Variational method in quantum field theory

A. Hutsalyuk

SISSA

based on upcoming work with M. Lájer, G. Mussardo, A. Stampiggi

RAQIS September 2024

э.

イロト イヨト イヨト イヨト

Variational approach in quantum mechanic

Let H be a "simple" Hamiltonian, such that its eigenfunctions are known exactly

 $H(g)|\psi(g)
angle = E_0|\psi(g)
angle$

Consider now $\mathcal{H} \sim \mathcal{H}$. We use $|\psi(g)
angle$ as a trial wave functions

 $E(g) \equiv \langle \psi | \mathcal{H} | \psi \rangle$

Ground state energy E_{GS} of \mathcal{H} will be given by the choice of parameter $g = g^*$, such that

$$\left. \frac{\partial}{\partial g} \langle \psi | \mathcal{H} | \psi \rangle \right|_{g=g^*} = 0$$

Alternative approach — perturbation theory order by order

Many body systems

S. De Palo et. al., "Variational Bethe ansatz approach for dipolar one-dimensional bosons"
P. W. Claeys, et. al., "Variational method for integrability-breaking Richardson-Gaudin models"
De Palo et. al. — 1D gas with a dipole interaction (T is a kinetic term)

 $\mathcal{H} = \mathcal{T} + V_{ ext{dipole}} \equiv \mathcal{T} + g |ar{\psi}\psi|^2 + \left(V_{ ext{dipole}} - g |ar{\psi}\psi|^2
ight) \equiv \mathcal{H}_{ ext{LL}}(g) + \left(V_{ ext{dipole}} - g |ar{\psi}\psi|^2
ight)$

 \mathcal{H} is Lieb-Liniger gas (*exactly solvable model*!) with a coupling constant gAveraging w.r.t eigenvalues of $\mathcal{H}_{LL}(g)$ and determining $g = g^*$ from the minimization condition we obtain the ground state energy for the dipole gas

Sinh-Gordon model

Integrable massive relativistict model

$$\mathcal{L} = rac{1}{2} (\partial_
u arphi) (\partial^
u arphi) + 2 \mu \cosh(eta arphi)$$

S-matrix is given

$$S(heta) = rac{\sinh heta - i \sin(\pi B)}{\sinh heta + i \sin(\pi B)}, \qquad \qquad B = rac{eta^2}{eta^2 + 1}$$

Model is well defined on range 0 $<\beta<1$

3

イロン 人間 とくほ とくほとう

- **1** Spectrum and TBA are computed by Zamolodchikov, AI. and Zamolodchikov, A.
- **2** Vacuum expectation values $\langle \dots \rangle$ of *vertex operator* $\exp(\alpha \varphi)$ are computed by Zamolodchikov, Al., Zamolodchikov, A., Fateev, V., Lukyanov, S.
- **③** Form factor bootstrap established by Babujian, H., Fring, A., Karowski, M., Smirnov F.
- **o** n-particles form factors are computed by F. Smirnov and Mussardo, G., Simonetti, P.
- 9 Form factors on a cylinder LeClair, A., Mussardo, G., Takács, G. and Pozsgay, B.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うらの

$$\mathcal{L} =: rac{1}{2} (\partial_
u arphi) (\partial^
u arphi) + rac{m^2}{2} arphi^2 + rac{\lambda}{4!} arphi^4:$$

Only one type of divergency

Figure: First order divergent tadpole diagram and corresponding counterterm

Figure: Phase structure of the φ^4 theory in 2D (Chang, S.-J., 1976). Chang duality in a broken phase

The behaviour of the system is equivalent to the behaviour of the system with negative m^2 term with both small $\tilde{g} = \lambda/\mu^2$ and large \tilde{g}

$$\mathcal{L} =: rac{1}{2} (\partial_
u arphi) (\partial^
u arphi) - rac{\mu^2}{4} arphi^2 + rac{\lambda}{4!} arphi^4:$$

