F-basis, Bethe Ansatz, and Quantum Circuits

 $[ary:2409.xyxx]$ Roberto Ruiz¹ in collaboration with Esperanza López¹, Balázs Pozsgay², Germán Sierra¹, and Alejandro Sopena¹

> 1 Instituto de Física Teórica, Madrid, Spain

2 'Momentum' Integrable Quantum Dynamics Group, Eötvös Loránd University, Budapest, Hungary

Recent Advances in Quantum Integrable Systems 24 Laboratoire d'Annecy-le-Vieux de Physique Théorique, Annecy, France, 3th of September of 2024

- [The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)
- [Algebraic Bethe Circuits](#page-9-0)
- **[F-basis for Quantum Circuits](#page-15-0)**
	- \bullet ABA $=$ CBA $=$ ABC
	- [F-basis and ABA](#page-19-0)
	- [F-basis and CBA](#page-27-0)
	- **E-basis and ABC**

⊂⊡

- [The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)
- [Algebraic Bethe Circuits](#page-9-0)
- **[F-basis for Quantum Circuits](#page-15-0)**
	- \bullet ABA $=$ CBA $=$ ABC
	- **•** E-basis and ABA
	- **•** [F-basis and CBA](#page-27-0)
	- **•** [F-basis and ABC](#page-35-0)

- [The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)
- [Algebraic Bethe Circuits](#page-9-0)
- **[F-basis for Quantum Circuits](#page-15-0)**
	- \bullet ABA $=$ CBA $=$ ABC
	- **•** E-basis and ABA
	- **•** [F-basis and CBA](#page-27-0)
	- **•** [F-basis and ABC](#page-35-0)

[Conclusions](#page-43-0)

[The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)

- [Algebraic Bethe Circuits](#page-9-0)
- **[F-basis for Quantum Circuits](#page-15-0)**
	- \bullet ABA $=$ CBA $=$ ABC
	- [F-basis and ABA](#page-19-0)
	- [F-basis and CBA](#page-27-0)
	- **[F-basis and ABC](#page-35-0)**

€ ⊡.

The Bethe Ansatz is an analytical method to tackle exactly solvable models in statistical and quantum mechanics.

The original coordinate Bethe Ansatz (CBA) is based on trial functions composed of linear superpositions of plane waves ('magnons') [Bethe, '31].

The algebraic Bethe Ansatz (ABA) systematises the method by means of the R-matrix [Korepin, Bogoliubov, Izergin, '93; Faddev, '96].

The ABA can be realised via matrix-product states (MPS) [Alcaraz, Lazo, '03–'06; Katsura, Maruyama, '10; Murg, Korepin, Verstraete, '12].

Quantum computing calls for new testing grounds to push the boundaries of quantum supremacy further [Arute et al., '19].

 \bullet One-dimensional quantum spin-1/2 chains are suited to this task

 $sites = qubits$ $|\uparrow\rangle := |0\rangle$, $|\downarrow\rangle := |1\rangle$

Bethe Ansatz:

- Systematic construction of eigenstates [KBI, '93; Faddev, '96].
- Computation of correlation functions [Kitanine, Maillet,Terras, '98].

The Bethe Ansatz in the Era of Quantum Computing

Quantum computing calls for new testing grounds to push the boundaries of quantum supremacy further [Arute et al., '19].

 \bullet One-dimensional quantum spin-1/2 chains are suited to this task.

 $sites = qubits$ $|\uparrow\rangle := |0\rangle$ $|\downarrow\rangle := |1\rangle$

Challenges to quantum computing:

Initialisation of algorithms $\sqrt{ }$ \int $\overline{\mathcal{L}}$ Real-time evolution of quenches Adabatic preparation of ground states etc.

• Benchmarking of quantum computers

Can the Bethe Ansatz be adapted to quantum computers?

- Probabilistic algorithms [Van Dyke, Barron, Mayhall, Barnes, Economou, 21'; Van Dyke, Barnes, Economou, Nepomechie, '22; Li, Okyay, Nepomechie, '22].
- Deterministic algorithms [Sopena, Gordon, García-Martín, Sierra, López, '22; R., Sopena, Gordon, Sierra, López, '23; Raveh, Nepomechie, '24].

