Set-theoretic YBE: quantum algebras & universal R-matrices

Anastasia Doikou

Heriot-Watt University

Annecy, September 2024

1 AD, arXiv:2405.04088.

2 AD, B. Rybolowicz, P. Stefanelli, arXiv:2401.12704.

Review

- [Drinfeld] introduced the "Set-theoretic YBE".
- [Hietiranta] first to find examples of such solutions. [Etingof, Shedler & Soloviev] set-theoretic solutions & quantum groups for param. free R-matrices.
- **Connections to: geometric crystals** [Berenstein & Kazhdan, Etingof] and cellular automatons [Hatayama, Kuniba & Takagi]. Etingof rational solutions from geometric crystal theory.
- Classical discrete integrable systems (YB maps), quad-graph, discrete maps, solitons interactions: [Veselov, Bobenko, Suris, Papageorgiou, Tongas,...] **Parametric!**
- **•** Set-theoretic involutive solutions of YBE from **braces**: [Rump, Guarnieri, Vendramin, Gateva-Ivanova, Cedó, Jespers, Okniński, Smoktunowicz,...]
- **•** Connections to: braid theory, Hopf algebras, knot theory, low dimensional topology, Hopf-Galois extensions, ternary structures, such as heaps & trusses ...

Motivation

- Non-parametric case: algebraic approach.
- Parametric case: discrete integrable systems and re-factorization problem (Bäcklund transform or discrete zero curvature condition), synonymous to Bianchi permutability: multi-solitons (soliton lattice). Also, Cube or 3D consistency condition 3D integrable discrete systems (time evolution).

3D Consistency Condition: YB Maps

Talk outline

- \bullet I will discuss the algebraic approach for the parametric case $[AD]$. Basic blueprint for the non-parametric case by [AD, Rybolowicz, Stefanelli].
- Introduce some preliminaries and motivations. Introduce the set-theoretic YBE and the notions of shelves, racks and quandles.
- \bullet Introduce the notions of parametric set-theoretic YBE and p -shelve and racks: parametric self-distributivity lead to solutions of the YBE
- \bullet Admissible Drinflel'd twist: all set theoretic solutions obtained form p -shelves (racks) and an admissible twist! Prototypical algebraic solutions presented.
- Formulate the underlying quasi-triangular Hopf-like algebraic structures. Well known examples of quantum algebras: Yangians and q-deformed algebras. A new paradigm of Quantum Algebra.

Preliminaries: Set theoretic-YBE

• Let a set
$$
X = \{x_1, \ldots, x_N\}
$$
 and $\check{r}: X \times X \to X \times X$. Denote

Set-theoretic solution

$$
\check{r}(x,y)=(\sigma_x(y),\tau_y(x))
$$

- \bullet (X, \check{r}) non-degenerate: σ_x and τ_y are bijective functions **2** (X, \check{r}) involutive: $\check{r}(\sigma_x(y), \tau_y(x)) = (x, y), \; \check{r}^2 = \mathrm{id}$
- \bullet Suppose (X, \check{r}) is an involutive, non-degenerate set-theoretic solution of the Braid equation:

$$
(\check{r}\times \mathit{Id}_X)(\mathit{Id}_X\times \check{r})(\check{r}\times \mathit{Id}_X)=(\mathit{Id}_X\times \check{r})(\check{r}\times \mathit{Id}_X)(\mathit{Id}_X\times \check{r}).
$$

Matrices

Linearization: $x_j \to e_{x_j}$, then $\mathbb{B} = \{e_{x_j}\}$, $x_j \in X$ is a basis of $V = \mathbb{C}X$ space of dimension equal to the cardinality of X . Recall, $e_{x,y} = e_x e_y^{\mathcal{T}}, \, \mathcal{N} \times \mathcal{N}$ matrices. Set-theoretic \check{r} as $\mathcal{N}^2 \times \mathcal{N}^2$ matrix:

Matrix form

$$
\breve{r} = \sum_{x,y \in X} e_{x,\sigma_x(y)} \otimes e_{y,\tau_y(x)}
$$

Baxterization for involutive solutions: $\check{r}: V \otimes V \to V \otimes V$: $\check{r}^2 = I_{V \otimes V}$. Reps of the symmetric group. Baxterization:

$$
\check{R}(\lambda) = \lambda \check{r} + \mathbb{I} \implies R(\lambda) = \lambda \mathbf{r} + \mathcal{P}
$$

Define $r = \mathcal{P} \check{r}$. In the special case $\check{r} = \mathcal{P} (r = \mathbb{I})$ we recover the **Yangian**. If $\lambda = 0$ then $r = \mathcal{P} \rightarrow$ commuting Hamiltonians!

Local Hamiltonians

• Results by [AD & Smoktunowicz] and [AD].

Local Hamiltonian

.

$$
H = \sum_{n=1}^{N} \sum_{x,y \in X} e_{x,\sigma_x(y)}^{(n)} e_{y,\tau_y(x)}^{(n+1)}
$$

Unlike Yangian, periodic Ham is not \mathfrak{gl}_N symmetric...Surprise! (twisted Yangian coproduts, quasi bialgebra!). Lyubashenko solution, $\sigma(y) = y + 1$, $\tau(x) = x - 1$, $\text{mod } N$, $x, y \in \{1, 2, ..., N\}$,

$$
H = \sum_{n=1}^{N} \sum_{x,y=1}^{N} e_{x,y+1}^{(n)} e_{y,x-1}^{(n+1)}
$$

- **•** Spectrum and eigenstates of commuting Hams challenging (symmetries of transfer matrix). Deriving Drinfeld twist key step (non-local maps [Soloviev])!
- q -deformed version of the involutive set-theoretic solutions has been constructed via an admissible Drinfeld twist.

