

ATLAS Inner tracker (ITk) upgrade in view of HL-LHC

Dimitris Varouchas (IJCLab-Orsay, CNRS/IN2P3)

Réunion GDR DI2I, 26/6/2024

- This is **NOT** an R&D talk
- R&D is finished (lasted more than 10 years), and we are now entering the production phase
- Let's not to forget that the primary goal of detector R&D (beyond advancing the knowledge) is to build a detector at the end
- So, need to design a detector that meets the physics goals of the experiments and is: affordable; buildable given the human resources and available infrastructure; (and since recently) need also to take into consideration sustainability, and environmental impact

LHC timeline including HL-LHC

- **HL-LHC** phase currently scheduled to start in **2029**
- **Data taking foreseen up to ~2040**

- Instantaneous luminosity to increase from 2 to \sim 7.5 \times 10³⁴ cm⁻²s⁻¹ : very high detector occupancy
- Pile-up increase to \sim 200, from \sim 60 currently
- **Estimated integrated luminosity at the end of HL-LHC: 3000-4000 fb-1**

• **Major upgrades are planned for all the LHC experiments to cope with these very harsh condition**

ATLAS X ITK ATLAS upgrades for HL-LHC

- New **muon chambers** at the innermost part
	- Trigger efficiency and momentum resolution improvements
- **High Granularity Timing Detector** (HGTD)
	- Improved pileup suppression at the forward region
- Upgrades on calorimeter and muon chambers off-detector electronics and trigger
- **New inner tracker (ITk)**
	- Higher granularity
	- Reduced material budget
	- Radiation hardness
	- Faster readout
	- Goal: new tracker to have similar, or better, performance compared to current inner detector

Focus of this talk

Inner Tracker upgra

STRIP END-CAPS PIXELS Strips Pixels

- **All-silicon inner** $|\eta|$ < 2.5 (curre
	- Improved
	- Similar tr pile-up of
		- r [mm] 14 12 10 8 6 $\overline{4}$ \overline{c}

• **Outer strip detector: 4 barrel layers + 6 end-cap disks**

• **Inner pixel detector: 5 barrel layers + inclined and vertical rings**

- \approx 13m² of active area
- ~8500 modules
- 5.1 Giga-pixels
- Pixel pitch: 25x100 μm² for L0, 50x50 μ m² elsewhere **Pixel pitch at L0:** 50x250 μ m²

Current pixel system \sim 1.9 m² of active area 2000 modules 92 Mega-pixels

Inner Tracker upgrade

STRIP END-CAPS

- **All-silicon inner** $|\eta|$ < 2.5 (curre
	- Improved
	- Similar tr pile-up of

• **Outer strip detector: 4 barrel layers + 6 end-cap disks**

• **Inner pixel detector: 5 barrel layers + inclined and vertical rings**

- \approx 13m² of active area
- ~9000 modules
- 5.1 Giga-pixels
- Pixel pitch: 25x100 μm² for L0, 50x50 μm2 elsewhere

26.06.2024 **Réunion GDR DI2I** Réunion GDR DI2I

Focus today

- Big pseudorapidity coverage, increased number of layers wrt to current inner detector
	- Minimum 9 hits per track at central region, 13 hits at the forward region
	- Hits redundancy is mandatory to solve the high combinatorics expected at HL-LHC

• ITk-Pixel detector composed by 3 parts:

• **Outer barrel:** 3 barrel layers, 2x23 inclined disks → CERN, **France**, Germany, Japan, Switzerland

- **Outer endcap:** 2x28 outer disks
- \rightarrow UK, Italy, Japan
- **Inner system:** 2 barrel layers and 2x44 disks \rightarrow USA, Germany

ITk-Pixel building blocks: modules

Hybrid pixel detector technology: passive silicon sensors **bump-bonded** to readout chips (bare module)

.

- **Chips** are thinned to 150 μm
- **Sensors**

ATLASXITK

- **L2, L3 and L4 planar sensors,** 150 μm thick
- **L1 planar sensors,** 100 μm thick
- **L0 3D sensors,** 250 μm thick
- **Flexible printed circuit board** (Flex PCB) glued on bare module, and then **wire bonded to ASIC**
- **Two** types of **modules**
	- **Quad** modules: **4 FEs** bump bonded to **one sensor**; Layer 1, 2, 3 and 4
	- **Triplet** modules: **3 single-FE** bare modules **connected** to the **same flex**; Layer 0

Readout chip ATI AS

- All modules will be read out with **ITkPix front-end readout chip**
	- 65 nm CMOS technology
	- Designed by RD53 collaboration (https://rd53.web.cern.ch) over ~10 years, common for ATLAS and CMS
- Stringent requirements compared to current FE-chips
	- 10 x higher radiation hardness
	- 100 x larger effective readout bandwidth
	- Same power consumption $(1 W/cm2)$
- ITKPIxV1.1 used for pre-production, ongoing now.
- ITkPixV2 production chip $-$ first wafer delivered in September 2023, more wafers to be delivered the next days!
- Ø **CPPM, IJCLab, LPNHE** participated in the design and validation of the chip within RD53 collaboration
- \triangleright **IJCLab** contributes in the FE wafer probing, an important QC test prior to bump bonding (*Jérôme Ren poster*)

- **Outer barrel** is the **largest system** of ITkPixel detector
- ~4.5k modules, more than half of total ITkPixel
- **French** activities are organised in **two clusters**
	- **Paris cluster** for module assembly and testing: **IJCLab, IRFU, LPNHE**
	- **Alpaca cluster** for loading and integration: **CPPM, LAPP, LPSC**

