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0. Integrability in 2D

Yang-Baxter equation
Ri2R13R23 = Rp3Ri3Ry2 € End(V®3),
where Rj; acts on the /th and jth components:

Ro:VRVV, R3:VVV, R3:VVRV

1 / \ 3
_ Braid Move
Wiring diagram

N

e Factorization of 3 particle scattering amplitude into 2 body ones
e Commutativity of row transfer matrices in lattice models

2312

Key to quantum integrability in 2D



Integrability in the presence of boundary reflections

K = / .V — V' (reflection amplitude matrix)

"\

Reflection equation

5 Reflection move

Wiring diagram

Ry1 KoRi1o K1 = KiRp1 KoRyo € End(V®?)
(Ki=K®1l, Ky=1QK)

Factorization condition at the boundary



1. Tetrahedron and 3D reflection equations (3D analogue of the Yang-Baxter and reflection egs.)

Tetrahedron eq. [A.B. Zamolodchikov 80]

7 ) k
Ri24R135 Ro36 Rase = RuseRossR135R124 on V° Rijr € End(V ® Ve V)
2 2
3 !

3
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R = local Boltzmann weights of a vertex in 3D



1. Tetrahedron and 3D reflection equations (3D analogue of the Yang-Baxter and reflection egs.)
Tetrahedron eq. [A.B. Zamolodchikov 80]

6 1 7 k
R124R135 Ro36 Ruse = RuseRo36R135R124 on V' Rijr € End(V®V ®V)

3D reflection eq. [Isaev-Kulish 97]

Resg K3579 Ro49 Ro58 K1478 K1236 456 = Ra56 K1236 K1478 258 R249 K 3579 689

MWOVIWRVRVRVeawWeV eV Ky € EndW e VoW eV

* Three upright open books on a desk with their spines undergoing a Yang-Baxter move.”



1. Tetrahedron and 3D reflection equations (3D analogue of the Yang-Baxter and reflection egs.)
Tetrahedron eq. [A.B. Zamolodchikov 80]

6 7 7 k
R124R135 Ro36 Ruse = RuseRo36R135R124 on V' Rijr € End(V®V ®V)

3D reflection eq. [Isaev-Kulish 97]

Resg K3579 Ro49 Ro58 K1478 K1236 456 = Ra56 K1236 K1478 258 R249 K 3579 689

MWOVIWRVRVRVeawWeV eV Ky € EndW e VoW eV

They are compatibility conditions of the quantized Yang-Baxter eq. and quantized reflection eq.,
which are the usual Yang-Baxter and reflection equations up to conjugation.

° Rlék KL&\LR o \% = e
L 3

Braid move Reflection move

° Kia'ka
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Now that R and K play the role of structure constants, they have to satisfy the compatibility condition
under introducing one more arrow:

Y
W




Rego K3579R249 Ro58 K1478 K1236 Ra56 = Ras6 K 1236 K1478 R258 R249K 3579 R689
LHS RHS

Resgo
Ryse

R4

K478

Ryse




Several interesting solutions are known for the tetrahedron equation
by Zamolodchikov, Baxter, Kapranov-Voevodsky, Bazhanov, Kashaev, Korepanov, Maillet,
Mangazeev, Sergeev, Stroganov, Bytsko-Volkov, K-Matsuike-Yoneyama, etc.

Only a few solutions are known for the 3D reflection equation by K-Okado, Yoneyama. (as of 2022)

There are quantum group theoretical approaches based on unantized coordinate rings by i
[Kapranov-Voevodsky 94] and PBW basis of U, by [Sergeev 08].

Atsuo Kuniba

Quantum Groups in
Three-Dimensional

They are equivalent beyond type A [K-Okado-Yamada 13] and have been developed Integrability
extensively with many applications.

In the approach, the diagrams in the previous pages emerge as wiring diagrams
for the reduced expressions of the longest element of the Weyl groups As and Cs.

The aim of this talk is to develop another approach [Sun-Yagi 22|, where these diagrams are
complemented by quivers that facilitate the efficient operation of quantum cluster algebras.