Shelves, racks & quandles

O Shelves, racks & quandles [*Joyce, Matveev, Dehornoy,....*] satisfy axioms analogous to the Reidemeister moves used to manipulate knot diagrams. Link invariants, coloring of links a knot is tri-colored or not; Alexander's theorem: all links closed braids. \rightarrow Special non-involutive set-theoretic solutions.

Definition

Let X be a non-empty set and \triangleright a binary operation on X. Then, the pair (X, \triangleright) is said to be a *left shelf* if \triangleright is left self-distributive, namely, the identity

 $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c)$

is satisfied, for all $a, b, c \in X$. Moreover, a left shelf (X, \triangleright) is called

1 a *left rack* if a is bijective, for every $a \in X$.

2 a quandle if (X, \triangleright) is a left rack and $a \triangleright a = a$, for all $a \in X$.

1 Conjugation quandle. Let (X, \bullet) be a group and $\triangleright : X \times X \rightarrow X$, such that $a \triangleright b = a^{-1} \bullet b \bullet a$. Then (X, \triangleright) is a quandle.

2 Core quandle: Let (X, \bullet) be a group and $\triangleright : X \times X \rightarrow X$, such that $a \triangleright b = a \bullet b^{-1} \bullet a$. Then (X, \triangleright) is a quandle.

Proposition

Let X be a non empty set, then the map $\check{r}: X \times X \to X \times X$, such that $\breve{r}(a, b) = (b, b \triangleright a)$ is a solution of the braid equation if and only if (X, \triangleright) is a shelve. The solution is invertible if and only if (X, \triangleright) is a rack.

- Solutions from quandles non-involutive! All non-involutive set-theoretic solutions come from quandles by admissible Drinfeld twist [AD, Rybolowicz, Stefanelli].
- \bullet Extra motivation: *q*-deformed racks, quandles....from *q* braids.

a

$$
\check{r} = \sum_{a,b \in X} e_{a,b} \otimes e_{b,b \triangleright a}
$$

b
b
b

 $\breve{r}^{-1}(a,b)=(a\triangleright^{-1}b,a),\ \breve{r}(a,b)=(a\triangleright b,a)$ also solution of braid equ.

Self-distributivity - shelve solutions

Examples of quandles

- \bullet Let $i, j \in X := \{1, 2, ..., n\}$ and define $i \triangleright j = 2i j \mod n$: (X, \triangleright) is a quandle called the dihedral quandle (a core quandle).
- **O** Special case [*Dehornoy*]. $n = 3$, $X = \{x_1, x_2, x_3\}$, $\triangleright : X \times X \rightarrow X$, such that:

• The 3D vector space. The canonical basis:

$$
\hat{e}_{x_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \hat{e}_{x_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \hat{e}_{x_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$

Recall $\breve{r}=\sum_{x,y\in X}e_{x,y}\otimes e_{y,y\triangleright x},$ where $e_{x,y}$ the elementary 3×3 matrix $e_{x,y}=e_xe_y^{\pmb{T}}.$ I.e. $\check{r} = \sum_{j=1}^{3} e_{x_j, x_j} \otimes e_{x_j, x_j} + e_{x_1, x_2} \otimes e_{x_2, x_3} + e_{x_2, x_1} \otimes e_{x_1, x_3} + \ldots$

The \check{r} matrix:

$$
\check{\mathbf{r}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}
$$

 $\check{r}^{-1} = \check{r}^T$. Unitary quantities from Twisted Yangian, [AD] in progress.

O Combinatorial matrices! [Kauffman...]: qudits, topological quantum computing - braid gates.

More quandles: Affine (or Alexander) quandles.

Let X be a non empty set equipped with two group operations, $+$ and \circ . Define $\triangleright: X \times X \to X$, such that for $z \in X$ and $\forall a, b \in X$, $a \triangleright b = -a \circ z + b \circ z + a$. Similar to a $\mathbb{Z}(t,t^{-1})$ ring module. (For non-abelian $(\mathsf{X},+)$ [AD, Stefanelli, Rybolowicz]).

KEY STATEMENTS.

- **1** All involutive set-theoretic solutions, $\breve{r} = \sum_{a,b \in X} e_{a,\sigma_a(b)} \otimes e_{b,\tau_b(a)}$ come from the permutation operator via an *admissible Drilfenl'd twist* (similarity) $[AD]$.
- 2 All generic non-involutive set-theoretic solutions come from quandle solutions operator via an admissible Drilfenl'd twist [AD, Stefanelli, Rybolowicz]. To be generalized in the parametric case.

Parametric set-theoretic YBE

Let $X, Y \subseteq X$ be non-empty sets, $z_{i,j} \in Y$, $i,j \in \mathbb{Z}^+$ and $R^{z_{ij}}: X \times X \to X \times X$, such that for all $x, y \in X$, $R^{z_{ij}}(y, x) = (\sigma_x^{z_{ij}}(y), \tau_y^{z_{ij}}(x))$. $(X, R^{z_{ij}})$ is a solution of the parametric, set-theoretic YBE if

Parametric set-theoretic YBE

 $R_{12}^{z_{12}} R_{13}^{z_{13}} R_{23}^{z_{23}} = R_{23}^{z_{23}} R_{13}^{z_{13}} R_{12}^{z_{12}}$