[Introduction](#page-4-0)

- [The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)
- [Algebraic Bethe Circuits](#page-9-0)
- **[F-basis for Quantum Circuits](#page-15-0)**
	- \bullet ABA $=$ CBA $=$ ABC
	- [F-basis and ABA](#page-19-0)
	- [F-basis and CBA](#page-27-0)
	- **[F-basis and ABC](#page-35-0)**

 \leftarrow

Algebraic Bethe circuits (ABC) are deterministic quantum circuits:

- a sequence of multi-qubit unitaries,
- an input state in the computational basis,
- and no ancillae.

ABC apply to the XXZ model that

- \bullet has spin- $1/2$,
- is periodic,
- and is homogeneous.

ABC the prepare Bethe states of the Hamiltonian

$$
H = \sum_{j=1}^N (X_j X_{j+1} + Y_j Y_{j+1} + \Delta Z_j Z_{j+1}) \; .
$$

つへへ

- \bullet ABC is efficient in N: $\#$ of unitaries \sim N.
- \bullet ABC is efficient in M at $\Delta = 0$: each unitary \sim M two-qubit gates.
- \bullet If $\Delta \neq 0$, unclear: brute force on P_i \sim exp(M) one-/two-qubit gates.
- Additional cost of solving Bethe equations, imposed by hand.

Problem

Search of models where ABC efficiently apply: systematisation of ABC.

Roberto Ruiz (IFT) [F-basis, BA, and Quantum Circuits](#page-0-0)

4 **E** F

3th of September of 2024

- [The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)
- [Algebraic Bethe Circuits](#page-9-0)
- 2 [F-basis for Quantum Circuits](#page-15-0)
	- \bullet [ABA = CBA = ABC](#page-15-0)
	- [F-basis and ABA](#page-19-0)
	- [F-basis and CBA](#page-27-0)
	- **[F-basis and ABC](#page-35-0)**

€ ⊡.

$ABA = CBA = ABC$

- \bullet ABC by direct unitarisation of the MPS of the ABA: P_i numerical
- ABC from proposed MPS of the CBA: P_i analytical
- ABC of the ABA and the CBA: unitarily equivalent

$ABA = CBA = ABC$

- \bullet ABA \mapsto ABC: QR-factorisation.
- \bullet CBA \mapsto ABC: Gram-Schmidt orthonormalisation.
- \bullet ABA \mapsto CBA: ?

4 **D** F

$ABA = CBA = ABC$

- \bullet ABA \mapsto ABC: QR-factorisation.
- \bullet CBA \mapsto ABC: Gram-Schmidt orthonormalisation.
- $ABA \mapsto CBA$: F-basis and rescaling

[The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)

- [Algebraic Bethe Circuits](#page-9-0)
- **[F-basis for Quantum Circuits](#page-15-0)**
	- \bullet ABA $=$ CBA $=$ ABC
	- **•** E-basis and ABA
	- [F-basis and CBA](#page-27-0)
	- [F-basis and ABC](#page-35-0)

€ ⊡.

Inhomogeneous Periodic Spin-1/2 XXZ Model

R-matrix

$$
R(u) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & f(u) & g(u) & 0 \\ 0 & g(u) & f(u) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = -\frac{R}{R},
$$

$$
f(u) = \frac{\sinh u}{\sinh(u + i\gamma)}, \quad g(u) = \frac{\sinh(i\gamma)}{\sinh(u + i\gamma)}, \quad \Delta = \cos \gamma
$$

- R acts on two qubits
- R solves the Yang-Baxter equation
- u denotes the spectral parameter

Inhomogeneous Periodic Spin-1/2 XXZ Model

Monodromy matrix

- T acts on one ancilla and N physical qubits.
- T defines the exchange algebra of the ABA by the RTT-relation:

$$
R_{12}(u-v)T_1(u)T_2(v)=T_2(v)T_1(u)R_{12}(u-v).
$$

 \bullet v_i denotes the inhomogeneity parameter of the j-th physical qubit. No local Hamiltonian for general v_j.

