

Electromagnetic calorimetry for EIC

CNIS

universite

FACULTÉ DES SCIENCES

Université de Paris

R&D: SiPM readout of PWO crystals

Carlos Muñoz Camacho

AG GDR GI2I, June 24 (2024)

The EIC facility

- > Highly polarized electron / Highly polarized proton and light ions /Unpolarized heavy ions
- ➤ CME: ~ 20–140 GeV
- ➤ Luminosity: ~ 10³³⁻³⁴ cm⁻²s⁻¹

CNIS

FACULTE

universite

DES SCIENCES

L

Université de Paris

- Polarized electron source and 400 MeV injector linac to feed a rapid cycling synchrotron design to avoid depolarizing resonances up to the maximum e-beam energy of 18 GeV
- □ Polarized proton beams and ion beams based on existing RHIC facility
- 2 detector interaction points capability in the design

Motivation – the EIC science program

FACULTE

DES SCIENCES

Origin of spin:

How does the spin-1/2 of the nucleon arise from the spin of quarks, gluons and their orbital angular momenta?

Origin of mass:

How do massless gluons make up for most of the nucleon mass?

Gluons in nuclei:

Does gluon density saturate at high energy giving rise to a new regime of matter?

EIC project timeline

Project cost

- EIC detector: \$300M (\$200M) DoE: \$100M in-kind)
- EIC accelerator: \$1.3B (\$1.25B) DoE; \$50M in-kind)
- Other: management (\$200M), infrastructure (\$250M), pre-ops (\$50M), contingency...

EIC detector milestones

- Dec 2021: Detector design
- Currently: Detector R&D
- End 2025: TDR completed (CD-3), start of construction
- 2030: Detector commissioning
- 2031: Pre-ops \succ
- 2034: Start of physics program (CD-4)

CD-0, Mission Need Approved December 2019 **DOE Site Selection Announced** January 2020 CD-1, Alternative Selection and Cost Range Approved CD-3A, Long-Lead Procurement Approved **March 2024** CD-3B, Long-Lead Procurement Planned Approval March 2025 CD-2/3, Performance Baseline/Construction Start Plan

24/06/2024

SiPM readout of PWO crystals

June 2021

End 2025

Backward Ecal at EIC

Université de Paris

Electromagnetic (EM) calorimetry is key to any **EIC detector concept**

- Almost every channel needs to measured the scattered electron - EM e-endcap calorimeter :

-3.5 < η < -1

Region of physics enabled by the EEEMCal

ECal

High resolution in the forward region (endcap) can only be achieved with homogeneous materials, such as crystals

Requirements:

- Energy resolution: $2\%/\sqrt{E} + (1-3)\%$ \geq
- Pion suppression: 1:10⁴ \geq
- Minimum detection energy: > 50 MeV \succ

Technology choice: PWO crystals (2x2 cm²) with high density SiPM (16 3x3 mm² or 4 6x6 mm² per crystal)

24/06/2024

Lead tungsten crystals (PWO)

R&D carried out in ~2015-2020 to evaluate PWO worldwide suppliers of PWO (SICCAS & CRYTUR) after BTCP (main CMS provider) closed

- SICCAS showed poor quality control
- CRYTUR (new provider of PWO) produces now high quality crystals after several years of development.

FACULTE

DORSAN

universite

DES SCIENCES

Université de Paris

- > Optical transmittance, light yield homogeneity, radiation hardness studies done at IPN/IJCLab
- Optical bleaching successfully implemented to cure radiation damage effects (particularly relevant for high luminosity facilities like Jefferson Lab)

Nucl. Instrum. Meth. A956 (2020) 163375. ArXiv: 1911.11577

Radiation hardness (in collaboration with LCP)

SiPM readout

FACULTE

D'ORSAY

DES SCIENCES

- Solid-state photodetector
- Current pulse of 20-50ns with 10⁵-10⁶ electrons (i.e. gain similar to a PMT)
- Insensitive to magnetic fields

