
Integrable Quantum Field Theories, Irrelevant 
Perturbations and Minimal Form Factors

Olalla Castro-Alvaredo 
Department of Mathematics 
City, University of London RAQIS24  

2-6 September 2024 



My talk today is based on the following preprints/papers:

1. Olalla Castro-Alvaredo, Stefano Negro and Fabio Sailis, Completing the 
Bootstrap Program for -Deformed Massive Integrable Quantum Field 
Theories, J. Phys. A57 265401 (2024); ArXiv:2305.17068 

2. Olalla Castro-Alvaredo, Stefano Negro and Fabio Sailis, Form Factors and 
Correlation Functions of -Deformed Integrable Quantum Field Theories, 
JHEP 09 2023 048; ArXiv:2306.01640 

3. Olalla Castro-Alvaredo, Stefano Negro and Fabio Sailis, Entanglement Entropy 
from Form Factors in -Deformed Integrable Quantum Field Theories, JHEP 
11 2023 129; ArXiv:2306.11064.  

4. Olalla Castro-Alvaredo, Stefano Negro and István M. Szécsényi, On the 
Representation of Minimal Form Factors in Integrable Quantum Field Theory, 
Nucl. Phys. B1000 (2024) 116459. ArXiv: 2311.16955

TT̄

TT̄

TT̄



As you can see, this is work with Stefano Negro, Fabio Sailis and István M. Szécsényi 

Lecturer, University of York (UK)

PhD Student at City, 
University of London (UK)

Postdoctoral Researcher at  
University of Modena (Italy)



1. Introduction



1. Introduction
There are many viewpoints on -perturbed theories and a large number of publications 
exploring those, but for us, the inspiration comes from the theory of integrable models. 
Three lines of work are particularly relevant/inspiring:

TT̄



1. Introduction
There are many viewpoints on -perturbed theories and a large number of publications 
exploring those, but for us, the inspiration comes from the theory of integrable models. 
Three lines of work are particularly relevant/inspiring:

TT̄

A. [Smirnov & Zamolodchikov’16]  -perturbations and their generalisations are 
integrable (i.e. we can find exact S-matrices)

⇒ TT̄



1. Introduction
There are many viewpoints on -perturbed theories and a large number of publications 
exploring those, but for us, the inspiration comes from the theory of integrable models. 
Three lines of work are particularly relevant/inspiring:

TT̄

A. [Smirnov & Zamolodchikov’16]  -perturbations and their generalisations are 
integrable (i.e. we can find exact S-matrices)

⇒ TT̄

B. [Cavagliá, Negro, Szécsényi & Tateo’16] If the original theory was integrable too, 
then a TBA analysis can be performed and interesting UV/IR behaviours investigated

⇒



1. Introduction
There are many viewpoints on -perturbed theories and a large number of publications 
exploring those, but for us, the inspiration comes from the theory of integrable models. 
Three lines of work are particularly relevant/inspiring:

TT̄

A. [Smirnov & Zamolodchikov’16]  -perturbations and their generalisations are 
integrable (i.e. we can find exact S-matrices)

⇒ TT̄

B. [Cavagliá, Negro, Szécsényi & Tateo’16] If the original theory was integrable too, 
then a TBA analysis can be performed and interesting UV/IR behaviours investigated

⇒

C. [Cardy & Doyon’20; Doyon, Durnin & Yoshimura’22]  The effect of a -perturbation 
can be interpreted as endowing UV degrees of freedom with a “finite length”.

⇒ TT̄



1. Introduction
There are many viewpoints on -perturbed theories and a large number of publications 
exploring those, but for us, the inspiration comes from the theory of integrable models. 
Three lines of work are particularly relevant/inspiring:

TT̄

A. [Smirnov & Zamolodchikov’16]  -perturbations and their generalisations are 
integrable (i.e. we can find exact S-matrices)

⇒ TT̄

B. [Cavagliá, Negro, Szécsényi & Tateo’16] If the original theory was integrable too, 
then a TBA analysis can be performed and interesting UV/IR behaviours investigated

⇒

C. [Cardy & Doyon’20; Doyon, Durnin & Yoshimura’22]  The effect of a -perturbation 
can be interpreted as endowing UV degrees of freedom with a “finite length”.