 $R_{12}^{z_{ij}}(c, b, a) = (\sigma_b^{z_{ij}}(c), \tau_c^{z_{ij}}(b), a), R_{13}^{z_{ij}}(c, b, a) = (\sigma_a^{z_{ij}}(c), b, \tau_c^{z_{ij}}(a))$ and $R_{23}^{\overline{z}_{ij}}(c, b, a) = (c, \sigma_a^{\overline{z}_{ij}}(b), \tau_b^{\overline{z}_{ij}}(a)).$

- $R^{z_{ij}}$ is a left non-degenerate if $\forall, z_{i,j} \in Y, \sigma_x^{z_{ij}}$ is a bijecton and non-degenerate if both $\sigma_x^{z_{ij}}$, $\tau_y^{z_{ij}}$ are bijections. z_{ij} denotes dependence on (z_i, z_j) .
- $R^{z_{ij}}$ is called "reversible" if $R_{21}^{z_{21}} R_{12}^{z_{12}} =$ id [Bobenko, Suris, Papageorgiou, Veselov]. All solutions from discrete integrable systems are reversible.
- \bullet For the first time we present non-unitary solutions of the p set-theoretic YBE.
- Focus first on special type of solution $R^{z_{ij}}: X \times X \rightarrow X \times X$ such that $R^{z_{ij}}(a, b) = (a, a \triangleright_{z_{ij}} b).$

Definition

Let X, Y \subseteq X be non empty sets. We define for all $z_{i,j} \in Y$, the binary operation $\triangleright_{z_{ij}}:X\times X\to X,$ $(a,b)\mapsto$ a $\triangleright_{z_{ij}}$ $b.$ The pair $(X,\triangleright_{z_{ij}})$ is said to be a *left parametric* (p) -shelf if $\triangleright_{z_{ij}}$ satisfies the generalized left p -self-distributivity:

$$
a \triangleright_{z_{jk}} (b \triangleright_{z_{jk}} c) = (a \triangleright_{z_{ij}} b) \triangleright_{z_{jk}} (a \triangleright_{z_{ik}} c)
$$

for all $a,b,c\in X$, $z_{i,j,k}\in Y.$ Moreover, a left $p\text{-}shelf\left(X,\triangleright_{z_{ij}}\right)$ is called a left $p\text{-}rack$ if the maps $L^{z_{ij}}_a:X\to X$ defined by $L^{z_{ij}}_a(b):=a\triangleright_{z_{ij}}b$, for all $a,b,\in X,$ $z_{i,j}\in Y,$ are bijective.

 \bullet Henceforth, whenever we say p-shelf or p-rack we mean left p-shelf or left p-rack.

Proposition

Let X, $Y \subseteq X$ be non empty sets. We define for $z_{i,j} \in Y$ the binary operation $\triangleright_{z_{ij}}: X \times X \to X,$ $(a,b) \mapsto$ a $\triangleright_{z_{ij}}$ $b.$ Then $R^{z_{ij}}: X \times X \to X \times X,$ such that for all $a,b\in X,$ $z_{i,j}\in Y,$ $R^{z_{ij}}(b,a)=(b,b\triangleright_{z_{ij}} a)$ is a solution of the parametric set-theoretic Yang-Baxter equation if and only if $(X,\triangleright_{Z_{ij}})$ is a p -shelf. If $R^{Z_{ij}}$ invertible then $(X, \triangleright_{z_{ii}})$ is a p-rack.

Proof. Equating LHS and RHS of YBE.

Definition (skew braces)

 $[Rump, Guarnieri & Vendramin]$ A left skew brace is a set B together with two group operations $+$, \circ : $B \times B \rightarrow B$, the first is called addition and the second is called multiplication, such that for all $a, b, c \in B$,

$$
a\circ (b+c)=a\circ b-a+a\circ c.
$$

If $+$ is an abelian group operation B is called a *left brace*. Moreover, if B is a left skew brace and for all a, b, $c \in B$ $(b + c) \circ a = b \circ a - a + c \circ a$, then B is called a two sided skew brace.

Examples of braces

 \bullet The additive identity of B will be denoted by 0 and the multiplicative identity by 1. In every skew brace $0 = 1$. Braces \rightarrow radical rings [Rump, Smoktunowicz,...]! From now on when we say skew brace we mean left skew brace.

Example

1. Finite braces. Let $U(\mathbb{Z}/2^n\mathbb{Z}) =: U_n$ denote a set of odd integers mod 2^n , $n \in \mathbb{N}$. Define also $+_1$: $U_n \times U_n \rightarrow U_n$, such that $a +_1 b := a - 1 + b$, for all $a, b \in U_n$. Moreover, $+$ is the usual addition and \circ is the usual multiplication of integers. Then the triplet $(U_n, +_1, \circ)$ is a brace. For instance: 1. $n = 1$, $U_1 = \{1\}$, 2. $n = 2$, $U_2 = \{1, 3\}, 3.$ $n = 3, U_2 = \{1, 3, 5, 7\}$...

Example

2. Infinite braces. Consider a set $O := \{\frac{2n+1}{2k+1} | n, k \in \mathbb{Z}\}$ together with two binary operations $+_1$: $O \times O \rightarrow O$ such that $(a, b) \mapsto a - 1 + b$ and $\circ : O \times O \rightarrow O$ such that $(a, b) \mapsto a \circ b$, where $+, \circ$ are addition and multiplication of rational numbers, respectively. Then the triplet $(O, +₁, \circ)$ is a brace

Solutions from p-racks

Proposition

Let $(X, +, \circ)$ be a skew brace and $Y \subseteq X$, such that

- **o** for all $a, b \in X$, $z \in Y$, $(a + b) \circ z = a \circ z z + b \circ z$,
- \bullet z \in Y are central in $(X, +)$.

