sinh τ±
sinh ς±

, hz
± = sinh η coth ς±

sinhϕ± coshψ± =
sinh ς±

2κ±
, coshϕ± sinhψ± =

cosh ς±
2κ±

Question: Correlation functions 〈
∏m

j=1 σ
αj

ij
〉 ?

Previous works: [Jimbo et al. 95] from q-vertex operators, [Kitanine et al 07]

from ABA (hx
± = hy

± = 0, T = 0)



The open XXZ/XYZ chain with boundary fields

Hopen
XYZ =

∑
a∈{x,y,z}

[
L∑

n=1

Jaσ
a
nσ

a
n+1 + ha

+σ
a
1 + ha

−σ
a
L

]
boundary fields parametrised in terms of 6 boundary parameters ca±,
a = x , y , z , or alternatively α±` , ` = 1, 2, 3:

Jx =
θ4(η)

θ4(0)
, hx

± = cx±
θ1(η)

θ4(0)
=
θ1(η)

θ4(0)

3∏
`=1

θ4(α±` )

θ1(α±` )
,

Jy =
θ3(η)

θ3(0)
, hy

± = icy±
θ1(η)

θ3(0)
= −i θ1(η)

θ3(0)

3∏
`=1

θ3(α±` )

θ1(α±` )
,

Jz =
θ2(η)

θ2(0)
, hz

± = cz±
θ1(η)

θ2(0)
=
θ1(η)

θ2(0)

3∏
`=1

θ2(α±` )

θ1(α±` )
.

with θi (u) ≡ θi (u|ω) (=(ω) > 0)

Question: Correlation functions 〈
∏m

j=1 σ
αj

ij
〉 ?

Previous works: [Hara 00] from q-vertex operators



A brief reminder of the XXZ periodic case

Correlation functions of the XXZ periodic chain at T = 0 can be computed
(among other methods) within ABA

→ numerical results [Caux et al. 05. . . ]

→ analytical derivation of the large distance asymptotic behavior at the
thermodynamic limit. . . [Kitanine, Kozlowski, Maillet, Slavnov, VT 08, 11. . . ]

Both approaches are based

◦ on the form factor decomposition of the correlation functions:

〈ψg |σαn σβn′ |ψg 〉 =
∑

eigenstates
|ψi 〉

〈ψg |σαn |ψi 〉 · 〈ψi |σβn′ |ψg 〉

◦ on the exact determinant representations for the form factors 〈ψi |σαn |ψj〉 in
finite volume [Kitanine, Maillet, VT 1999] , obtained from

� the action of local operators on Bethe states (using the solution of the
quantum inverse problem, e.g. σ−n = t(0)n−1 B(0) t(0)−n)

� the use of Slavnov’s determinant representation for the scalar products
of Bethe states [Slavnov 89]

〈{µ}off-shell|{λ}on-shell〉 ∝ det1≤j,k≤n

[
∂τ(µj |{λ})

∂λk

]
where t(µj) |{λ}〉 = τ(µj |{λ}) |{λ}〉



A brief reminder of the XXZ periodic case

Correlation functions of the XXZ periodic chain at T = 0 can be computed
(among other methods) within ABA

→ numerical results [Caux et al. 05. . . ]

→ analytical derivation of the large distance asymptotic behavior at the
thermodynamic limit. . . [Kitanine, Kozlowski, Maillet, Slavnov, VT 08, 11. . . ]

Both approaches are based

◦ on the form factor decomposition of the correlation functions:

〈ψg |σαn σβn′ |ψg 〉 =
∑

eigenstates
|ψi 〉

〈ψg |σαn |ψi 〉 · 〈ψi |σβn′ |ψg 〉

◦ on the exact determinant representations for the form factors 〈ψi |σαn |ψj〉 in
finite volume [Kitanine, Maillet, VT 1999] ,

At T > 0, correlation functions as sum over thermal form factors within the QTM
approach ( [Dugave, Göhmann, Kozlowski 12] and further works...)
 asymptotic behaviour at low-T



The reflection algebra for the XXZ/XYZ open spin chain

The open spin chains are solvable in the framework of the representation theory of
the reflection algebra (or boundary Yang-Baxter algebra) [Sklyanin 88]

◦ generators Uij(λ), 1 ≤ i , j ≤ 2 ← elements of the
boundary monodromy matrix U(λ)

◦ commutation relations given by the reflection equation:

R12(λ− µ)U1(λ)R12(λ+ µ− η)U2(µ) = U2(µ)R12(λ+ µ− η)U1(λ)R12(λ− µ)



The reflection algebra for the XXZ/XYZ open spin chain

The open spin chains are solvable in the framework of the representation theory of
the reflection algebra (or boundary Yang-Baxter algebra) [Sklyanin 88]

◦ generators Uij(λ), 1 ≤ i , j ≤ 2 ← elements of the
boundary monodromy matrix U(λ)

◦ commutation relations given by the reflection equation:

R12(λ− µ)U1(λ)R12(λ+ µ− η)U2(µ) = U2(µ)R12(λ+ µ− η)U1(λ)R12(λ− µ)