- Small size
- Linearity/dynamic range
- Significant dark noise
- Not very radiation hard
- With PWO, readout (few p-e) requires analog amplification
- ➢ For calorimetry at EIC, large dynamic range needed (~5 MeV − 15 GeV)

Collaboration with INFN, BNL, JLab

SiPM models under study

MPPC Feb. 3, 2022 SPECIFICATION SHEET S14160-6010PS/6015PS

HAMAMATSU

PHOTON IS OUR BUSINESS

Structure						
Parameters		S14160-6010PS	S14160-6015PS		Unit	
Effective photosensitive area		6.0 × 6.0			mm ²	
Pixel pitch		10	15		μm	
Number of pixels		359011	159565		-	
Window		Silicone resin			-	
Window refractive index	1.57			-		
Package	Surface mount type			-		

Parameters	Symbol	S14160-6010PS	S14160-6015PS	Unit
Spectral response range	λ	290 to 900		nm
Peak sensitivity wavelength	λр	460		nm
Photon detection efficiency at λp *2	PDE	18	32	%
Breakdown voltage	Vbr	38 +/- 3		V
Recommended operating voltage *3	Vop	Vbr + 5.0	Vbr + 4.0	V
Dark count rate	DCR	Typ. 3.0 / Max. 10		Mcps
Terminal capacitance at Vop	Ct	2500		pF
Gain	М	1.8 × 10 ⁵ 3.6 × 10 ⁵		-
Temperature coefficient of Vop	ΔTVop	34		mV/°C

HAMAMATSU PHOTON IS OUR BUSINESS

MPPC S14160-3010PS

FACULTÉ DES SCIENCES D'ORSAY

24/06/2024

SiPM readout of PWO crystals

PRELIMINARY

Pixel/channel

Dynamic range

SiPM specifications for backward ECAL

distance

RDO on

detector

RDO location

CNIS

3-5m

No

TBD

SiP	Μ	SiPM sta	ability	Pre-	amp	FEB, F	RDO
SiPM Size	6x6 mm2	Overvoltage	+5 V	Linearity	< 0.5 %	SiPM bias monitoring	Yes
Voltage	40-46 V	Stability required [mV]	TBD	Gain stability	< 0.5 %	Temperature monitoring	Yes
Array of SiPM	2x2	Bias voltage		Peak time	20 ns	FEB on detector	Yes
(summing)	EXE	accuracy	TBD	Charge		FEB accessibility	Between runs
channel 2.5 nF	Bias voltage		resolution	14-bit	FEB-RDO	3-5m	

TBD

Bias voltage

temperature

compensation

would be

preferred

current

Temperature

compensation

24/06/2024

10-10,000pC

160-360k

Time-hit

resolution

Double pulse

resolving

(TBD) 5 ns

10 ns(?)

Measurements at IJCLab

Waveform (top) and integrated signal (below) showing single p.e. signals in Hamamatsu S14160-6015, produced with a low-intensity LED.

CNIS

FACULTE

D'ORSAY

universite

DES SCIENCES

W

Université de Paris

- Linearity better than 3% in the region of interest
- Deviation compatible with statistical expectation (i.e. number of pixels)
- Low dark current: very small signal detectable (close to single photo-electron)

V. Chaumat, N. Pilleux (PhD student)

24/06/2024

Low energy reach

CNIS

Requirement: down to ~5 MeV in a crystal (~50 MeV cluster)

- Limited by dark current rate of SiPM
- Measurements of several high density models by Hamamatsu

SiPM size (mm^2)	Pixel size (μm)	pe at 5 MeV	S/N at 5 MeV
9	10	$\simeq 1.4$	8.0 ± 1.2
9	15	$\simeq 2.5$	14.2 ± 3.6
36	10	$\simeq 5.5$	2.9 ± 0.5
36	15	$\simeq 9.8$	32.4 ± 8.2

