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Variational approach in quantum mechanic

Let H be a “simple” Hamiltonian, such that its eigenfunctions are known exactly

H(g)|ψ(g)〉 = E0|ψ(g)〉

Consider now H ∼ H. We use |ψ(g)〉 as a trial wave functions

E (g) ≡ 〈ψ|H|ψ〉

Ground state energy EGS of H will be given by the choice of parameter g = g∗, such that

∂

∂g
〈ψ|H|ψ〉

∣∣∣∣
g=g∗

= 0

Alternative approach — perturbation theory order by order
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Many body systems

S. De Palo et. al., “Variational Bethe ansatz approach for dipolar one-dimensional bosons”

P. W. Claeys, et. al., “Variational method for integrability-breaking Richardson-Gaudin models”

De Palo et. al. — 1D gas with a dipole interaction (T is a kinetic term)

H = T + Vdipole ≡ T + g |ψ̄ψ|2 +
(
Vdipole − g |ψ̄ψ|2

)
≡ HLL(g) +

(
Vdipole − g |ψ̄ψ|2

)
H is Lieb-Liniger gas (exactly solvable model!) with a coupling constant g
Averaging w.r.t eigenvalues of HLL(g) and determining g = g∗ from the minimization
condition we obtain the ground state energy for the dipole gas
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Sinh-Gordon model

Integrable massive relativistict model

L =
1

2
(∂νϕ)(∂νϕ) + 2µ cosh(βϕ)

S-matrix is given

S(θ) =
sinh θ − i sin(πB)

sinh θ + i sin(πB)
, B =

β2

β2 + 1

Model is well defined on range 0 < β < 1
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1 Spectrum and TBA are computed by Zamolodchikov, Al. and Zamolodchikov, A.

2 Vacuum expectation values 〈. . . 〉 of vertex operator exp(αϕ) are computed by
Zamolodchikov, Al., Zamolodchikov, A., Fateev, V., Lukyanov, S.

3 Form factor bootstrap established by Babujian, H., Fring, A., Karowski, M., Smirnov F.

4 n-particles form factors are computed by F. Smirnov and Mussardo, G., Simonetti, P.

5 Form factors on a cylinder LeClair, A., Mussardo, G., Takács, G. and Pozsgay, B.
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(1+1)D ϕ4 theory

L =:
1

2
(∂νϕ)(∂νϕ) +

m2

2
ϕ2 +

λ

4!
ϕ4 :

Only one type of divergency

Figure: First order divergent tadpole diagram and corresponding counterterm

Broken symmetry

In strong coupling regime g = λ/m2 � 1 Z2 symmetry is broken!
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BrokenUnbroken

Figure: Phase structure of the ϕ4 theory in 2D (Chang, S.-J., 1976). Chang duality in a broken phase

The behaviour of the system is equivalent to the behaviour of the system with negative m2

term with both small g̃ = λ/µ2 and large g̃

L =:
1

2
(∂νϕ)(∂νϕ)− µ2

4
ϕ2 +

λ

4!
ϕ4 :

A. Hutsalyuk Variational method in quantum field theory 7 / 14



Variational approach
Integrable models and the variational approach

Computation on the cylinder
Speculation and conclusions

Variational approach in QFT

Variational approach for ϕ4: we compute expectation value of Hϕ4 on vacuum of
Sinh-Gordon theory and use β as a variational parameter

〈Hϕ4〉β = E0(β) +
m2

2
〈ϕ2〉β +

λ

4!
〈ϕ4〉β − µ〈cosh(βϕ)〉β

where E0 is a bulk energy of Sinh-Gordon

E0(β) ≡
〈

1

2
(∂µϕ)(∂µϕ) + µ cosh(βϕ)

〉
=

M2

8 sin(πB)

Can be compared with a Feynman perturbation theory of ϕ4 (built up to 8th order by Serone, M. et.

al., Ryckov, S. and Vitale, L. G.)
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Numerical results and comparison
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Figure: Energy density of ϕ4 as function of λ. Black line — minimization of energy, the blue line —
the vacuum energy of ShG with β =

√
λ. Violet line — perturbation theory up to O(λ8). Red line –

Borel resummation of the perturbation theory. The energy obtained through the variational principle
agrees with the Borel resummation within 2 · 10−3 for λ . 8
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Figure: Mass of Hϕ4 as function of λ. Black line — mass of ShG with the optimization of β = b∗,

blue line — classical solution β =
√
λ, violet line — perturbation theory up to O(λ8), red line — Borel

resummation of the perturbation theory. The mass estimate obtained through the variational principle
agrees surprisingly with the Borel resummation within 10−2 for λ . 8.
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Thermodynamic Bethe ansatz (TBA)

On the cylinder of radius R and length L→∞ pseudoenergy of particles is given by the
thermodynamic Bethe ansatz

ε(θ) = M R cosh θ −
∫ ∞
−∞

du

2π
φ(θ − u) log

(
1 + e−ε(u)

)
Where integration kernel is given by

ϕ(θ) = −i d
dθ

log S(θ)
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On the cylinder with radius R and length L→∞ the energy E0 is given by (Zamolodchikov &
Zamolodchikov)

E0 = R E0 −M

∫ ∞
−∞

dθ

2π
cosh θ log

(
1 + e−ε(θ)

)
where E0 is the bulk energy on the plane

E0 =
M2

8 sin(πB)
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LeClair-Mussardo theorem

Expaectation value of the operator O on the cylinder is given by

〈O〉R =
∞∑
n=0

1

n!

(
n∏

i=1

∫
dθi

(2π)
fσ(θi )

)
FO
c (θ1, . . . , θn)

e(θ) is the one-particle energy (determined by TBA), ε(θ) = e(θ)R,

fσ(θ) =
1

1 + eε(θi )R

n-particles connected form factors FO
c (θ1, . . . , θn) are defined by

FO
c (θ1, . . . , θn) = Finite Part lim

ηi→0
〈θn, . . . , θ1|O|θ1 + η1, . . . , θn + ηn〉
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Conclusions

• Variational approach is by order simpler and faster then the Feynman perturbation theory

• It is difficult ad hoc to estimate however the region in which the approach can be trusted

• The comparison with known results shows that the “radius of convergence” is much smaller
than Feynman diagrams combined Borel resummation technique

• Description of the ϕ4 in a broken phase (Bullough-Dodd model as a good candidate)

• Different models?

• Finite radius energy
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