↪→ most general 2× 2 trigonometric solution of the refl. eq [de Vega, Gonzalez-Ruiz;

Ghoshal, Zamolodchikov 93] :

K(λ; ς, κ, τ) =
1

sinh ς

(
sinh(λ− η

2
+ ς) κ eτ sinh(2λ− η)

κ e−τ sinh(2λ− η) sinh(ς − λ+ η
2

)

)
 boundary matrices K+(λ) ≡ K(λ+ η/2; ς+, κ+, τ+) and
K−(λ) ≡ K(λ− η/2; ς−, κ−, τ−) describing left/right boundary fields:

hx
± = 2κ± sinh η

cosh τ±
sinh ς±

, hy
± = 2iκ± sinh η

sinh τ±
sinh ς±

, hz
± = sinh η coth ς±



The reflection algebra for the XXZ/XYZ open spin chain

The open spin chains are solvable in the framework of the representation theory of
the reflection algebra (or boundary Yang-Baxter algebra) [Sklyanin 88]

◦ generators Uij(λ), 1 ≤ i , j ≤ 2 ← elements of the
boundary monodromy matrix U(λ)

◦ commutation relations given by the reflection equation:

R12(λ− µ)U1(λ)R12(λ+ µ− η)U2(µ) = U2(µ)R12(λ+ µ− η)U1(λ)R12(λ− µ)

↪→ most general 2× 2 elliptic solution of the refl. eq [Inami, Konno 94; Hou, Shi,

Fan,Yang 95] :

K(λ) ≡ K(λ;α1, α2, α3) =
θ1(2λ− η)

2θ1(λ− η
2

)

[
I + cx

θ1(λ− η
2

)

θ4(λ− η
2

)
σx + icy

θ1(λ− η
2

)

θ3(λ− η
2

)
σy + cz

θ1(λ− η
2

)

θ2(λ− η
2

)
σz

]
,

with coefficients cx , cy , cz given in terms of three boundary parameters α1, α2, α3 as

cx =
3∏
`=1

θ4(α`)

θ1(α`)
, cy = −

3∏
`=1

θ3(α`)

θ1(α`)
, cz =

3∏
`=1

θ2(α`)

θ1(α`)
.

 boundary matrices K+(λ) ≡ K(λ+ η; {α+
` }) and K−(λ) ≡ K(λ; {α−` })

describing left/right boundary fields:

hx
± =

θ1(η)

θ4(0)

3∏
`=1

θ4(α±` )

θ1(α±` )
, hy

± = −i θ1(η)

θ3(0)

3∏
`=1

θ3(α±` )

θ1(α±` )
, hz

± =
θ1(η)

θ2(0)

3∏
`=1

θ2(α±` )

θ1(α±` )



The reflection algebra for the XXZ/XYZ open spin chain

The open spin chains are solvable in the framework of the representation theory of
the reflection algebra (or boundary Yang-Baxter algebra) [Sklyanin 88]

◦ generators Uij(λ), 1 ≤ i , j ≤ 2 ← elements of the
boundary monodromy matrix U(λ)

◦ commutation relations given by the reflection equation:

R12(λ− µ)U1(λ)R12(λ+ µ− η)U2(µ) = U2(µ)R12(λ+ µ− η)U1(λ)R12(λ− µ)

 U(λ) = T (λ)K−(λ) T̂ (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
with T̂ (λ) ∝ σy T t(−λ)σy

 transfer matrix: t(λ) = tr{K+(λ)U(λ)} [t(λ), t(µ)] = 0

Hopen ∝ d

dλ
log t(λ)∣∣

λ=η/2



Solution by ABA in the XXZ diagonal case
When both boundary matrices K± are diagonal (κ± = 0, i.e. boundary fields
along σz

1 and σz
N only):

the bulk reference state | 0 〉 = | ↑↑ . . . ↑ 〉 can still be used to construct
the eigenstates as Bethe states in the ABA framework [Sklyanin 88]

| {λ} 〉 =
n∏

k=1

B(λk)| 0 〉 ∈ H, 〈 {λ} | = 〈 0 |
n∏

k=1

C(λk) ∈ H∗

∃ generalization of Slavnov’s determinant representation for the scalar
products of Bethe states 〈{µ}off-shell|{λ}on-shell〉 [Tsuchiya 98; Wang 02]

but a simple generalization of the quantum inverse problem to the
boundary case (i.e. expressions of σαn in terms of elements of the
boundary monodromy matrix) is missing (except at site 1)

 no simple closed formula for the form factors 〈 {µ} |σαm | {λ} 〉

correlation functions in the ABA framework ? [Kitanine et al. 07]

� decompose boundary Bethe states into bulk Bethe states
� use the bulk inverse problem to compute the action of local operators
� reconstruct the result in terms of boundary Bethe states
 multiple sums over scalar products
 multiple integrals in the half-infinite chain limit (recovering the

results of [Jimbo et al. 95] from q-vertex operators)



Questions

more explicit representations for correlation functions at T = 0 ?