V. Chaumat, N. Pilleux (PhD student)

Laboratoire de Physique des 2 Infinis

Radiation damage

Irradiation tests at UCDavis (proton) beam (60 MeV), May 2024

CNIS

FACULTE

D'ORSAY

UNIVERSITE PARIS-SACLAY DES SCIENCES

W

Université de Paris

All SiPM models behave similar

Innermost SiPMs may need recovery mechanism (or replacement) to maintain the low energy reach of the detector

24/06/2024

24 ch/FEB 2856 ch total

brazed copper heatsink

0

aluminum plate (bolted to copper)

FFB

Concept for backward ECAL (G. Visser, Indiana U.)

24/06/2024

Block diagram

V reg

l mon

pipeline

(for presamples)

detection

FACULTE

DES SCIENCES

Proposal B: H2GCROC chip (OMEGA)

Many advantages:

- Lower power dissipation (by at least 1 order of magnitude)
- Input DAC to tune input voltage to compensate for breakdown voltage fluctuation
- Much lower cost

Several challenges:

- Very large capacitance SiPM for backward ECAL
- Stringent requirements on gain stability and linearity (<0,5%)

New PhD thesis started for EIC ASIC developments (Pedro Dumas, OMEGA)

In collaboration with LLR (M. Nguyen, O. Le Dortz, L. Kalipoliti)

24/06/2024

Beam-test prototype

- Next milestone: energy resolution measurements in beam •
- Beam test in August 2024 at CERN (4 instrumented channels) and ٠ October 2024 (DESY) with the fully instrumented prototype (25 channels)
- Progress on the mechanical design of a 5x5 prototype ٠
- Different readout (16: 3×3 mm² / 4: 6×6 mm² SiPM)
- Compatible with different front-end electronics (discrete/ASIC)

FACULTE

DORSAY

universite

DES SCIENCES

Université de Paris

L

SiPM PCB design: Thi Nguyen-Trung (IJCLab)

Mechanical design: J. Bettane (IJCLab)

- Readout of PWO crystals with SiPM will be first implemented at EIC
- > Several challenges for high resolution EM calorimetry:
 - Large dynamic range
 - Small energy reach
 - Dark current, radiation damage
- Readout solution with HGCROC ASIC underway
- > Upcoming beam test to evaluate performance
- ➤ Start of construction: ~2026

CNIS

Université de Paris

Back up

24/06/2024

News from the EIC project

FACULTE

DORSAN

DES SCIENCES

des 2 Infinis

EIC detector milestones

- Dec 2021: Detector design
- Jan 2024: R&D completed (CD-2) \succ
- Apr 2025: TDR completed (CD-3), \succ start of construction
- 2030: Detector commissioning \geq
- \succ 2031: Pre-ops
- 2034: Start of physics program (CD-4)

Recent news

- PbWO4 Final Design Review : July 21 2023
- SiPM Final Design Review: September 14, 2023

Long term procurement of PWO crytals and SiPM can start

> 2023 NSAC Long-Range Plan: October 4, 2023

Recommendation 3: EIC construction

Requirements

DES SCIENCES

D Physics:

- Minimize the material & space between crystals
- Minimize material in front of the detector
- To be as close as possible to the beampipe
- Gain monitoring system (1 fiber/crystal)

Thermal:

- Operation at 20°C (room temp)
- Required stability on crystal temperature: +/- 0.1°C

Installation:

- Removal of the detector in one block (without disassembly)
- Clearance of 5 mm between the beam pipe and the DIRC frame