We focus on the Fock-Goncharov quivers, devise a new realization of quantum Y-variables
using q-Weyl algebras, and obtain a new solution.



2. New solution (emerging from quantum cluster algebra associated with the Fock-Goncharov quiver)

N
U D —UL—Di F\; y - UL —1: Zik UL —U:
Rz’jk — \Ijq(epz i+Pk—Uk—Dj zk)pjkehpz( k—U5) o (Uk z)’

,Cijkl — \Ijqz (epj +uj+pr—u—2pr+Aji ) \Ijq (epi +ui+pr—uk —pj+Aik )\Ijqz (epj +uj+pr—u—2pg+Aji )—1
A
X ,Djl e%pi(ul —uj)e—z%(Zuk—2uz-+ul—uj).

1 .
(—¢X;¢%) 00

U, (X)= quantum dilogarithm (2;Q)m = (1 — 2)(1 — g2) - - (1 — 2™ 1)
To(q°U) ¥ (V)™ =1+qU,

Key properties 1 _ 9 : :
U, (U), (W) = U, (W), (¢ UW)Y,(U) if UW = ¢>WU (pentagon identity)

d;;h  otherwise for tetrahedron eq. ) [pi; p;] = [ui, u;] = 0 : canonical variables

[pi, uj] = {25@7}2 i, € {3,6,9} ( [pi, u;] = 6ijh

pi; = transposition p; <> pj, u; <> U, qg=e", Aij = Ai — Aj



3. Derivation from quantum cluster algebra (Fock-Goncharov(09) g-deforming Fomin-Zelevinsky(07))

Seed = (B,Y) B <+ @ : quiver with \{ertices
= (bij)ij=1, bij = —bji € Z/2 : Exchange matrix (Type A only) gy
Y =(Y1,...,Y,), YV, =¢*¥Y;Y;: Y-variables ..
F(Y) = F(B,Y) : non-commutative fraction field generated by Y bij =1/2
P Ny

Mutation

pe(B,Y) = (B, Y ke{l,...,n}

ij = bij + [bki)+bkj + [brj]+bir  otherwise

v Yy, ! i=k
i zk[bmhyy[bmn [1%5] (1 4 gsen@r@m-1)y, ) 7o Cr) 5



pr on Y is decomposed into monomial part and dilog (automorphism) part
in two (4, —) ways so that the following diagram becomes commutative:

Y; e F(Y) —— F(Y) The(Y]) = qb’m'[d"i’~8]JrY;-Yk[d’“‘“]Jr (e =+ : sign)

l Tui .. dilog part

Y/ € F(Y) FY) ui,g = Ad(T,(YE)?), ie. ui,E(Yi) = U, (Y)Y, 0, (V) e
Tk,+

monomial part

Compositions of u} := Ad(¥q(YE)®) 7k, : F(Y') = F(Y) are called cluster transformations.

1 2 1 2
Example 6 —» o0 2 o =< o b1z = 1= —by1, V1Yo = ¢°YoY)
Y Y2 Y1 (14+qY, 1)1 Y, !
Mg +
To+ _ 4 V1Y3 > V(¢ Y)W (Y2) Yo = ¢ Yi(14 ¢ Y2) Y,
N\
Yy — uh Yi(14gY, 1)~!

’ 1\ — _ 1\ — _ S
To. Y > U (Y, )TN0 (Y, ) = Vil (¢?Y, )T, (Y ) 7



Wiring diagrams (red) and the Fock-Goncharov (FG) quivers (black): Type A,

FG quiver = dual of wiring diagram

% FG quivers are designed in such a way that
the braid move Ri93 and

7
(Yq,...,Ys) et (Y{,...,Yd) _ |
the mutation p4 are compatible.
(Y7 Vi ) [ Yi(1+qYs)
Y, q YY) Ya(l4 gV, 1)L
| Ys | gYaY, Ad(Ye(xa) Ya(1+4qY; 1) ! Associated cluster transformation
Y, Y, Y,
./ \ % ) \ Y:(1+g¥))

The transformation Rj23 of the wiring diagram satisfies the tetrahedron equation (as noted earlier)

Ri24R135R236 Ras6 = Rase 236 R135R124

Key idea: Upgrade it into an equality of cluster transformations



AQ‘—)Ag

Wiring diagrams (red) which are
successively transformed by
braid moves denoted by R;;

They are associated with the
FG quivers (black) which are
transformed by mutations u,

The figure shows that Ry
satisfies the tetrahedron equation
(as noted before).