 magnetization at distance m from the boundary (explicit dependance
on m) ?

temperature case ? (with K. Kozlowski)

case of non-longitudinal boundary fields (non-diagonal K matrices) ?
(with G. Niccoli)

XYZ case ? (in progress with G. Niccoli)



The temperature case ? [Kozlowski, V.T. 23]

Consider the XXZ chain with longitudinal boundary fields in a uniform external
magnetic field h:

Hh = H − h

2

L∑
k=1

σz
k

with

H =
L−1∑
m=1

{
σx
mσ

x
m+1 + σy

mσ
y
m+1 + ∆σz

mσ
z
m+1

}
+ hz
−σ

z
1 + hz

+σ
z
L

∆ = cos ζ hz
± = sinh(−iζ) coth ξ±

Given r local operators O(1)
m1+1, . . . ,O

(r)
mr +1 acting on sites m1 + 1, . . . ,mr + 1,

we want to compute the thermal average

EL;T

[
O(1)

m1+1 . . .O
(r)
mr +1

]
=

tr1,...,L

[
O(1)

m1+1 . . .O
(r)
mr +1 e

− Hh
T

]
tr1,...,L

[
e−

Hh
T

]
and its thermodynamic limit:

〈O(1)
m1+1 . . .O

(r)
mr +1〉T = lim

L→+∞
EL;T

[
O(1)

m1+1 . . .O
(r)
mr +1

]
→ use of the Quantum Transfer Matrix approach (cf Wuppertal group works...)



The QTM approach for the open spin chain

Adaptation of the method to the open case to compute the surface free energy
of the XXZ chain

Göhmann, Bortz and Frahm (2005) : expression of the surface free energy
for the XXZ chain in the thermodynamic limit as a Trotter limit of the
expectation value, in the dominant eigenstate of the quantum transfer
matrix, of a certain (non-local) ‘finite temperature boundary operator’

Kozlowski, Pozsgay (2012) : interpret the above mean value as a product
of two specific cases of partition functions of the six-vertex model with
reflecting ends

→ expression in terms of Tsuchiya’s determinant representation

→ possibility to take the Trotter limit in the formula

→ simple integral representation for the boundary magnetization

→ possibility to study the low-T limit

Pozsgay, Rakos (2018) : generalisation to arbitrary boundary conditions
(h = 0)

Correlation functions ?



A Trotter approximant for multi-point functions

Using(
t(− β

N
) · t−1(0)

)N

= e−
H
T · (1 + O(N−1))

with

β =
sinh(−iζ)

T
, ∆ = cos ζ

we have

EL;T

[
O(1)

m1+1 . . .O
(r)
mr +1

]
= lim

N→+∞

tr1,...,L

[
O(1)

m1+1 . . .O
(r)
mr +1 · t

N(− β
N

) · t−N(0) ·
∏L

n=1 e
h

2T
σz
n

]
tr1,...,L

[
tN(− β

N
) · t−N(0) ·

∏L
n=1 e

h
2T
σz
n

]



Noticing that

t(λ) = tra,b
[
Pa,b(λ)T tb

b (λ) T̂a(λ)
]

where Pa,b is a one-dimensional projector:

Pa,b(λ) = K+
a (λ)P ta

ab K
−
a (λ)

= K+
a (λ)

(
|+ 〉a|+ 〉b + | − 〉a| − 〉b

)(
〈+ |a〈+ |b + 〈− |a〈− |b

)
K−a (λ),

Göhmann, Bortz and Frahm have rewritten tN(− β
N

) in terms of the quantum
monodromy matrix Tq;j(λ) with ‘quantum space’ q ≡ a1, . . . , a2N and ‘auxiliary
space’ j :

tN(− β
N

)
L∏

n=1

e
h

2T
σz
n = trq

[
Πq(− β

N
)Tq;1(0) . . .Tq;L(0)

]
, q ≡ a1 . . . a2N ,

with

Πq(ς) = Pa1a2 (ς)Pa3a4 (ς) . . .Pa2N−1a2N (ς)

Tq;j(λ) = R
ta2N
a2N j (− β

N
− λ)Rja2N−1 (λ− β

N
) . . .R

ta2
a2j

(− β
N
− λ)Rja1 (λ− β

N
) e

h
2T
σz
j

=

(
Aq(λ) Bq(λ)
Cq(λ) Dq(λ)

)
[j]



Finite-size multi-point function:

EL;T

[
O(1)

m1+1 . . .O
(r)
mr +1

]
= lim

N→∞
tr1,...,L trq

{
Πq(− β

N
)Tq;1(0) . . .Tq;L(0) O(1)

m1+1 . . .O
(r)
mr +1

}
/ZN,L

= lim
N→∞

trq
{

Πq(− β
N

) · [tq(0)]m1 · tr[Tq(0)O(1)] · [tq(0)]m2−m1−1

× tr[Tq(0)O(2)] · [tq(0)]m3−m2−1 . . . tr[Tq(0)O(r)] [tq(0)]L−mr−1
}
/ZN,L

where

ZN,L = tr1,...,L trq
{

Πq(− β
N

)Tq;1(0) . . .Tq;L(0)
}

= trq
{

Πq(− β
N

) · [tq(0)]L
}

Remark. tq = trTq is the same QTM as in the periodic case → use the results
from the study of the periodic case (from the Wuppertal’s group works)