Université de Paris

- The Catholic University of America (contact: Tanja Horn, hornt@cua.edu)
- Lehigh University (contact: Rosi Reed, rosijreed@lehigh.edu)
- University of Kentucky (contact: Renee Fatemi, renee.fatemi@uky.edu)
- MIT and MIT-Bates Research and Engineering Center (contact: Richard Milner, milner@mit.edu)
- Florida International University (contact: Lei Guo, leguo@fiu.edu)
- James Madison U. (contact: Gabriel Niculescu, gabriel@jlab.org)
 - Abilene Christian University (contact: Larry Isenhower, Idi00a@acu.edu)
 - Ohio University (contact: Justin Frantz, frantz@ohio.edu)
 - College of William & Mary (contact: Cristiano Fanelli, cfanelli@wm.edu)
 - AANL, Armenia (contact: Ani Aprahamian, aapraham@nd.edu)
 - Charles University Prague, Czech Republic (contact: Miroslav Finger, Miroslav.finger@cern.ch)
 - IJCLab-Orsay, France (contact: Carlos Munoz-Camacho, munoz@jlab.org)

S

FACULTE

universite

DES SCIENCES

CNIS

Université de Paris

Prototype Beam Test Campaigns

FACULTÉ
 DES SCIENCES
 PARIS-SACLAY
 D'ORSAY

Université de Paris

HyCal (pre-2014) 1152 PbWO₄ crystals (PWO-I) SICCAS/China

3x3 prototypes (2018/19) 9 PbWO₄ (PWO-II) crystals CRYTUR/Czech Rep.

NP 12x12 144 P

12x12 prototypes (2019) 144 PbWO₄ (PWO-II) crystals CRYTUR/Czech Rep/

CNIS

04/12/2023

Work Breakdown Structure

Laboratoire de Physique	WBS Title	EIC WBS	WBS Dictionary Description	
des 2 Infinis	EEEMCAL Project	6.10.05.01	Construction of the EEEMCAL. The EEEMCAL is an electromagnetic calorimeter for measurement of the inclusive processes physics in the electron-going direction at the ELC	
NSF – EEEMCal MSRI EIC PROJECT	Radiator	6.10.05.01.01	Radiation detectors consisting of scintillating crystals (PWO) and thin reflector sheets. These provide the detection of energetic electrons	CUA, Kentucky, JMU, AANL, Charles U.
Crystals SIPM LV/HV OH-Det, FEB Distrib. Cabling ASIC PbWO ₄ → SIPM → FEB → Flash ADC → RDO - DAM - Disk/CPU Detector Towers → Find Boards ADC → RDO - DAM - Disk/CPU Detector Towers → RDO - DAM - Disk/CPU	Photosensors	6.10.05.01.02	Photosensors consisting of multi-pixel photon counters (MPPC) grouped into an array to maximize surface coverage of the PWO blocks, along with printed circuit boards to which the MPPC are also attached for analog readout.	OU, Lehigh, ACU
	Mechanical Structure	6.10.05.01.03	Mechanical structure including installation fixtures and a cooling system providing thermal stabilization, which is important for crystal performance.	IJCLab, MIT
If ASICs will be used this would basically be "FEE"	Signal Processing/DAQ	6.10.05.01.04	Signal Processing/DAQ providing the electronics to transmit the signals to the data analysis modules.	FIU
OMEGA, Laboratoire Leprince-Ringuet (LLR)	Simulations/Software	6.10.05.01.05	Software libraries and infrastructure foundation for analyzing the EEEMCAL detector data and simulating it.	W&M

04/12/2023

Ansys Transient Thermal Analysis

Studies by the JLab DSG for the NPS setup

- > Temperature stabilization has a long time constant: it takes >1h to reach equilibrium after a change
- > Working with Ansys to understand the stabilization temperature (disagreement with previous steady-state simulations)

FACULTE

DORSAN

universite

DES SCIENCES

CNIS

١Å

Université

de Paris

The EIC project detector: ePIC

PbWO₄ EMCal in backward

Finely segmented EMCal

+HCal in forward direction

Outer HCal (sPHENIX re-use)

Tracking:

- New 1.7T solenoid
- Si MAPS Tracker ٠
- MPGDs (µRWELL/µMegas)

PID:

- hpDIRC ٠
- mRICH/pfRICH
- dRICH •
- AC-LGAD (~30ps TOF)

٠

Calorimetry:

direction

04/12/2023