Define also for all $z_{i,j} \in Y$ the binary operation $\triangleright_{z_{ij}} : X \times X \to X$, such that for all $a, b \in X$,

1 $a \triangleright_{z_{ij}} b = -a \circ z_i \circ z_j^{-1} + b + a \circ z_i \circ z_j^{-1}.$

2 $a \triangleright_{z_{ij}} b = -a \circ z_i \circ z_j^{-1} \circ z + b \circ z + a \circ z_i \circ z_j^{-1}, \ z \in \mathsf{Y}.$

Then the map $R^{z_{ij}}: X \times X \rightarrow X \times X$, such that for all $a, b \in X$, $z_{i,j} \in Y$,

$$
R^{z_{ij}}(a,b)=(a,a\triangleright_{z_{ij}}b)
$$

is a solution of the parametric Yang-Baxter equation. The map $R^{z_{ij}}$ is invertible.

Proof. It suffices to show parametric self-disctributivity for $\triangleright_{z_{ii}}$, which indeed holds. Also, $\rhd_{Z_{ii}}$, is a bijection indeed.

• Remark. In the special case where $(X, +, \circ)$ is a brace, i.e. $(X, +)$ is an abelian group, then in cae 1, for all $a,b\in X$, $z_{i,j}\in Y,$ $a\triangleright_{z_{ij}}b=b,$ and hence $R^{z_{ij}}=\mathsf{id}.$

Generic solutions

We focus on the generic solution of the set-theoretic YBE, $R^{z_{ij}}: X \times X \rightarrow X \times X$, such that for all $a,b \in X,$ $z_{i,j} \in Y,$

 $R^{z_{ij}}(b, a) = (\sigma_a^{z_{ij}}(b), \tau_b^{z_{ij}}(a))$

- \bullet In this case, p-biracks and p-biquandles (two binary operations). Biracks and biquandles: virtual links and braids (ribbons).
- **•** Generic solution obtained via admisssible Drinfeld twist!!

Definition

Let $(X,\triangleright_{Z_{ij}})$ be a p -shelf. We say that the twist $\varphi^{Z_{ij}}: X \times X \to X \times X,$ such that $\varphi^{z_{ij}}(a,b) := (a,\sigma_a^{z_{ji}}(b))$ for all $a,b \in X,$ $z_{i,j} \in Y$ is admissible, if for all $a,b,c \in X,$ $z_{i,j,k} \in Y : (\sigma_a^{z_{ik}}(\sigma_b^{z_{ij}}(c)) = \sigma_a^{z_{ij}})$ $\sigma_a^{z_{jk}}(b)$ $(\sigma_{\tau_b^z}^{z_{ik}})$ $\frac{z_{ik}}{\tau_{ik}^{2/k}(a)}(c))$ & $\sigma_c^{z_{ik}}(b)$ $\triangleright_{z_{ij}}$ $\sigma_c^{z_{jk}}(a) = \sigma_c^{z_{jk}}(b \triangleright_{z_{ij}} a)$. b

Admissible twists & general solutions

Theorem

Let $\big(X,\triangleright_{z_{ij}}\big)$ be a p -shelf and $\varphi^{z_{ij}}:X\times X\to X\times X,$ such that $\varphi^{z_{ij}}(a,b)\coloneqq(a,\sigma_a^{z_{ji}}(b))$ for all $a,b\in X,$ $z_{i,j}\in Y.$ Then, the map $R^{z_{ij}}: X \times X \rightarrow X \times X$ defined by

$$
R^{z_{ij}}\left(\mathsf{a},\mathsf{b}\right)=\left(\sigma^{{z_{ij}}}_{\mathsf{a}}\left(\mathsf{b}\right),\, \smash{(\sigma^{{z_{ji}}}_{\sigma^{{z_{ij}}}_{\mathsf{a}}\left(\mathsf{b}\right)})^{-1}(\sigma^{{z_{ij}}}_{\mathsf{a}}\left(\mathsf{b}\right) \triangleright_{z_{ij}} \mathsf{a})}\right)
$$

for all $a, b \in X$, $z_{i,j} \in Y$ is a solution if and only if $\varphi^{z_{ij}}$ is an admissible twist.

Proof. The proof is involved based on the (1) , (2) of the Definition of the adm. twist and the fundamental relations from the YBE. $R^{\rm Z_{ij}}=(\varphi^{z_{ij}})^{-1}\,S^{{z_{ij}}} \,(\varphi^{z_{ji}})^{(op)},$ where $S^{z_{ij}}(x, y) = (x, x \triangleright_{z_{ij}} y).$

• Conclusion. The problem of generic solutions of the p set-theoretic Yang-Baxter equation is reduced to the classification of p-shelve/rack solutions & admissible twists.

• Explicit solutions derived [AD].