⇒ TT̄

The Bootstrap Program has been partially completed in A & B  next natural step is the 
computation of matrix elements of local fields and correlation functions. This is the classic 
Form Factor Program [Karowski & Weiss’78, Smirnov’90s]

⇒



1. Introduction
There are many viewpoints on -perturbed theories and a large number of publications 
exploring those, but for us, the inspiration comes from the theory of integrable models. 
Three lines of work are particularly relevant/inspiring:

TT̄

A. [Smirnov & Zamolodchikov’16]  -perturbations and their generalisations are 
integrable (i.e. we can find exact S-matrices)

⇒ TT̄

B. [Cavagliá, Negro, Szécsényi & Tateo’16] If the original theory was integrable too, 
then a TBA analysis can be performed and interesting UV/IR behaviours investigated

⇒

C. [Cardy & Doyon’20; Doyon, Durnin & Yoshimura’22]  The effect of a -perturbation 
can be interpreted as endowing UV degrees of freedom with a “finite length”.

⇒ TT̄

The Bootstrap Program has been partially completed in A & B  next natural step is the 
computation of matrix elements of local fields and correlation functions. This is the classic 
Form Factor Program [Karowski & Weiss’78, Smirnov’90s]

⇒

C provides a nice way to interpret some of our results (see later)



The S-Matrix



The S-Matrix
• If the original theory was itself 

integrable and relativistic, then the S-
matrix of the generalised -perturbed 
model is modified by a CDD factor. Here 
we focus on a single particle type.

TT̄



The S-Matrix
• If the original theory was itself 

integrable and relativistic, then the S-
matrix of the generalised -perturbed 
model is modified by a CDD factor. Here 
we focus on a single particle type.

TT̄
    Sα(θ) = S0(θ)Φα(θ), α = {α1, α2, …}

Φα(θ) = exp[−i∑
s∈𝒮

αsm2s sinh(sθ)]



The S-Matrix
• If the original theory was itself 

integrable and relativistic, then the S-
matrix of the generalised -perturbed 
model is modified by a CDD factor. Here 
we focus on a single particle type.

TT̄

•  represents the set of integer spins 
corresponding to the local conserved 
charges of the model. For integrable 
models these are typically odd integers.

𝒮

    Sα(θ) = S0(θ)Φα(θ), α = {α1, α2, …}

Φα(θ) = exp[−i∑
s∈𝒮

αsm2s sinh(sθ)]



The S-Matrix
• If the original theory was itself 

integrable and relativistic, then the S-
matrix of the generalised -perturbed 
model is modified by a CDD factor. Here 
we focus on a single particle type.

TT̄

•  represents the set of integer spins 
corresponding to the local conserved 
charges of the model. For integrable 
models these are typically odd integers.

𝒮

• The asymptotics of the sum can be very 
different if the number of terms is 
infinite. Here we consider a finite number 
only (often just one!)

    Sα(θ) = S0(θ)Φα(θ), α = {α1, α2, …}

Φα(θ) = exp[−i∑
s∈𝒮

αsm2s sinh(sθ)]



The S-Matrix
• If the original theory was itself 

integrable and relativistic, then the S-
matrix of the generalised -perturbed 
model is modified by a CDD factor. Here 
we focus on a single particle type.

TT̄

•  represents the set of integer spins 
corresponding to the local conserved 
charges of the model. For integrable 
models these are typically odd integers.

𝒮

• The asymptotics of the sum can be very 
different if the number of terms is 
infinite. Here we consider a finite number 
only (often just one!)