Inhomogeneous Periodic Spin-1/2 XXZ Model

R-matrix for general permutations

$$
R_{12\ldots M}^{\sigma}T_1T_2\ldots T_M=T_{\sigma_1}T_{\sigma_2}\ldots T_{\sigma_M}R_{12\ldots M}^{\sigma}.
$$

F-matrix

$$
R_{12\ldots M}^{\sigma}(u_1,\ldots,u_M)=F_{\sigma_1\sigma_2\ldots\sigma_M}^{-1}(u_{\sigma_1},\ldots,u_{\sigma_M})F_{12\ldots M}(u_1,\ldots,u_M).
$$

• The existence of F_{12} follows from

$$
R_{12}(u)R_{21}(-u)=1_2\ .
$$

- \bullet $F_{12...M}$ admits a closed formula [Maillet, Sánchez de Santos, '96]
- \bullet F_{12...M} act on ancillae [Fehér, Pozsgay,'18], not physical qubits [MSS,'96; KMT,'98].

Þ

 Ω

4 **E** F

Þ

F-basis and ABA

 \Box

[The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)

- [Algebraic Bethe Circuits](#page-9-0)
- **[F-basis for Quantum Circuits](#page-15-0)**
	- \bullet ABA $=$ CBA $=$ ABC
	- [F-basis and ABA](#page-19-0)
	- **•** [F-basis and CBA](#page-27-0)
	- [F-basis and ABC](#page-35-0)

€ ⊡.

F-basis and CBA

4 **E** F

←■→

Þ

$$
\begin{aligned} \Lambda_j^i &:= \left\langle i\right|_j \Lambda_j \left|0\right\rangle_j \\ \Lambda_j^0 & = \bigotimes_{a=1}^M \begin{bmatrix} 1 & 0 \\ 0 & x_{aj} \end{bmatrix} \\ \Lambda_j^1 & = \sum_{a=1}^M \bigotimes_{b=1}^{a-1} \begin{bmatrix} 1 & 0 \\ 0 & s_{ab}x_{bj} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \bigotimes_{c=a+1}^M \begin{bmatrix} 1 & 0 \\ 0 & s_{ac}x_{cj} \end{bmatrix} \\ x_{aj} & = \frac{\sinh(u_a - v_j)}{\sinh(u_a - v_j + i\gamma)} \ , \quad s_{ab} & = \frac{\sinh(u_a - u_b)}{\sinh(u_a - u_b + i\gamma)} \end{aligned}
$$

Roberto Ruiz (IFT) [F-basis, BA, and Quantum Circuits](#page-0-0)

3th of September of 2024

 \equiv 990

イロメ イ部メ イヨメ イヨメ

F-basis and CBA

Inhomogeneous CBA

Inhomogeneous CBA

Bethe states of the inhomogeneous CBA [also Ovchinnikov, '10] $(M = 2)$:

$$
\Psi_N^{[2]}(n_1,n_2) = \left(s_{12} \left[\prod_{j=1}^{n_1-1} x_{1j} \right] \left[\prod_{k=1}^{n_2-1} x_{2k}\right] + s_{21} \left[\prod_{j=1}^{n_1-1} x_{2j} \right] \left[\prod_{k=1}^{n_2-1} x_{1k}\right] \right)
$$

- **•** Site-dependent quasi-momenta: $x_{ai} = \exp(i p_{ai})$
- Scattering amplitudes: s_{ab}
- Scattering matrix: $S_{ab} = \frac{S_{ba}}{S_{ba}}$ S_{2h}

$$
\bullet \ v_j=0 \colon \, \Psi^{[2]}_N(n_1,n_2)=s_{12}x_1^{n_1-1}x_2^{n_2-1}+s_{21}x_2^{n_1-1}x_1^{n_2-1}
$$

Partial Bethe states

$$
\left|\Psi_k^{[r]}\right\rangle=\sum_{i_\ell=0,1}\left\langle 0\right|^{\otimes M}\Lambda_N^{i_N}\ldots\Lambda_{j_k}^{i_{j_k}}\left|m_1\ldots m_r\right\rangle_M\left|i_{j_k}\ldots i_N\right\rangle_k\nonumber\\ j_k=N+1-k
$$

そロト

 \mathcal{A} 同 ▶ ◀ ⊞ ⊁ K

э

[The Bethe Ansatz in the Era of Quantum Computing](#page-4-0)

• [Algebraic Bethe Circuits](#page-9-0)

[F-basis for Quantum Circuits](#page-15-0)

- \bullet ABA $=$ CBA $=$ ABC
- [F-basis and ABA](#page-19-0)
- [F-basis and CBA](#page-27-0)
- **•** [F-basis and ABC](#page-35-0)

€ ⊡.