● Back to the linearized version, recall:

 $\mathbf{P}^{-R^{z_{ij}}}= \sum_{s,d\in\mathcal{X}} e_{b,\sigma_a^{z_{ij}}(b)}\otimes e_{s,\tau_b^{z_{ij}}(a)},$ generic set-theoretic solutions: **2** $R^{z_{ij}} = \sum_{a,b \in X} e_{b,a} \otimes e_{a,b \triangleright z_{ij} a}$, *p*-shelves solutions,

- Linearization formally generalizes to infinite countable sets & for compact sets, use of functional analysis and study of kernels of integral operators required.
- We establish the algebraic framework in the tensor product formulation. This naturally provides solutions to the parametric set-theoretic YBE, thus the linearized version is essential in what follows.
- \bullet Next, explore algebraic structures that provide universal \mathcal{R} -matrices associated to p-rack and general set-theoretic solutions of the YBE.

p-rack algebras

Definition

Let $Y \subseteq X$ be non-empty sets. We define for all $z_{i,j,k} \in Y$, the binary operation, $\triangleright_{z_{ij}}: X \times X \to X,$ $(a,b) \mapsto$ a $\triangleright_{z_{ij}}$ $b.$ Let also $(X, \triangleright_{z_{ij}})$ be a finite magma, or such that a $\triangleright_{z_{ij}}$ is surjective, for every $a\in X,$ $z_{i,j}\in Y.$ We say that the unital, associative algebra Q, over a field k generated by, 1_Q , $q_a^{Z_{ij}}$, $(q_a^{Z_{ij}})^{-1}$, $h_a \in \mathcal{Q}$ $(h_a = h_b \Leftrightarrow a = b)$ and relations for all $a, b \in X$, $z_{i,i,k} \in Y$:

$$
\begin{aligned} q_a^{z_{ij}}(q_a^{z_{ij}})^{-1} &= (q_a^{z_{ij}})^{-1} q_a^{z_{ij}} = 1_{\mathcal{Q}}, \quad q_a^{z_{jk}} q_b^{z_{jk}} = q_b^{z_{jk}} q_{b \triangleright_{z_{ij}}}^{z_{jk}} \,, \\ h_a h_b &= \delta_{a,b} h_a, \quad q_b^{z_{ij}} h_{b \triangleright_{z_{ij}}} = h_a q_b^{z_{ij}} \end{aligned}
$$

is a p-rack algebra.

The choice of the name p-rack algebra is justified by the following result.

Proposition

Let Q be the p-rack algebra, then for all $a, b, c \in X$ and $z_{i,j,k} \in Y$, $c \triangleright_{z_{ik}} (b \triangleright_{z_{ik}} a) = (c \triangleright_{z_{ik}} b) \triangleright_{z_{ik}} (c \triangleright_{z_{ik}} a)$, i.e. $(X, \triangleright_{z_{ii}})$ is a p-rack.

Proof. We compute $h_a q_b^{z_{jk}} q_c^{z_{ik}}$ using the associativity of the algebra, also due to invertibility of $q_a^{z_{ij}}$ for all $a \in X, z_{i,j} \in Y$:

 $h_{c\triangleright_{z_{jk}}(b\triangleright_{z_{jk}} a)} = h_{(c\triangleright_{z_{jj}} b)\triangleright_{z_{jk}}(c\triangleright_{z_{ik}} a)} \ \Rightarrow \ c\triangleright_{z_{ik}} (b\triangleright_{z_{jk}} a) = (c\triangleright_{z_{jj}} b)\triangleright_{z_{jk}} (c\triangleright_{z_{ik}} a).$

Also, $a \triangleright_{z_{ii}}$ is bijective and thus $(X, \triangleright_{z_{ii}})$ is a p-rack.

The universal R-matrix

Proposition

Let Q be the p-rack algebra and $\mathcal{R}^{z_{ij}} \in \mathcal{Q} \otimes \mathcal{Q}$ be an invertible element, such that $\mathcal{R}^{z_{ij}} = \sum_{a} h_a \otimes q_a^{z_{ij}}$, $z_{i,j} \in Y$. Then $\mathcal{R}^{z_{ij}}$ satisfies the parametric Yang-Baxter equation $\mathcal{R}_{12}^{z_{12}} \mathcal{R}_{13}^{z_{13}} \mathcal{R}_{23}^{z_{23}} = \mathcal{R}_{23}^{z_{23}} \mathcal{R}_{13}^{z_{13}} \mathcal{R}_{12}^{z_{12}}$ $\mathcal{R}^{z_{12}}_{12} = \sum_{a\in\mathcal{X}} h_a\otimes q^{z_{12}}_a\otimes 1_{\mathcal{Q}}, \, \mathcal{R}^{z_{13}}_{13} = \sum_{a\in\mathcal{X}} h_a\otimes 1_{\mathcal{Q}}\otimes q^{z_{13}}_a,$ and $\mathcal{R}^{\bar{z}_{23}}_{23} = \sum_{a \in X} 1_{\mathcal{Q}} \otimes h_a \otimes q_a^{z_{23}}$. The inverse \mathcal{R} -matrix is $(\mathcal{R}^{z_{ij}})^{-1} = \sum_{a \in X} h_a \otimes (q_a^{z_{ij}})^{-1}$.

Proof. From YBE and p -rack algebra relations. Also, $(\mathcal{R}^{z_{ij}})^{-1} = \sum_{a \in X} h_a \otimes (q_a^{z_{ij}})^{-1}.$

Fundamental representation: Recall, $e_{i,j},\,n\times n$ matrices with elements $({\sf e}_{i,j})_{k,l}=\delta_{i,k}\delta_{j,l}.$ Let ${\cal Q}$ be the p -rack algebra and $\rho:{\cal Q}\to \sf{End}(V),$ defined by $q_a^{\vec{z}_{ij}} \mapsto \sum_{x \in X} e_{x,a\triangleright_{z_{ij}}x}, \quad h_a \mapsto e_{a,a}.$ Then $\mathcal{R}^{z_{ij}}\mapsto R^{z_{ij}}=\sum_{a,b\in X} e_{b,b}\otimes e_{a,b\triangleright_{z_{ij}}a}$: the linearized p -rack solution.

