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Poisson manifold

Let (M, w) be a symplectic manifold. Think of it as the phase
space of a Hamiltonian system.

We assume that for each point x € M we have a x-algebra A, and
this construction varies smoothly over M. It is a vector bundle
over a symplectic manifold (M, w)
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Multiplication and center

The space of smooth sections A = I'(M, E) has a natural
pointwise multiplication

(5152)2 = (51)a(52)-

The center of A is Z(A) = C(M) -1, the subalgebra of sections of
the form

s(z) = f(z) 1z, flz) € C(M).
We will identify Z(A) with C'(M), the space of smooth functions
on M.

In the case of Calogero-Moser system, zero order Hamiltonians
belong to the center H,EO) = H,ECM) € Z(A).
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There is a natural Poisson structure on this center

{z1,22} = w_l(dzl Ndze), z1,22 € Z(A).
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We also can extend this brackets to the action on whole algebra A
{2,8} =w ™ (dz Adys), z€ Z(A), s A.

where d,, is the de Rham differential twisted by a with local
trivialization
dos = ds + [a, s].

Here d2 = 0 because the connection is flat. In local coordinates

{2,5} = (W H¥0;20;5 + (W 1)98;2]a, 5.
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Connection « is flat

Flatness of connection « ensures that the algebra A has a natural
Poisson module structure over Z(A), which means

{z,s152} = s1{z, 52} + {2, 51} 52,

{Zlv {227 8}} = {{Zh ZQ}a 5} + {227 {Zla S}}
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Azumaya Poisson Algebra

The center of this algebra is the ring of algebraic functions on M.
The algebra A is finite-dimensional over its center. We add a
Poisson structure on Z(A) C A, which acts on A by derivation, so

it is natural to use the term Poisson Azumaya algebras for such
structures.
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Derivation

Definition

A derivation of a Poisson Azumaya algebra is a derivation

D: A — A of the associative algebra A, i.e. a linear map A — A
such that D(ab) = D(a)b+ aD(b) for a,b € A which is also a
derivation of the Poisson structure, i.e.

D({z,a}) = {D(2),a} + {2, D(a)}

forany z € Z(A) and a € A.
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Hybrid derivation
D is a hybrid derivation if

D(a) = {HY 0} +i[HY  q]

for some HY) € Z(A) and H € A.

The time evolution

Given a derivation D of a Poisson Azumaya algebra A, we define
the time evolution

aat

E = D(CLt), with apg = a € A.

This is a hybrid version of the Heisenberg evolution.

A\
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A hybrid integrable multi-time evolution

of s € A with the classical integrable background dynamics
generated by I, ..., I, (such that {Iy, I} = 0) and with quantum
Hamiltonians My, ..., M, € A is the solution to the system of
differential equations

ds .

22t = (I, s¢} + i[ Mg, st],

oty
with the initial condition sg = s. The quantum Hamiltonians
should satisfy the compatibility condition

{Ik, Ml} aF {Mk,fl} + i[Mk, Ml] =0.
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Matrix quantum mechanics

Problem

The goal of this section is to describe semiclassical solutions to the
non-stationary matrix valued Schodinger equation when quantum
Hamiltonian is semiclassically proportional to the identity matrix.
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Hamiltonian
Assume that as 7 — 0 the Hamiltonian of the system has the
following structure

~ 0 0
H = Hy(—ih=—,q)I + hM (—ihi— O(h?).

0( 1 8q7q) + ( ? 8q7q)+ ( )
where Hj is a symmetric scalar valued differential operator, I is
the identity matrix in C and M is a matrix valued symmetric
differential operator.
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Non-stationary Schodinger equation
We want to describe semiclassical solutions to the Schrodinger
equation

i (tq) = Ho(t, ),

with initial conditions

¥(0,q) = eil/Dg(g).
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As h — 0, the solution has the following asymptotic

15 (q,t)

Y(g,t) =e n D(q,t)¥(qo(q,1),1),

where S(g,t) is the Hamilton-Jacobi action

Slo] = /0 @(P)d(r) — H(p(r), o(r)))dr + F(a(0)).

Function go(q,t) is the solution of equation g = ¢(t,qp), and
Bgo(q,t
D(q,1) = | Pa0

2
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Linear ODE

And ¥(q,t) would be the solution of the vector valued ODE

i%\l’(%t) =M <6SéZ’t)7Q) (g, ).

with the initial condition

¥(q,0) = »(q)-
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Multitime matrix quantum mechanics

Now assume that we have n commuting
[Hy, H)] =0,, kil=1,...,n,

matrix valued differential operators on n-dimesional manifold @) of
the form

H,. — H + AM;.(—ih—.,q) + O =1,...,n.
k k‘( Zhaq?Q)I h‘ k( Zhaqﬂq) (h )7 k bl bl
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Multi-time evolution
The multi-time evolution % — 1 is a solution to the system of

equations

-in%0 _ Bye), wo) =,
k

where t = (t1,...,t,).
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Linear ODEs

Similarly to the one time evolution we have the
0V (t,q0) a5
———— = M =—(q(t),t) ) U(t
i (5 (a(t).)) (e a0)

Zero curvative equation

as consictency condition

[0k — My, i0; — M;] = 0.