Unitaries of the ABC

 \leftarrow

Ξ

 \Box

3th of September of 2024

 \Box

3th of September of 2024

F-basis and ABC

$$
|\Phi_{k,\beta}^{[r]}\rangle=\sum_{\alpha}X_{j_{k},\alpha\beta}^{[r]}|\Psi_{k,\alpha}^{[r]}\rangle\;.
$$
\n
\n• Gram matrix:
$$
C_{k,\alpha\beta}^{[r]}=\langle\Psi_{k,\alpha}^{[r]}|\Psi_{k,\beta}^{[r]}\rangle
$$
\n
$$
\begin{cases}\nX_{j_{k},\alpha\alpha}^{[r]}=\sqrt{\frac{\det_{\alpha-1}C_{k}^{[r]}}{\det_{\alpha}C_{k}^{[r]}}}\;,\\\\ X_{j_{k},\alpha\beta}^{[r]}=0\;\;\text{if}\;\;\alpha>\beta\;,\\\\ X_{j_{k},\alpha\beta}^{[r]}=-\frac{\det_{\beta-1}C_{k,\alpha\rightarrow\beta}^{[r]}}{\sqrt{\det_{\beta-1}C_{k}^{[r]}\det_{\beta}C_{k}^{[r]}}}\;\;\;\text{if}\;\;\alpha<\beta\;,\\\end{cases}
$$

重

 299

K ロト K 御 ト K 君 ト K 君 ト

$$
|\Phi_{k,\beta}^{[r]}\rangle=\sum_{\alpha}X_{j_{k},\alpha\beta}^{[r]}|\Psi_{k,\alpha}^{[r]}\rangle\ .
$$

$$
\bullet \text{ Gram matrix: }C_{k,\alpha\beta}^{[r]}=\langle\Psi_{k,\alpha}^{[r]}|\Psi_{k,\beta}^{[r]}\rangle
$$

$$
\bullet \ X_{j_{k},\alpha\beta}^{-1[r]}=\frac{\text{det}_{\alpha}C_{k,\alpha\rightarrow\beta}^{[r]}}{\sqrt{\text{det}_{\alpha-1}C_{k}^{[r]}\text{det}_{\alpha}C_{k}^{[r]}}}.
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

重

Ancillae are eliminated.

• Short unitaries follow from a new tensor that prepares Bethe states.

F-basis an

- The output is normalised.
- The determination of unitaries is analytical.
- The recurrence relation $\mathsf{C}_\mathsf{k}^{[\mathsf{r}]}=\sum_{\mathsf{i}=\mathsf{0},\mathsf{1}}\mathsf{\Lambda}_{\mathsf{j}_\mathsf{k}}^{[\mathsf{i},\mathsf{r}]\dagger}$ $\int_{j_k}^{[i,r]\dagger}$ C $\int_{k-1}^{[r-i]}$ k−1 Λ [i,r] $j_{k}^{[1,1]}$ $j_{k}^{[1,1]}$ $j_{k}^{[1,1]}$ implies unitarity.

Results

- The F-basis and the CBA by MPS.
- **•** Systematisation ABC.
- ABC for the inhomogeneous periodic spin-1/2 XXZ model.
- (Demostration that the ABC exactly prepares Bethe states).

Use $\bm{{\mathsf{v}}}_\text{j}$ as variational parameters to find an efficient factorisation of $\bm{\mathsf{P}}_\text{j}$.

4 **E** F

Test our approach by building the ABC of the models with F-basis, e.g. the spin-1/2 XXZ model with open boundary conditions [Kitanine, Kozlowski, Maillet, Niccoli, Slavnov, Terras, '07].

Thank you very much for your attention.

 \leftarrow