Definition

A p-rack algebra $\mathcal Q$ is called a restricted p-rack algebra if for all $z_{i,j} \in Y$ there exits a binary operation $\bullet_{z_{ii}} : X \times X \to X$, $(a, b) \mapsto a \bullet_{z_{ii}} b$, such that, $a \bullet_{z_{ii}}$, is a bijection and $a \bullet_{z_{ii}} b = b \bullet_{z_{ii}} (b \triangleright_{z_{ii}} a)$, for all $a, b \in X$, $z_{i,i} \in Y$.

NOTE. In the parameter free case: motivated by pre-Lie algebras (chronological algebras) [Agrachev, Gerstenhaber....] introduce the pre-Lie skew brace. Identified families of affine quandles that generate pre-Lie skew braces [AD, Rybolowicz, Stefanellil.

Theorem

Let Q be the restricted p-rack algebra and $\mathcal{R}^{z_{ij}}=\sum_{a}h_a\otimes q_a^{z_{ij}}\in\mathcal{Q}\otimes\mathcal{Q}$ be a solution of the Yang-Baxter equation. Moreover, assume that for all $z_{i,j,k} \in Y$, $a, b \in X$, $(b\triangleright_{z_{ij}}$ a $_1) \bullet_{z_{jk}} (b\triangleright_{z_{ik}}$ a $_2) = b\triangleright_{z_{ij}}$ (a $_1 \bullet_{z_{jk}}$ a $_2).$ We also define for $z_{i,j,k} \in Y,$ $\Delta_{\mathsf{z}_{ij}}: \mathcal{Q} \to \mathcal{Q} \otimes \mathcal{Q},$ such that for all $\mathsf{a} \in \mathsf{X},$

$$
\Delta_{z_{jk}}((\mathfrak{q}_s^{z_{jk}})^{\pm 1}):=(\mathfrak{q}_s^{z_{ij}})^{\pm 1}\otimes (\mathfrak{q}_s^{z_{jk}})^{\pm 1},\quad \Delta_{z_{ij}}(h_s):=\sum_{b,c\in\mathsf{X}}h_b\otimes h_c\Big|_{b\bullet_{z_{ij}}c=s}.
$$

Then the following statements hold:

$$
\textbf{D} \ \Delta_{z_{ij}} \ \text{is a } \mathcal{Q} \ \text{algebra homomorphism for all } z_{i,j} \in Y.
$$

\n- $$
\mathcal{R}^{z_{jk}} \Delta_{z_{jk}}(y) = \Delta_{z_{kj}}^{(op)}(y) \mathcal{R}^{z_{jk}}
$$
, for all $z_{j,k} \in Y$, $y \in \{h_a, q_a^{z_{ik}}\}$. Recall $\Delta_{z_{ij}}^{(op)} := \pi \circ \Delta_{z_{ij}}$, where π is the flip map.
\n

Parametric co-associativity

• Proposition. Let Q be the restricted p-rack algebra, assume also that for all a, b, $c \in X$ and $z_{i,j,k} \in Y$, $(b \triangleright_{z_{ii}} a) \bullet_{z_{ik}} (b \triangleright_{z_{ik}} c) = b \triangleright_{z_{ik}} (a \bullet_{z_{ik}} c)$ and $(a \bullet_{z_{ii}} b) \bullet_{z_{ik}} c = a \bullet_{z_{ik}} (b \bullet_{z_{ik}} c).$

We also define for $z_{i,1,2,...,n}\in Y,$ $\Delta^{(n)}_{z_{12...n}}:\mathcal{Q}\to\mathcal{Q}^{\otimes n},$ such that

$$
\Delta^{(n)}_{z_{12...n}}((q_a^{z_{in}})^{\pm 1}) = (q_a^{z_{i1}})^{\pm 1} \otimes (q_a^{z_{i2}})^{\pm 1} \otimes ... (\otimes q_a^{z_{in}})^{\pm 1},
$$

\n
$$
\Delta^{(n)}_{z_{12...n}}(h_a) := \sum_{a_1,...,a_n \in X} h_{a_1} \otimes h_{a_2} \otimes ... \otimes h_{a_n} \Big|_{\prod_{z_{1...n}}(a_1, a_2,..., a_n) = a},
$$

where for all $a_1, a_2, \ldots, a_n \in X$, $z_1, \ldots, z_n \in Y$:

$$
\begin{array}{rcl}\n\Pi_{z_{12}\ldots n}(a_1, a_2) : & = & a_1 \bullet_{z_{12}} a_2 \\
\Pi_{z_{12}\ldots n}(a_1, a_2, \ldots, a_n) : & = & a_1 \bullet_{z_{1n}} (a_2 \bullet_{z_{2n}} (a_3 \ldots \bullet_{z_{n-2n}} (a_{n-1} \bullet_{z_{n-1n}} a_n) \ldots)) \\
\\ & = & \left(\ldots \left(\left(a_1 \bullet_{z_{12}} a_2 \right) \bullet_{z_{23}} a_3 \right) \ldots a_{n-1} \right) \bullet_{z_{n-1n}} a_n, \ n > 2.\n\end{array}
$$

Then:

• For all
$$
z_{i,1,2,...n} \in Y
$$
,
\n
$$
\Delta_{z_{12...n}}^{(n)} := (\Delta_{z_{12...n-1}}^{(n-1)} \otimes id) \Delta_{z_{n-1n}} = (id \otimes \Delta_{z_{23...n}}^{(n-1)}) \Delta_{z_{1n}}.
$$