Multitime quantum mechanics
[e]e]e] ]

Fixed point

Integrability
If there is a classical configuration and trajectory such that all the
coordinates stay umovement in all the times

[8k7 Ml] = 07

then the zero curvative equation implies existence of family of
commuting operators

[My., M;] = 0.
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Qunatum spin trigonometrical Calogero-Moser-Sutherland

model

The Hamiltonian of this model is

=33 it Y
82 L2 1:31n27rqZ
%#J

Here we use coordinates ¢; € R/ZL ~ S', L € Ry .
And P;; are permutation operators for two m-dimentional vectors
spaces each.
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Higher Hamiltonians

Introduce new variables z; = exp (27”%) Then a few fisrt

Hamiltonians have the form
. n
Hl = Zﬁ’n
Zi%i
ISR Y e,

J#%

X 2% 1—|—hP)
-a-y e lti,

=1 1#£j

B E Z zizjzg Pjgp Pyj
3 e (zi — %) (25 — z1) (26 — 2:)

where p; = hzi£.
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Quantum integrable system

is formed by the Hamiltonians f[k such that

[ﬁlﬁj} -0, 4,j=1,....,n
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Semiclassical expantion

All the Hamiltonians in the classical limit & — 0 have the form
B, = O + B + 0n?).

Here fI,EO) = HkCM(p, z) are Hamiltonians of "spinless” CM
system.
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Zero part

of the Hamiltonians have the form

th H2 - Z p? — = Z ZZZJ

J#z
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In the classical limit

commutator becomes Poisson brackets

which implies qunatum integrable system generates classical
integrable system in the first order of expanssion in A

[ﬁ,@, ﬁfl(o)} =0 = {HM HM} =0y

Multi-time evolution
is generated by CM Hamiltonians:

=y , — —z
Oty ! 0%; Oty ‘ Op;

op; __OHSM 9z  9HEM
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Dynamical Haldane-Shastry model

In the second order of expantion & — 0 we obtain
{HM, M} + { My, HEM } + i [My,, My] = 0,

or in the form of zero curvation equation

0 0
877% +Mk(z7pap>587tl +Ml(27p7P) =0.
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Very precise example

0z opi 225(2; + 2;)
at2 _p’Lz’L’ 6t2 — Z

0zi o '_Z 722 opi _Z Tl zj)(

o = DiZi : =
8t3 ' P (Zi - Zj)2 atg

1 573
My=—2) — Py,

2 ’L;ﬁ] (zz - ZJ)Q
22§ D; 1 zizj 2k P Pyj
My = — P+ =
’ Z (2 — 25)? Cl 3 Z (2 — 2) (%5 — 2k) (2 — 23)

\,
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Then one can directly calculate

OMs(z,p, P)  OMs(z,p, P
[Ms(z,p, P), M3(z,p, P)] = 3(z,p, ) OMs(z,p ).
atg atg
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Low dimentional tori

The statement

The generic orbits of the multi-time Calogero-Moser dynamics are
n-dimentional tori, but it also admits k-dimetional tori for any
k=1,...,n— 1 for special initial conditions.
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The fixed point

The point z* = (p*, z*)

N . 2
P = 0, 2 = exp Wk 0

is the fixed point of the multitime CM evolution, i.e.

dHSM (z*) =0

.

Characteristic equation

The Calogero-Moser coordinates on this trajectory are the roots of
equation

Nr1=0

\
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Haldane-Shastry model

As a corollary we have the commutativity of corresponding
M-operators

[My (2, p*), My(2*,p")] = 0.

Where the operator M> is the Hamiltonian of the of
Haldane-Shastry model

1 1By
My=-2% —~Y |
2 8; sin?(m 1)

and Mj is symmetry of it

1 Pintsj
MS:Z Z sin(m=4)sin (7= k)sm( L)
1#j#k n n
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1-dimentional tori

Characteristic equation

There are N — 1 trajectories of 1-dimensional torus type.
The Calogero-Moser coordinates on these trajectories are the roots
of equations

zN+u(,8zN‘k+B‘1zk> +1=0,
where
k=1,....N—1, 0O<u<]l, 18] =1,

and
N

B(t) = exp (zZvltZ)

=1




Thank you for your attention!
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