    Sα(θ) = S0(θ)Φα(θ), α = {α1, α2, …}

Φα(θ) = exp[−i∑
s∈𝒮

αsm2s sinh(sθ)]

[Cardy & Doyon’10]



Form Factor Program Introduction



Form Factor Program Introduction
• The form factor program is a set of equations whose exact solutions are matrix 

elements of local or semi-local fields in IQFT [Karowski & Weiss’78, Smirnov’90s]



Form Factor Program Introduction
• The form factor program is a set of equations whose exact solutions are matrix 

elements of local or semi-local fields in IQFT [Karowski & Weiss’78, Smirnov’90s]

   F𝒪
n (θ1, …, θn; α) := ⟨0 |𝒪(0) |θ1, …, θn⟩



Form Factor Program Introduction
• The form factor program is a set of equations whose exact solutions are matrix 

elements of local or semi-local fields in IQFT [Karowski & Weiss’78, Smirnov’90s]

• For a theory with no bound states, the form factor equations are:

   F𝒪
n (θ1, …, θn; α) := ⟨0 |𝒪(0) |θ1, …, θn⟩



Form Factor Program Introduction
• The form factor program is a set of equations whose exact solutions are matrix 

elements of local or semi-local fields in IQFT [Karowski & Weiss’78, Smirnov’90s]

• For a theory with no bound states, the form factor equations are:

   F𝒪
n (θ1, …, θn; α) := ⟨0 |𝒪(0) |θ1, …, θn⟩

 

 

F𝒪
n (θ1, …, θi, θi+1, …, θn; α) = Sα(θi − θi+1)F𝒪
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• There are several properties of interest:

1. The solution is very simple and general. The minimal form factors gets 
modified by a universal multiplicative factor, just like the S-matrix!

2. The solution depends on additional parameters not present in the S-matrix. 
In a sense, it contains its own CDD factor!

3. Understanding what the different choices of s actually mean is still an 
open question (more on this later).

β

 φ(θ; α) = e− iπ − θ
2π ∑s∈𝒮 αsm2s sinh(sθ)+∑s∈𝒮′ 

βsm2s cosh(sθ)



Higher-Particle Form Factors



Higher-Particle Form Factors
• For some theories and fields, it seems that higher particle form factors also factorise. 

We have shown this to be the case quite generally, and worked out the details for the 
Ising model.

 F𝒪
n (θ1, …, θn; α) = F𝒪

n (θ1, …, θn; 0)G𝒪
n (θ1, …, θn; α)



Higher-Particle Form Factors
• For some theories and fields, it seems that higher particle form factors also factorise. 

We have shown this to be the case quite generally, and worked out the details for the 
Ising model.

• Some important properties:

 F𝒪
n (θ1, …, θn; α) = F𝒪

n (θ1, …, θn; 0)G𝒪
n (θ1, …, θn; α)



Higher-Particle Form Factors
• For some theories and fields, it seems that higher particle form factors also factorise. 

We have shown this to be the case quite generally, and worked out the details for the 
Ising model.

• Some important properties:

1. This is quite general for symmetry fields (only constraint is that )γ𝒪 = ± 1

 F𝒪
n (θ1, …, θn; α) = F𝒪

n (θ1, …, θn; 0)G𝒪
n (θ1, …, θn; α)



Higher-Particle Form Factors
• For some theories and fields, it seems that higher particle form factors also factorise. 

We have shown this to be the case quite generally, and worked out the details for the 
Ising model.

• Some important properties:

1. This is quite general for symmetry fields (only constraint is that )γ𝒪 = ± 1

2. The function  can be written totally explicitly. It is typically an 
oscillatory function of the S-matrix and of  times a product of functions 

.

G𝒪
n (θ1, …, θn; α)

γ𝒪

φ(θ; α)

 F𝒪
n (θ1, …, θn; α) = F𝒪

n (θ1, …, θn; 0)G𝒪
n (θ1, …, θn; α)



Higher-Particle Form Factors
• For some theories and fields, it seems that higher particle form factors also factorise. 

We have shown this to be the case quite generally, and worked out the details for the 
Ising model.

• Some important properties:

1. This is quite general for symmetry fields (only constraint is that )γ𝒪 = ± 1

2. The function  can be written totally explicitly. It is typically an 
oscillatory function of the S-matrix and of  times a product of functions 

.