Assuming

that one can exchange the Trotter limit N → +∞ and thermodynamic
limit L→ +∞,

that the QTM admits a non-degenerate, real and positive maximal
eigenvalue Λ̂0 with corresponding eigenstate |Ψ0 〉

one obtains

〈O(1)
m1+1 . . .O

(r)
mr +1〉T

= lim
N→+∞

〈Ψ0 |Πq(− β
N

) · [tq(0)]m1 · Ξ(1) · [tq(0)]m2−m1−1 · Ξ(2) . . .Ξ(r)|Ψ0 〉
〈Ψ0 |Πq(− β

N
) |Ψ0 〉 · Λ̂mr +1

0

in which

Ξ(i) = tr[Tq(0)O(i)]



Thermal form factor expansion at finite Trotter number

Supposing that the quantum transfer matrix tq(0) is diagonalizable with
eigenvectors |Ψn 〉 and associated eigenvalues Λ̂n:

〈O(1)
m1+1 . . .O

(r)
mr +1〉T = lim

N→+∞

∑
k1,...,kr

Λ̂m1
k1

∏r
i=2 Λ̂

mi−mi−1−1

ki

Λ̂mr +1
0

×
〈Ψ0 |Πq(− β

N
) |Ψk1 〉

〈Ψ0 |Πq(− β
N

)|Ψ0 〉︸ ︷︷ ︸
Boundary factor

·
r∏

i=1

〈Ψki |Ξ
(i) |Ψki+1 〉

〈Ψki |Ψki 〉︸ ︷︷ ︸
QTM form factors

the QTM eigenstates for finite N can be constructed by Bethe ansatz and
are described by solutions of Bethe equations

the above sum runs over the same normalised QTM matrix elements as in
the bulk case (given as ratios of Slavnov/Gaudin determinants)

→ we can directly use the study of [Dugave, Göhmann, Kozlowski 12]
and further works...

the whole dependence on the boundary is contained in the boundary
factor, which can be reformulated, following [ Kozlowski, Pozsgay 12] as
a ratio of partition functions of the six-vertex model with reflecting ends
(→ ratio of Tsuchiya’s determinants)



The boundary factor
Let |Ψ0 〉 ≡ |Ψ({λj}N1 ) 〉 and |Ψk1 〉 ≡ |Ψ({µj}M1 ) 〉
Then, following [ Kozlowski, Pozsgay 12] :

〈Ψ0 |Πq(− β
N

) |Ψk1 〉 = δN,M F (+)({λj}N1 ) · F (−)({µj}N1 )

in which

F (−)({µj}N1 ) = e−
Nh
2T ZN({− β

N
}N1 ; {µj}N1 ; ξ−)

where ZN({ξa}N1 ; {µj}N1 ; ξ−) is the partition function of the six-vertex model
with reflecting ends (given by a Tsuchiya determinant):

ZN

(
{ξa}N1 ; {µa}N1 ; ξ−

)
=

N∏
a,b=1

∏
ε=±

{
sinh(ξa + εµb) sinh(ξa − iζ + εµb)

}
N∏

a<b

{
sinh(ξa − ξb) sinh(ξa + ξb − iζ)

∏
ε=±

sinh(µb + εµa)
}

× detN

[
sinh(−iζ) sinh(ξ− + µb) sinh(2ξa)∏
ε=± sinh(ξa − iζ + εµb) sinh(ξa + εµb)

]

so that
〈Ψ0 |Πq(− β

N
) |Ψk1 〉

〈Ψ0 |Πq(− β
N

)|Ψ0 〉
= δN,M

F (−)({µj}N1 )

F (−)({λj}N1 )

Remark: depends only on ξ− (and not on ξ+)



Taking the Trotter limit

Can be done as usual:

for a given solution {µa}M1 of the Bethe equations, introduce the counting
function

â(ξ|{µa}M1 ) = e−
h
T (−1)s

M∏
k=1

sinh(iζ − ξ + µk)

sinh(iζ + ξ − µk)

[
sinh(ξ − β

N
) sinh(iζ + ξ + β

N
)

sinh(ξ + β
N

) sinh(iζ − ξ + β
N

)

]N
with s = N −M, such that â(µj |{µa}M1 ) = −1, j = 1, . . . ,M.

fix a domain D with C = ∂D
which contains a neighbourhood of the origin (  ± β

N
∈ D)

which contains all the Bethe roots {λa}N1 of the dominant state but
no other roots of 1 + â(ξ|{λa}N1 )

characterize a sub-dominant eigenstate by

the set Ŷ = {ŷj} of particule roots (Bethe roots outsite of D),
and the set X̂ = {x̂j} of holes (solutions of â(ξ|{µa}M1 ) = −1 which
are not Bethe roots) inside D

 shortcut notation âY for the counting function of a state with a given
configuration Y = (X̂ , Ŷ) of particles and holes



rewrite the QTM spectrum in terms of non-linear integral equations

[Klümper 92; Destri, de Vega. 92] satisfied by âY(ξ) = eÂY(ξ):