Quantum cluster algebra ensures the equality
of the corresponding cluster transformations!

Our solution 1s extracted as an operator
whose adjoint induces the cluster
transformation corresponding to R




Embedding into q-Weyl algebras The g-commutativity becomes automatic in the

following parameterization using q-Weyl algebra

Introduce canonical variables:

[Pz‘auj] = R, [pz’apj] = [Uz',uj] =0

(Y7,..., YY) e*Pi eTUi are generators of g¢-Weyl algebra
VY] = Y]V with the relation ePie%i = ¢%ie%iePi
YIYy =g 'YgYy (g=e" rj=eV, Ay=A—X)
Y{Y; = ¢?Y}Y{
Y/Y: =YY/, etc Y; = ,412—16192—%2—171 Y’ =1 1op3—us
Y, = ﬁ2€p2+u2—p3 Y’ — nleprl-m

2
\ / Yy = kel Y] = K, 'ep2ru2ps

Y;l — E1Kg16p1+u1+p3_u3_p2 Y4’ — ,4;1 K36p3+u;z,+p1—u1—p2

canonical commutation relations Ys = KkaePstus Y, = KoePrtua—p



Moreover, in the g-Weyl algebra, not only the dilogarithm part but also the monomial part
of the cluster transformation

%) Y
1 |2V Ad(P
Yi| & | g Y3y, is realized as an adjoint as U eh = (Pr23)
/ —1
\)Y}/) \ Y%s ) Pro3 = pag g1 (us—u2) o 7R (us—u1)
5
Example

Ad(Pr23)(€7) = pas e 7P1(ua—uz) o B2 (us—u1) gp3 o = 42 (ug—u1) o= wP1(us—u2) o

= o3 6%?1 (u3—u2) ;=23 ,P3 o~ +p1(uz—us)

P23

=003 e P1—A23 oP3 Po3 = €2 —P1—A23

Underlined parts are treated by the Baker-Campbell-Hausdorff formula



Therefore, the cluster transformation p); becomes totally an adjoint as

py = Ad(V(Yy))7s,4 = Ad(¥4(Ys))Ad(Pr2s) = Ad(Ry23)
Ri23 = \IJq(Y4)P123 — \I;q(em+U1+p3—u3—p2+>\13)p236%191 (ug—uz)e)\—%&(u;a,—ul)

= R(A1, A2, A3)123

Theorem. The tetrahedron equation with spectral parameters 1s valid:

72’()\47 >‘57 )‘6)4567?’(/\27 >‘37 )‘6)2367?'()\17 >‘37 )‘5)1357?'()\17 >‘27 )\4)124
= R (A1, A2, A1)124R (A1, A3, As)135R (A2, As, As)236 R (A4, As, A6 )4s6




Outline so far

Braid moves of wiring diagrams satisfy the tetrahedron equation.

Associating FG quivers to the wiring diagrams, it can be upgraded to an equality of
cluster transformations, which 1s a rational transformations of g-commuting Y variables.

Embedding into the g-Weyl algebra makes the cluster transformation into the form Ad( Q)

( /R = product of quantum dilogarithm and the monomial part.)

R itself satisfies the tetrahedron equation.