G𝒪
n (θ1, …, θn; α)

γ𝒪

φ(θ; α)

3. For local fields there can be an additional non-trivial multiplicative factor (like ).Θ
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∏
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∏
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∑
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• These statements apply both to mr large and small, although for  and mr 
sufficiently large there is a rapidity cut-off that can make the series convergent.
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upshot are divergent correlators for short distances . For 
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introducing an energy/momentum cut-off (Lambert’s W-function!)

α⋆ > 0

mr ≪ 1

2. When  the fundamental excitations 
acquire a “negative” length so both the UV 
and IR can probed. In a sense “extra space” 
is created at short distances. 
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•For  correlation functions exhibit power-law scaling at short distances, just like in 
CFT. The coefficients however, are now functions of  and there is no underlying CFT.

α < 0
α
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Here  in the two-particle approximation. The field  is the “energy” 
field in the Ising model which is proportional to .

z𝒪
2 (α) = 4Δ𝒪(α) ε

Θ
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• The sinh-Gordon model can be seen as the 
Ising model perturbed by an infinite 
number of irrelevant perturbations for 
carefully chosen couplings [LeClair’21; Ahn 
& LeClair’22]
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• There are several properties of interest:

1. The solution is very simple and general. The minimal form factors gets 
modified by a universal multiplicative factor, just like the S-matrix!

2. The solution depends on additional parameters not present in the S-matrix. 
In a sense, it contains its own CDD factor

 φ(θ; α) = e− iπ − θ
2π ∑s∈𝒮 αsm2s sinh(sθ)+∑s∈𝒮′ 

βsm2s cosh(sθ)

= e− ϑ
2π i log Φα(θ)Cβ(θ) with ϑ = iπ − θ and Cβ(θ) = e ∑s βsm2s cosh(sθ)

 Fmin(θ; α) = Fmin(θ; 0)φ(θ; α)



Minimal Form Factor Representations



Minimal Form Factor Representations
• Since the sinh-Gordon S-matrix can be written in the ” -form” then it 

follows that the sinh-Gordon MFF should somehow admit a “ ” 
representation as well.

TT̄
TT̄



Minimal Form Factor Representations
• Since the sinh-Gordon S-matrix can be written in the ” -form” then it 

follows that the sinh-Gordon MFF should somehow admit a “ ” 
representation as well.

TT̄
TT̄

• This is indeed the case: 



Minimal Form Factor Representations
• Since the sinh-Gordon S-matrix can be written in the ” -form” then it 

follows that the sinh-Gordon MFF should somehow admit a “ ” 
representation as well.

TT̄
TT̄

• This is indeed the case: 



Minimal Form Factor Representations
• Since the sinh-Gordon S-matrix can be written in the ” -form” then it 

follows that the sinh-Gordon MFF should somehow admit a “ ” 
representation as well.

TT̄
TT̄

• This is indeed the case: 

 FsG
min(θ) = FIsing

min (θ)e− ϑ
2π i log ΦsG

α (θ)CsG
β (θ) with ϑ = iπ − θ



Minimal Form Factor Representations
• Since the sinh-Gordon S-matrix can be written in the ” -form” then it 

follows that the sinh-Gordon MFF should somehow admit a “ ” 
representation as well.

TT̄
TT̄

• This is indeed the case: 
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“Integration 
constant” fixed by 

asymptotics
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• A byproduct of our investigation has been finding a new representation for the MFFs  
of standard IQFTs. This representation is totally explicit, convergent and numerically 
efficient, given in terms of elementary and (a finite number of) special functions. 

• Having this representation for sinh-Gordon means that we effectively have it for 
every diagonal IQFT since the S-matrix and MFF of sinh-Gordon is a “standard block” 
for more complicated theories [Dorey, Exact S-Matrices’98; Mussardo, Book’10] 

• This work also proves that the MFF “CDD” factor plays a crucial role in standard 
theories. It actually ensures that the MFF is analytic and has the desired 
asymptotics. Understanding its role for -models remains an open question.TT̄
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