ÂY(ξ) = − h

T
+ wN(ξ)− iπs + i

∑
y∈Ŷ

θ(ξ − y) +

∮
C
K(ξ − u)Ln

[
1 + eÂY

]
(u)du

with

wN(ξ) = N ln

(
sinh(ξ − β

N
) sinh(ξ + β

N
− iζ)

sinh(ξ + β
N

) sinh(ξ − β
N
− iζ)

)
θ(λ) = i ln

sinh(iζ + λ)

sinh(iζ − λ)
K(λ) =

θ′(λ)

2π

rewrite the QTM form factors and boundary factors in terms of particles,
holes, and appropriate contour integrals over C involving the counting
function âY(ξ)

assuming that ÂY −→
N→+∞

AY pointwise on C, and the existence of the limit

xj and yj of the particle and hole roots x̂j and ŷj (see [Göhmann,
Goomanee, Kozlowski, Suzuki 20] ), one obtains an integral equation for
AY, and one can express the Trotter limit of the TQM form factors and
boundary factors in terms of AY and {xj} and {yj}



Result for the one-point function

〈σz
m+1〉T = lim

N→∞

[
2T∂h′DmQN(h′,m)

]
h′=h

with

Dm = um+1 − um

QN(h′,m) =
∑

{µa(h′)}N1

e
N(h′−h)

2T

(
τh′(0|{µa(h′)}N1 )

τh(0|{λa(h)}N1 )

)m

×F
(−)({µa(h′)}N1 )

F (−)({λa(h)}N1 )
· 〈Ψ({µa(h′)}N1 )|Ψ({λa(h)}N1 )〉
〈Ψ({µa(h′)}N1 )|Ψ({µa(h′)}N1 )〉

leads to the thermal form-factor expansion:

〈σz
m+1〉T = 2T∂h′DmQ(h′,m)

∣∣
h′=h

with Q(h′,m) =
∑

particle/hole
configurations Y

(
τY(0)

τ∅(0)

)m
A(z)

h,h′(Y)

and A(z)
h,h′(Y) can be decomposed into

a regular part (quite complicated, should have finite limit when T → 0+)

a singular part (should give power law behaviour when T → 0+)

To do: study the low temperature limit



The non-diagonal case at T=0?
Description of the spectrum:

It is possible to generalize usual Bethe ansatz equations to the open XXZ
chain with non-longitudinal boundary fields with one constraint on the
boundary parameters ϕ±, ψ±, τ± [Nepomechie 03] :

cosh(τ+ − τ−)

= εϕ+εϕ− cosh(εϕ+ϕ+ + εϕ−ϕ− + εϕ+ψ+ − εϕ−ψ− + (L− 2M − 1)η)

with M ∈ N (numbers of Bethe roots), εϕ± ∈ {+,−}
 incomplete in general (except for M = L)

 Conjectures [Nepomechie, Ravanini 03] :

� the Bethe equations yield the ground state for M = bL/2c
� the solutions for (M, εϕ+ , εϕ−) together with the solutions for

(M ′ = L−M − 1,−εϕ+ ,−εϕ−) produce the complete spectrum

Similar kind of constraint also appear in the XYZ case [Yang, Zhang 06]

most general boundaries ?

∃ description in terms of inhomogeneity parameters/discrete T-Q
equations (for inhomogeneous models) but no known description in terms
of usual Bethe equations

Alternative proposals: Bethe equations with an additional term
(Off-diagonal Bethe Ansatz. . . ) [Cao et al 13. . . ] or use transfer matrix
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The non-diagonal case at T=0?
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with M ∈ N (numbers of Bethe roots), εϕ± ∈ {+,−}
 incomplete in general (except for M = L)

 Conjectures [Nepomechie, Ravanini 03] :

� the Bethe equations yield the ground state for M = bL/2c
� the solutions for (M, εϕ+ , εϕ−) together with the solutions for
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boundary parameters ϕ±, ψ±, τ± [Nepomechie 03]

Similar kind of constraint also appear in the XYZ case [Yang, Zhang 06]

most general boundaries ?

∃ description in terms of inhomogeneity parameters/discrete T-Q
equations (for inhomogeneous models) but no known description in terms
of usual Bethe equations

Alternative proposals: Bethe equations with an additional term
(Off-diagonal Bethe Ansatz. . . ) [Cao et al 13. . . ] or use transfer matrix
roots [Qiao et al 21. . . ]



The non-diagonal case at T=0?

Construction of the transfer matrix eigenstates ?