Wiring diagrams (red) and the FG quivers (black) for K: Type C,

FG quivers are weighted. (2= weight 2 node, Exchange matrices are only skew-symmetrizable)

(Y17'°°7Y6) ‘ILLZM5,LL2 ()/1,77Y6,)

A single reflection move
corresponds to the
composition of three mutations

2% 4
6
The transformation K ,3, of the wiring diagram induces the following cluster transformation:

11 1 = Ad(W g2 (V) W (Y)W 2 (Va) ™) 7o s,



The cluster transformation induced by K,,3,

Y7 [ T \ [ Yido )

¥ Ys ATIASY,
N D20 e Ys Ad(T 2 (Y2)Tq(Y5) ¥ 2(Y2)"Y) | Ag'YzA A,
Holhs o Y/ = q—111/4Ysl = q—1A51Y4Y5A1
Yy ¢*Y Y, ¢*Ys 'Yy Ao
Y{) \¢"1Y2YY5 ) \¢ AT 1Y, Y5Ys)

A=14+(q+P)Ys+ Y21 +¢%Y2), A1 =1+qYs(1+¢%Y2), Az =1+¢Y5(1+ ¢°Y2)

Our solution (appearing after 3 pages) is an operator whose adjoint induces
this rational transformation of q-commuting Y variables.



For three reflecting wires (red), there are two ways to reverse the order of reflections: CQ — C 3

Kisse | H26,2 Kygso [ H2,10,2 — Kyeso | H373 Ki3se | #2363

Rz T K10

The corresponding transformations K and R satisfy the 3D reflection equation (as noted earlier)

R457 K4689 K2379 R258 Rl 78 K1356 R124 = Rl 24 K1356 Rl 78 R258 K2379 K4689 R457 ‘



Quantum cluster algebra ensures that the cluster transformations corresponding to the two sides coincide.
The next key step for extracting the solution 1s an embedding of Y-variables into g-Weyl algebras

—1 _pa—u2—2p1 /”L*'u*u* Y= K—1€p4—u4
Yi > k5 le , (Vi) Ye) <222 (Y., Y5) AT
)/2 o /§2[§Z1@p2+u2+p4_u4_2p3, Yé —> R4Kqy eP4TULTP2—U2 P37

/ —2
)/23 > Ky €p4+u4, p Yv3 — Ko 6p2+u2 pl’

— — / -1 —us3—
Y, — K] 1op1 u1 Z» Sy Y4 — K3 eP3 U3 P4
—1_pi14ui+pz—uz—p2 — | / —1_p3+uz+pi—u1—p2
Ys — Kkikg € Pe—UF=D2 Yo = Kk3ki e :
Ye > K3 eP3TUs—P4 Y — k1 ePrtuL

(p; and u; obey the canonical commutation relation)

The embedding makes the g-commutativity of Y; and Y;” variables automatic.



Under this embedding, the cluster transformation for K,;, becomes totally an adjoint as

popispty = Ad(K1234)

Ki234 = K(A1, A2, A3, Aa)1234

_ P2tuz+pa—us—2p3+Aag P1+ui1+p3—uz—pa2+Ais P2t+us+ps—us—2p3+Aaa)—1
= ‘Ifqz(e )\If (6 )\I/qz(e )

q

X p24 e%pl (U4—uQ)e%Zﬁ4(2U3—2u1+U4—uQ)

Theorem. The 3D reflection equation with spectral parameters 1s valid:

Ra57K4680K 2379 R 258 R178K1356 R 124 = R124K 1356 R178 R 258K 2379 K 4689 R 457

where R;jx = R(Ais Aj, Ak )ijr and Kijrr = K(Aiy Ajy Aky Atk




4. Tetrahedron equality as duality
A representation of the g-Weyl algebra ePie¥i = g2%ie%iePi on ®m1,m2,m3€Z3 Clmy,ma, ms)

ep’L 2’m,7,

m2am3>

m2am3> = q

ml’mz’m?’) - |m1?m27m3>|mz‘—>mi—la el

k—i q(b—k)(i—k—l-l)

b—k
Matrix elements : a,b,c,_ 2\ sa+tb b—{—c( ﬂl) ( K2 )
R ik = {a b cRuzsli, j k) = 327675 K3 K3 (4% ¢%)v—k

Substitution of this into the tetrahedron equality

Z Ry bybs (M1, A2, M) ROVS3 (A1, Mgy As) Re2ene (Mg, As, Ag) Rot2o28 (A4, As, Ae)

c1,b3,b5 c2,¢3,be C4,C5,C6
..... beEZ
§ : asq,as, ae az,a3,be a1,b3,bs b1,b2,b4
Rb4 bs,bs )\4’ )\57 )\6)Rb2,bg,66 (>\2’ )\37 AG)Rbl,Cg,CE, ()\17 )\37 >\5)Rcl,62,64 ()\17 >\2) >\4)1
..... bgEZ

is distilled into the duality of g-series under the interchange r <+— s:

—1)" n(n+1+2s) 1 —1)" n(n+1+2r)
(=1)"q (=1)"¢

1
(4%) s+t 2 (@®)n(0®)t-n(@®)ntr  (g2)rte 2 (@2)n(g?)t-n(qD)n+s

nez nez

Possible connections with dualities in supersymmetric gauge theories (see Yagi arXiv:2405.02870)



A similar duality is present also in the modular double setting,
where the matrix elements involve non-compact quantum dilogarithm (NCQD).

By (1) = e 1 / g~ 2w dw b2
— eXx — p—
’ Py R+i0 Sinh(wb) sinh(w/b) w 1=¢

The duality in that case emerges as an i1dentity of integrals, which 1s also reproduced by
a NCQD analogue of a classical Heine transformation.




5. Outlook

3D R for symmetric butterfly quiver
(Inoue-K-Sun-Terashima-Yagi, 24)

Consists of 4 mutations.

@)
1
. 2C7+4+uq1+us+wi —wotwg\—1 2C54+u1 —us+wi —wo+tws\—1
R_‘IJQ(G e ' ) \IJQ(e o ' ) Iﬂ4 I 3,504.8

X P\Ifq(e202+203_206+208+“1_“3+w1—w2+w3)q; (6202+2C'3+U1+u3+w1—w2+w3)

q

1 1
(ug—ug)wi eﬁko(—wl—w2+w3)eﬁ (AMru1+Aoua+Agus)

St|—

P=e P23

Generalizes and unifies many known solutions as
specializations of parameters in appropriate
representations of q-Weyl algebras or their modular doubles.

- Kapranov-Voevodsky (94) g-oscillator representation
- Bazhanov-Mangazeev-Seregeev (09) coordinate representation
- K-Matsuike-Yoneyama (22) momentum representation

* Inoue-K-Terashima (23, this talk) specializing parameters




5. Outlook

Quantum cluster algebras encompass
most of the prominent solutions of the
tetrahedron equation.

Captured by quantum cluster algebra for
square quiver [Inoue-K-Terashima 23]

(z|R|z’) ~ 6(z2+z3—25—5)
By (22 —z1 ) (Th— T, )
Py (2 —x1 -+ ) Pp(@2— 27 -+)
“quantum 2+1 evolution model”
[Sergeev 98, 10|

o

Réli?i? ~ 5’1,2—|—’L3 wpl (?’2 - il)wp2 (.72 - ]1)
717273 J2+73 Wps (]2 _ il)wp4 (’iz _ ]1)

“vertex formulation of ZBB model”

[Sergeev-Mangazeev-Stroganov 95|

Captured by quantum cluster algebra for
symmetric butterfly (SB) quiver [[-K-Sun-T-Yagi 24]

Fock-Goncharov quiver (this talk) is the special case where
only one of the four quantum dilogarithms ®; survives.

‘I)b(zl)q)b(ZQ)‘I)b(Z3)q)b(Z4)
q)b(Z3 <4 Z4 )

(z; = linear form of z1,...,x%5)

(z|Rlz") ~

moduar double of [K-Matsuike-Yoneyama 23]

I Fourier transform

(o|R|o") ~
. o1—03 - o3—01-"
“vertex-TRC” duality | §7 +72 572+ / PO i ) Lo\ Co kit
—~— _— 1 2 2 3 @b(z-'_ 01+g3)@b(z— Ul—{-; )

“quantum geometry R”

[Bazhanov-Mangazeev-Sergeev 09]

o

“vertex-IRC” duality

MY (IR ~ i Onitnd D o

—

NEZN Wp, (’I’L+ 2 )wp4 (’I’L—

“Zamolodchikov-Bazhanov-Baxter (ZBB) model”
[Bazhanov-Baxter 92]



Merci beaucoup pour votre attention!