イロト イヨト イヨト

Variational approach in QFT

Variational approach for φ^4 : we compute expectation value of \mathcal{H}_{φ^4} on vacuum of Sinh-Gordon theory and use β as a variational parameter

$$\langle \mathcal{H}_{arphi^4}
angle_eta = \mathcal{E}_0(eta) + rac{m^2}{2} \langle arphi^2
angle_eta + rac{\lambda}{4!} \langle arphi^4
angle_eta - \mu \langle \cosh(eta arphi)
angle_eta$$

where \mathcal{E}_0 is a bulk energy of Sinh-Gordon

$$\mathcal{E}_0(eta) \equiv \left\langle rac{1}{2} (\partial_\mu arphi) (\partial^\mu arphi) + \mu \cosh(eta arphi)
ight
angle = rac{M^2}{8 \sin(\pi B)}$$

Can be compared with a Feynman perturbation theory of φ^4 (built up to 8th order by Serone, M. *et. al.*, Ryckov, S. and Vitale, L. G.)

Numerical results and comparison

Figure: Energy density of φ^4 as function of λ . Black line — minimization of energy, the blue line — the vacuum energy of ShG with $\beta = \sqrt{\lambda}$. Violet line — perturbation theory up to $O(\lambda^8)$. Red line – Borel resummation of the perturbation theory. The energy obtained through the variational principle agrees with the Borel resummation within $2 \cdot 10^{-3}$ for $\lambda \leq 8$

Figure: Mass of \mathcal{H}_{φ^4} as function of λ . Black line — mass of ShG with the optimization of $\beta = b^*$, blue line — classical solution $\beta = \sqrt{\lambda}$, violet line — perturbation theory up to $O(\lambda^8)$, red line — Borel resummation of the perturbation theory. The mass estimate obtained through the variational principle agrees surprisingly with the Borel resummation within 10^{-2} for $\lambda \leq 8$.

イロト イヨト イヨト

Thermodynamic Bethe ansatz (TBA)

On the cylinder of radius R and length $L \rightarrow \infty$ pseudoenergy of particles is given by the thermodynamic Bethe ansatz

$$arepsilon(heta) = M R \cosh heta - \int_{-\infty}^{\infty} rac{du}{2\pi} \phi(heta - u) \log \left(1 + e^{-arepsilon(u)}
ight)$$

Where integration kernel is given by

$$\varphi(\theta) = -i \frac{d}{d\theta} \log S(\theta)$$

3

イロト 不得 トイヨト イヨト

On the cylinder with radius R and length $L \to \infty$ the energy E_0 is given by (Zamolodchikov & Zamolodchikov)

$$\mathsf{E}_0 = R \ \mathcal{E}_0 - M \int_{-\infty}^\infty rac{d heta}{2\pi} \cosh heta \ \log \left(1 + e^{-arepsilon(heta)}
ight)$$

where \mathcal{E}_0 is the bulk energy on the plane

$$\mathcal{E}_0 = \frac{M^2}{8\sin(\pi B)}$$

3

・ロット (雪) (日) (日)

LeClair-Mussardo theorem

Expactation value of the operator O on the cylinder is given by

$$\langle O \rangle_R = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=1}^n \int \frac{d\theta_i}{(2\pi)} f_\sigma(\theta_i) \right) F_c^O(\theta_1, \dots, \theta_n)$$

 $e(\theta)$ is the one-particle energy (determined by TBA), $\varepsilon(\theta) = e(\theta)R$,

$$f_{\sigma}(heta) = rac{1}{1+e^{arepsilon(heta_i)R}}$$

n-particles connected form factors $F_c^O(\theta_1, \ldots, \theta_n)$ are defined by

$$F_{c}^{O}(\theta_{1},\ldots,\theta_{n}) = \text{Finite Part}\lim_{\eta_{i}\to 0} \langle \theta_{n},\ldots,\theta_{1}|O|\theta_{1}+\eta_{1},\ldots,\theta_{n}+\eta_{n} \rangle$$

Conclusions

- Variational approach is by order simpler and faster then the Feynman perturbation theory
- It is difficult ad hoc to estimate however the region in which the approach can be trusted
- The comparison with known results shows that the "radius of convergence" is much smaller than Feynman diagrams combined Borel resummation technique
- Description of the φ^4 in a broken phase (Bullough-Dodd model as a good candidate)
- Different models?
- Finite radius energy