Under the constraint, construction of some Bethe states by means of a
Vertex-IRF transformation [Fan et al. 96; Cao et al 03; Yang, Zhang 07;

Filali, Kitanine 11] but problems in the ABA construction of ”compatible”
sets of Bethe states in H and H∗

 scalar products and correlation functions could not be computed

Alternative methods of construction for general boundaries:

� Modified Bethe Ansatz [Belliard et al 13. . . ]

� Separation of Variables [Frahm et al 10, Niccoli 12, Faldella et al 13. . . ]

In particular : connexion to generalized Bethe Ansatz (states and
T-Q/Bethe equations) under the constraint
+ computation of the scalar products



Solution by SoV in the general case
Goal: identify a basis {| h 〉}h∈{0,1}L of H and {〈 h |}h∈{0,1}L of H∗, with

〈 h | k 〉 ∝ δh,k

Vh(ξ)

which ”separates the variables” for the transfer matrix spectral problem:

t(λ) |Ψτ 〉 = τ(λ) |Ψτ 〉 with |Ψτ 〉 =
∑

h∈{0,1}L
ψτ (h) | h 〉,

is solved by ψτ (h) =
L∏

n=1

Qτ (ξ
(hn)
n ) · Vh(ξ)

where Qτ and τ are solution of a discrete version of Baxter’s T-Q equation:

τ(x)Qτ (x) = A(x)Q(x + η) + A(−x)Qτ (x − η), x ∈ ∪L
n=1{ξ

(0)
n , ξ

(1)
n }

→ can be constructed by a generalisation of Sklyanin’s method [Sklyanin
85,90] , see [Niccoli 12...] , using Baxter’s vertex-IRF transformation (or
by some new more general approach [Maillet, Niccoli 19] )

→ works only on an inhomogeneous deformation of the model:

T (λ) −→ T (λ; ξ1, . . . , ξL)

such that the shifted inhomogeneity parameters ξ
(hn)
n = ξn + η/2− hnη,

1 ≤ n ≤ L, hn ∈ {0, 1}, are all pairwise distincts

→ completeness/works for any K -matrices (not both proportional to identity)



Solution by Sklyanin’s SoV approach: more details

1 simplify the expression of t(λ) = tr{K+(λ)U(λ)} : use (a trigonometric
version of) Baxter’s Vertex-IRF transformation to pseudo-diagonalize K+

R12(λ−µ)S1(λ|α, β)S2(µ|α, β+σz
1) = S2(µ|α, β) S1(λ|α, β+σz

2)RSOS
12 (λ−µ|β)

with

S(λ|α, β) =



(
eλ−η(β+α) eλ+η(β−α)

1 1

)
(XXZ case)(

ϑ2(λ− (α + β)η) ϑ2(λ− (α− β)η)

ϑ3(λ− (α + β)η) ϑ3(λ− (α− β)η)

)
(XYZ case) ϑi (λ) = θi (λ|2ω)

 gauged transformed boundary monodromy matrix:

U(λ|α, β) = S−1(η/2− λ|α, β)U(λ) S(λ− η/2|α, β)

=

(
A(λ|α, β) B(λ|α, β)
C(λ|α, β) D(λ|α, β)

) {
β : dynamical parameter

α : arbitrary shift

 fix α, β in terms of the ‘+’-boundary parameters (τ+, ϕ+, ψ+ or α+
` ,

` = 1, 2, 3) (up to some signs/periodicity) such that

t(λ) = ā+(λ)A(λ|α, β − 1) + d̄+(λ)D(λ|α, β + 1)



2 construct a SoV basis which pseudo-diagonalises B(λ|α, β):

| h 〉 ≡ | h, α, β + 1 〉Sk and 〈 h | ≡ Sk〈α, β − 1, h |,

for h ≡ (h1, . . . , hL) ∈ {0, 1}L, such that

B(λ|α, β − 1) | h, α, β − 1 〉Sk = bR(λ|α, β) ah(λ) ah(−λ) | h, α, β + 1 〉Sk,
Sk〈α, β + 1, h | B(λ|α, β + 1) = bL(λ|α, β) ah(λ) ah(−λ) Sk〈α, β − 1, h |,

where ah(λ) =
L∏

n=1

φ(λ− ξ(hn)
n ) φ(λ) =

{
sinh(λ) (XXZ case)

θ1(λ) (XYZ case)

with ξ
(hn)
n = ξn + η/2− hnη,

+ orthogonality condition:

Sk〈α, β − 1, h | k,α, β + 1 〉Sk ∝
δh,k

Vh(ξ)

with Vh(ξ) = V (ξ
(h1)
1 , . . . , ξ

(hL)
L ) =

∏
1≤i,j≤L

φ(ξ
(hi )
i − ξ(hj )

j )φ(ξ
(hi )
i + ξ

(hj )

j )

Remark: This construction needs [K−(λ|α, β)]12 6= 0



Spectrum and eigenstates by SoV

Eigenstates are special cases of separate states:

t(λ) |Ψτ 〉 = τ(λ) |Ψτ 〉 with |Ψτ 〉 =
∑

h∈{0,1}L

L∏
n=1

Qτ (ξ(hn)
n )Vh(ξ) | h 〉,

where Qτ and τ are solution of a discrete T-Q equation:

τ(x)Qτ (x) = A(x)Q(x + η) + A(−x)Qτ (x − η), x ∈ ∪L
n=1{ξ

(0)
n , ξ

(1)
n }

can always be rewritten in terms of solutions of the form

Q(λ) =
L∏

j=1

φ(λ− λj)φ(λ+ λj) φ(λ) =

{
sinh(λ) (XXZ case)

θ1(λ) (XYZ case)

of a continuous T-Q equation with additional term (cf. off-diagonal BA):

τ(λ)Q(λ) = A(λ)Q(λ− η) + A(−λ)Q(λ+ η) + F(λ),

with F(ξ
(0)
n ) = F(ξ

(1)
n ) = 0, n = 1, . . . ,N (→ completeness)

under the constraint (for a given M ≤ L & given signs), part of the
spectrum/eigenstates can be rewritten in terms of solutions

Q(λ) =
M∏
j=1

φ(λ− λj)φ(λ+ λj) φ(λ) =

{
sinh(λ) (XXZ case)

θ1(λ) (XYZ case)

of the usual (i.e. continuous, without additional term) T-Q equation

 in terms of usual Bethe equations



Computation of scalar products

Eigenstates are special cases of separate states :

〈P | =
∑

h

L∏
n=1

[f (ξn)hnP(ξ(hn)
n )]V1−h(ξ)〈 h |, |Q 〉 =

∑
h

L∏
n=1

Q(ξ(hn)
n )Vh(ξ)| h 〉

where P and Q are arbitrary functions

The scalar products of separate states can be expressed (by construction)
as determinants:

〈h | k〉 ∝ δh,k

Vh(ξ)
with

Vh(ξ) =
∏

1≤i,j≤L

φ(ξ
(hi )
i − ξ(hj )

j )φ(ξ
(hi )
i + ξ

(hj )

j ) = detL
[
φ̃(j)(ξ

(hi )
i )

]
 〈P |Q 〉 ∝ det1≤i,j≤L

[ ∑
h∈{0,1}

f (ξ
(hi )
i )P(ξ

(hi )
i )Q(ξ

(hi )
i ) sinh2(j−1)(ξ

(1−hi )
i )

]
However non directly usable for the consideration of the
homogeneous/thermodynamic limit...

For P and Q of the form
∏M

j=1 φ(λ− λj)φ(λ+ λj), and under the
constraint, these determinants can be transformed into more usual
Slavnov-type determinants both in the open XXZ [Kitanine, Maillet,

Niccoli, VT 18] or open XYZ case [Niccoli, VT 24]



Eigenstates as generalised Bethe states

In the range of Sklyanin’s approach, separate states can be reformulated
as generalised Bethe states:

|Q 〉Sk ∝
∏

j=1→M

B(λj |α, β − 2j + 1) |Ωα,β+1−2M 〉Sk

Sk〈Q | ∝ Sk〈Ωα,β−1+2M |
∏

j=1→M

B(λj |α, β + 2M − 2j + 1)

for any Q(λ) =
M∏
j=1

φ(λ− λj)φ(λ+ λj)

with |Ωα,β+1−2M 〉Sk and Sk〈Ωα,β−1+2M | special separate states

With the special choice of α, β diagonalising K+, and under the
constraint, the reference state |Ωα,β+1−2M 〉 can be identified with the
reference state of the generalized ABA construction of [Fan et al 96; Cao et

al 03] :

| η, α + β + L− 1− 2M 〉 ≡
L∏

n=1

Sn(−ξn|α, β + n − 1− 2M) | 0 〉

up to a proportionality coefficient which only depends on M



Computation of correlation functions: general strategy

Compute 〈O1→m〉 ≡
〈Q |O1→m|Q 〉
〈Q |Q〉 for |Q 〉 = eigenstate described by

homogeneous TQ-equation and O1→m ∈ End(⊗m
n=1Hn) acts on sites 1 to m?

1 rewrite |Q 〉 as a generalized Bethe state∏
j=1→M

B(λj |α, β − 2j + 1) | η, α + β + L− 1− 2M 〉

2 use a similar strategy as in the diagonal case [Kitanine et al. 07] to act
with O1→m on this Bethe state, i.e.

� decompose the boundary Bethe state as a sum of bulk Bethe states
� use the solution of the bulk inverse problem to act with local

operators on bulk Bethe states
� reconstruct the result of this action as sums over boundary Bethe

states, and hence as a sum over separate states

3 compute the resulting scalar products using the determinant
representation for the scalar products of separate states issued from SOV

but difficulties due to the use in all the steps of 2 of a gauged transformed
boundary/bulk YB algebra !