2 For all $a,b \in X$, $z_{i,1,2,...n} \in Y$, $\Delta_{z_{12...n}}^{(n)}$ is an algebra homomorphism.

Example

Consider the binary operations $\bullet_{z_{ii}}, \diamond_{z_{ii}} : X \times X \to X$ such as $a \bullet_{z_{ii}} b = a \circ z_i + b \circ z_i$ and $a \triangleright_{z_{ij}} b = -a \circ z_i \circ z_j^{-1} + b + a \circ z_i \circ z_j^{-1}$, then for all $a, b, c \in X$, $z_{i,j,k} \in Y$, $(a\triangleright_{z_{ij}} b)\bullet_{z_{ik}} (b\triangleright_{z_{ik}} c)=a\triangleright_{z_{io}} (b\bullet_{z_{ik}} c), \quad (a\bullet_{z_{ij}} b)\bullet_{z_{ok}} c=a\bullet_{z_{io}} (b\bullet_{z_{ik}} c),$ where $z_0 = 1$ and

$$
\Pi_{z_1...z_n}(a_1,a_2,...,a_n)=a_1\circ z_1+a_2\circ z_2+...+a_{n-1}\circ z_{n-1}+a_n\circ z_n.
$$

Binary Trees

Graphical representation of the parametric co-product Δ_{z_12} :

The n^{th} coproduct $\Delta_{z_{12...n}}^{(n)}$, $a \in X$, $z_{k,1,2,...n} \in Y$ is depicted by 2^{n-2} equivalent diagrams.

$$
\Delta^{(n)}_{z_{12...n}}:=(\Delta^{(n-1)}_{z_{12...n-1}}\otimes \mathsf{id})\Delta_{z_{n-1n}}=(\mathsf{id}\otimes \Delta^{(n-1)}_{z_{23...n}})\Delta_{z_{1n}}.
$$

Unfolding $\Delta^{(n-1)}$ in the LHS and RHS produces 2^{n−2} binary tree diagrams.

The parameter free case: quasi-triangular Hopf algebra

 \bullet The p-rack algebra reduces to a rack algebra in the parameter free case. In this case one recovers a quasi-triangular Hopf algebra if (X, \bullet) is a group $[AD, \bullet]$ Rybolowicz, Stefanelli].

Theorem

Let ${\cal A}$ be a rack algebra, with (X,\bullet ,e) being a group. Let also ${\cal R}=\sum_{a\in X}h_a\otimes q_a$ be a solution of the Yang-Baxter equation and $q_a \in A$ are such that $q_a q_b = q_{a \bullet b}$. Then the structure $(A, \Delta, \epsilon, S, \mathcal{R})$ is a quasi-triangular Hopf algebra:

- Co-product. $\Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$, $\Delta(q_a^{\pm 1}) = q_a^{\pm 1} \otimes q_a^{\pm 1}$ and $\Delta(h_a) = \sum_{b,c \in X} h_b \otimes h_c \Big|_{b \bullet c = a}.$
- Co-unit. $\epsilon : \mathcal{A} \to k$, $\epsilon(q_a^{\pm 1}) = 1$, $\epsilon(h_a) = \delta_{a,e}$.
- Antipode. $S:\mathcal{A}\to\mathcal{A},\ \ S(q_a^{\pm 1})=q_a^{\mp 1},\ S(h_a)=h_{a^*},$ where a^* is the inverse in (X, \bullet) for all $a \in X$.
- **•** Relevant: Pointed Hopf Algebras from racks [Andruskiewitsch & Grana].

The p-decorated algebra

1 Let Q be the p-rack algebra. Let also $\sigma_a^{z_{ij}}$, $\tau_b^{z_{ij}}$: $X \to X$, and $\sigma_a^{z_{ij}}$ be a bijection for all $a \in X$, $z_{i,j} \in Y$. We say that the unital, associative algebra \hat{Q} over k , generated by intederminates $q_a^{Z_{ij}}, (q_a^{Z_{ij}})^{-1}, h_a, \in \mathcal{Q}$ and $w_a^{Z_{ij}}, (w_a^{Z_{ij}})^{-1} \in \hat{\mathcal{A}},$ a $\in X,$ $1_{\hat{O}} = 1_{\mathcal{Q}}$ is the unit element and relations, for $a, b \in X$, $z_{i,j,k} \in Y$:

Decorated p-rack algebras

$$
\begin{aligned} q^{z_{ij}}_a (q^{z_{ij}}_a)^{-1} &= (q^{z_{ij}}_a)^{-1} q^{z_{ij}}_a = 1_{\hat{\mathcal{Q}}}, \quad q^{z_{jk}}_a q^{z_{jk}}_b = q^{z_{ik}}_b q^{z_{jk}}_{b >_{z_{ij}}a}, \quad h_a h_b = \delta_{a,b} h_a, \\ q^{z_{ij}}_b h_{b >_{z_{ij}}a} &= h_a q^{z_{ij}}_b \quad w^{z_{ij}}_a (w^{z_{ij}}_a)^{-1} = 1_{\hat{\mathcal{A}}}, \quad w^{z_{ki}}_a w^{z_{ji}}_b = w^{z_{ji}}_{\sigma^{z_{jk}}_a (b)} w^{z_{kj}}_{\tau^{z_{kj}}_b (a)} \\ w^{z_{ji}}_a h_b &= h_{\sigma^{z_{ij}}_a (b)} w^{z_{ji}}_a, \quad w^{z_{kj}}_a q^{z_{ij}}_b = q^{z_{ij}}_{\sigma^{z_{ik}}_a (b)} w^{z_{kj}}_a \end{aligned}
$$

is a decorated p-rack algebra.