Difficulties due to use of the gauged algebra

the action of the usual basis of local operators given by E i,j
n ∈ End(Hn)

(such that (E i,j)k,` = δi,k δj,`) is very intricate on the gauged bulk Bethe
states

 identification of a basis of End(⊗m
n=1Hn) whose action is simpler to

compute:

Em(α, β) =

{
m∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) | ε, ε′ ∈ {1, 2}m

}
,

where E
ε′n,εn
n (λ|(an, bn), (ān, b̄n))) = Sn(−λ|ān, b̄n)E

ε′n,εn
n S−1

n (−λ|an, bn)
and the gauge parameters an, ān, bn, b̄n, 1 ≤ n ≤ m, are fixed in terms of
α, β and of the m-tuples ε ≡ (ε1, . . . , εm) and ε′ ≡ (ε′1, . . . , ε

′
m) as

an = α + 1, bn = β −
n∑

r=1

(−1)εr ,

ān = α− 1, b̄n = β +
m∑

r=n+1

(−1)ε
′
r −

m∑
r=1

(−1)εr = bn + 2m̃n+1,

with m̃n =
∑m

r=n(ε′r − εr ).

 compute ”elementary building blocks” 〈
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n))〉



the action of
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n)) for

m∑
r=1

(ε′r − εr ) 6= 0

on the Bethe state∏
j=1→M

B(λj |α, β − 2j + 1) | η, α + β + N − 1− 2M 〉

produces a Bethe state with different number of B-operators and shifted
gauge parameter β

 we don’t know how to express it simply in terms of separate states

 the expression of the resulting scalar product is not known in that case

 we had to restrict our study to the computation of ”elementary

blocks” 〈
∏m

n=1 E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n))〉 for which

m∑
r=1

(ε′r − εr ) = 0



Hypothesis on the ground state

Based on Nepomechie-Ravanini’s conjecture, we suppose that we are in a
configuration of boundary fields such that the homogeneous TQ-equation yields
the ground state close to half-filling

 the constraint can be maintained when taking the limit L→∞
 the Bethe equations are very similar to the diagonal case:

a(−λj) d(λj)

a(λj) d(−λj)

∏
σ=±

i∈{1,2}

sinh(λj + λ̌
(0)
σ,i )

sinh(λj − λ̌(0)
σ,i )

M∏
k=1
k 6=j

∏
σ=±

sinh(λj − σλk + η)

sinh(λj − σλk − η)
= 1, j = 1, . . . ,M

except for the boundary factor → 4 boundary parameters instead of 2:

λ̌
(0)
σ,1 = η/2− εϕσϕσ, λ̌

(0)
σ,2 = η/2− σεϕσψσ + i π

2
, σ = ±

 G.S. described when L→∞ by the same density ρ(λ) of ”real” Bethe
roots over the same Fermi zone [−Λ,Λ] as in the diagonal case
+ possibly isolated ”complex” roots (boundary roots) of the form

λ̌σ,i = λ̌
(0)
σ,i + εσ,i , σ = ±, i ∈ {1, 2}, εσ,i = O(L−∞)

→ 4 possible boundary roots instead of 2



”Elementary building blocks” in the ground state

As in the diagonal case, the result is given as a multiple sum over scalar
products, which turn in the half-infinite chain limit into multiple integrals over
the Fermi zone [−Λ,Λ] on which the Bethe roots condensate with density ρ(λ)
+ possible contribution of the two (instead of one in the diagonal case)
boundary roots λ̌−,i , i = 1, 2 corresponding to the 2 boundary parameters at
site 1

〈
m∏

n=1

E
ε′n,εn
n (ξn|(an, bn), (ān, b̄n))〉 =

m∏
n=1

eη

sinh(ηbn)

(−1)s∏
j<i

sinh(ξi − ξj)
∏
i≤j

sinh(ξi + ξj)

×
∫
C

s∏
j=1

dλj

∫
Cξ

m∏
j=s+1

dλj Hm({λj}Mj=1; {ξk}mk=1)︸ ︷︷ ︸
similar to the diagonal case

except that it has poles

in both parameters λ̌
(0)
−,i , i = 1, 2

det1≤j,k≤m

[
Φ(λj , ξk)

]︸ ︷︷ ︸
determinant of densities

,

The contours C and Cξ are defined as

C = [−Λ,Λ] ∪ ΓBR , Cξ = C ∪ Γ({ξ(1)
k }

m
k=1)

where ΓBR surrounds with index 1 the point(s) λ̌
(0)
−,i iff the set of Bethe roots

for the GS contains the boundary root(s) λ̌−,i ,

and Γ({ξ(1)
k }

m
k=1) the points ξ

(1)
1 , . . . , ξ

(1)
m , all other poles being outside.



Conclusion, perspectives and open problems

1 thermal form factor expansion of finite-temperature correlation functions

to be done : the low temperature limit (difficulties : complicated
representation of (part of) the boundary factor, can it be simplified ?)
 explicit dependence on m of the magnetization at distance m from
the boundary at T = 0 ?

2 multiple integral representation for some matrix elements of the open XXZ
chain with non-longitudinal boundary fields (case with a constraint)

compute more general matrix elements with
m∑
r=1

(ε′r − εr ) 6= 0 ?

→ the action modifies the number of B-operators in the Bethe states
and shifts the dynamical parameter β
→ no simple known expression of the resulting state in terms of separate
states
→ no known formula for the resulting scalar product

case without constraint ?