• Proposition. Let \hat{Q} be the decorated p-rack algebra, then for all a, b, $c \in X$, $z_{i,j,k} \in Y$:

$$
\sigma_a^{z_{jk}}(\sigma_b^{z_{ij}}(c))=\sigma_{\sigma_a^{z_{jk}}(b)}^{z_{ij}}(\sigma_{\tau_b^{z_{jk}}(a)}^{z_{ik}}(c))\quad \&\quad \sigma_c^{z_{ik}}(b)\rhd_{z_{ij}}\sigma_c^{z_{jk}}(a)=\sigma_c^{z_{jk}}(b\rhd_{z_{ij}}a).
$$

Proof. Follow from the algebra associativity. These are the conditions of the Def. of an admissible twist!

Proposition. Let \hat{Q} be the decorated p-rack algebra and $\mathcal{R}^{z_{ij}}=\sum_{a}h_a\otimes q_a^{\overline{z_{ij}}}\in\mathcal{Q}\otimes\mathcal{Q}$ be a solution of the Yang-Baxter equation. We also define for $z_{i,j,k} \in Y$, $\Delta_{z_{ij}} : \mathcal{Q} \to \mathcal{Q} \otimes \mathcal{Q}$, such that for all $a \in X$,

$$
\Delta_{\boldsymbol{Z}_{jk}}((y^{Z_{jk}}_a)^{\pm 1}):=(y^{Z_{ij}}_a)^{\pm 1}\otimes (y^{Z_{ik}}_a)^{\pm 1},\quad \Delta_{\boldsymbol{Z}_{ij}}(h_a):=\sum_{b,\boldsymbol{c}\in\mathsf{X}}h_b\otimes h_c\Big|_{b\bullet_{\boldsymbol{Z}_{ij}}\boldsymbol{c}=\boldsymbol{a}}\;.
$$

Then the following statements hold:

\n- **O**
$$
\Delta_{z_{ij}}
$$
 is a $\hat{\mathcal{Q}}$ algebra homomorphism for all $z_{i,j} \in Y$.
\n- **O** $\mathcal{R}^{z_{jk}} \Delta_{z_{jk}}(y_{a}^{z_{ik}}) = \Delta_{z_{kj}}^{(op)}(y_{a}^{z_{jk}}) \mathcal{R}^{z_{jk}},$ for $y_{a}^{z_{ik}} \in \{q_{a}^{z_{ik}}, w_{a}^{z_{ik}}\}, a \in X$, $z_{i,j,k} \in Y$. Recall, $\Delta_{z_{ij}}^{(op)} := \pi \circ \Delta_{z_{ij}}$, where π is the flip map.
\n

Universal R-matrix by twisting

Proposition. Let $\mathcal{R}^{z_{ij}} = \sum_{a \in X} h_a \otimes q_a^{z_{ij}} \in \mathcal{Q} \otimes \mathcal{Q}$ be the p-rack universal $\mathcal{R}-$ matrix. Let also $\hat{\mathcal{Q}}$ be the decorated p -rack algebra and $\mathcal{F}^{z_{ij}}\in\hat{\mathcal{Q}}\otimes\hat{\mathcal{Q}},$ such that $\mathcal{F}^{z_{ij}} = \sum_{b \in X} h_b \otimes (w_b^{z_{ij}})^{-1}$ (invertible) for all $z_{i,j} \in Y$ then \mathcal{F} is an admissible twist. This guarantees that if R is a solution of the YBE then R^F also is!

■ The twisted R–matrix:

$$
\mathcal{R}^{Fz_{12}} = (\mathcal{F}^{z_{21}})^{(op)} \mathcal{R}^{z_{12}} (\mathcal{F}^{z_{12}})^{-1}
$$

The twisted coproducts: for $z_{12} \in Y$, $\Delta_{z_{12}}^F(y) = \mathcal{F}^{z_{12}} \Delta_{z_{12}}(y) (\mathcal{F}^{z_{12}})^{-1}$, $y \in \hat{\mathcal{Q}}$. Moreover it follows that $\mathcal{R}^{Fz_{21}}\Delta_{z_{12}}^F(y) = \Delta_{z_{12}}^{F(op)}(y)\mathcal{R}^{Fz_{12}}, y \in \hat{\mathcal{Q}}, z_{1,2} \in Y$.

• Fundamental representation & the set-theoretic solution: Let \hat{Q} be the decorated p-rack algebra, $\rho : \hat{Q} \to \text{End}(V)$, such that

$$
q_a^{\mathbb{Z}_{ij}} \mapsto \sum_a {\rm e}_{x, a \triangleright_{\mathbb{Z}_{ij}^{\times}} x}, \quad h_a \mapsto {\rm e}_{a,a}, \quad w_a^{\mathbb{Z}_{ij}} \mapsto \sum_{b \in X} {\rm e}_{\sigma_a^{\mathbb{Z}_{ji}}(b), b},
$$

then $\mathcal{R}^{Fz_{ij}} \mapsto R^{Fz_{ij}} = \sum_{a,b \in X} e_{b,\sigma_a^{z_{ij}}(b)} \otimes e_{a,\tau_b^{z_{ij}}(a)},$ where $\tau_b^{z_{ij}}(a) := \sigma_{(a)}^{z_{ji}}$ $\frac{z_{ji}}{(\sigma_a^{z_{ij}})^{-1}(b)} (\sigma_a^{z_{ij}}(b) \triangleright_{z_{ij}} a).$

 $R^{Fz_{ij}}$ is the linearized version of the set-theoretic solution.

• The associated quantum algebra (non-parametric case) is a *quasi-triangular* quasi Hopf algebra [AD, Vlaar, Ghionis].