- **Outer barrel** is the **largest system** of ITkPixel detector
- ~4.5k modules, more than half of total ITkPixel
- **French** activities are organised in **two clusters**
	- Paris cluster for module assembly and testing: **IJCLab, IRFU, LPNHE** *Strong bias in my talk from now on*
	- **Alpaca cluster** for loading and integration: **CPPM, LAPP, LPSC**

0 | 0 | 0 | 0 | 0 | 0 <u>na ololololo</u> **Modules production**

- L1, L2, L3 and L4: **quad modules**
- **~8k** installed **quad modules**, out of **~8.4k** modules in total: **95% quads modules**
- Module production yield: $\sim 1.4 \implies$ need to produce $\sim 11.8k$ modules in total
- Huge assembly load, shared among **14 assembly institutes** (USA, UK, **France**, Germany, Italy, CERN, Japan) ⇒ important effort in ATLAS to **develop common procedures** as much as possible

ATLAS

Paris cluster deliverables

- We are committed (MoU) in building 33% of the ITk-Pixel outer barrel (OB) quad modules
- Paris cluster share ⇒ **1.5k good modules**
- Obviously, we need to consider the module production and loading/integration yield (∽1.4)
- Paris cluster deliverable including yield: ∽**2100 modules**

- In absolute numbers
	- We are building the **largest share of modules in OB**
	- Together with Japan (though they externalise), the **largest share of modules in ITk-Pixel**
- Production is expected to start after this summer and is scheduled to last 2 years
- Considering 40 weeks per year (including holidays and downtime problems) \rightarrow 80 weeks to build 2100 modules è Need to be producing **27 modules / week !**

Modules production in a nutshell

• Module **pre-production** is currently underway – produce ~5% of total modules to test assembly, testing, and loading procedures

• Use assembly jigs and stencil method to glue bare module and flex PCB

• Then wire bond

- ~700 wire bonds per quad module
- Delicate operation depending a lot on cleanness of the bondable surfaces
- When/If everything works smoothly, this is about 1-2 hours for a fully
automated WB machine

• Module **pre-production** is currently underway – produce ~5% of total modules to test assembly, testing, and loading procedures

After assembly, modules undergo rigorous electrical Quality Control (QC) testing with several stages:

Testing procedure includes several tests checking chip powering, sensor IV, and p

Modules production in a number **ATLAS** Module assembly:

• Module **pre-production** is currently underway – produce ~5% of total modules to test assembly, testing, and loading procedures

• Module production is a **globa** assembled/tested at 25 differ

Bare module (from industry)

Huge book-keeping effort (need to keep the μ modules and testing results!) tools and database

$|\bullet|\bullet|\bullet|\bullet|\bullet|\bullet$ **Test beam results ATLAS**

- Continuous test beam campaigns to test ITk-Pixel modules irradiated with the fluences expected at HL-LHC
- Here is an example from a quad module that has been irradiated up to 4 \cdot 10¹⁵ n/cm²
- Module tested September 2023 test-beam campaign at CERN SPS

• Both irradiated and unirradiated modules meet the efficiency requirements

Loaded supports and demonstrators

Tools developed for precision placing

- Moving from building individual modules to loading local support structures: critical test of **loading procedure, cooling, services, and readout**
- Various loaded-local supports have been built with modules using prototype version of ITkPix chip
- \triangleright Valuable lessons in understanding how to overcome challenges with operating larger detector
- \triangleright Next step: test similar structures with pre-production modules

Outer end-cap ring:

Demonstrators development for both endcap and outer barrel

-
- ATLAS is building a **new full silicon tracker tracker**, **ITk-Pixel**, to face the harsh conditions of HL-LHC
	- Extended in η; Radiation hard
	- Low material budget; Fine granularity
	- Fast readout
	- \triangleright Performance: same or better comparted to current inner detector

Ongoing

Upcoming

Complete

- Project is entering the final production stage
- Concerning modules, production should start after this summer and is expected to last 2 years
- ITk-Pixel ready for insertion in 2027: very challenging schedule
- HL-LHC expected to start in 2029

Bonus slide

ITk-Pixel *and* R&D ATLAS

- Described also in the TDR, partial replacement of ITk-Pixel detector is foreseen at \sim half lifetime (1500-2000 fb⁻¹)
	- The **replacement** involves the areas **more exposed** to **large fluences** and **doses**
- It is the full **inner system** that is planned to be replaced after about half lifetime (**LS4**? **LS5?**)
	- Similar requirements as for the planned ITk, but **improvements in terms of pixel size, material budget and timing will be attempted**
	- **Active R&D on this topic:** Monolithic sensors, CMOS 28 nm techno for FE (Moshine's presentation)**,** advanced interconnection (Giovanni's presentation) **….**
- Similar replacement is planned for CMS tracker as well
- This upgrade will be a preliminary step towards future hadrons colliders

for (HL)-LHC Schedule Indicative timeline out to 2041

Material budget

• **Reduced material** with respect to current inner tacker

- **Sophisticated** CO2 **cooling system**
- Ultra light **carbon structures** for mechanical mounting
- **Innovative serial powering** for the ITk-Pixel detector: less cabling/

Extensive R&D has been done to create silicon sensors that can withstand the intense radiation of the HL-LHC

Planar sensors:

- Radiation hard to \approx 4 x 10¹⁵ n/cm² (@ 4000 fb⁻¹) \bullet
- n-in-p technology \bullet
- Bias voltages up to 600 V \bullet
- Vendors: HPK, Micron, FBK \bullet

Pixel size varies in inter-chip region:

3D sensors:

- Radiation hard to \approx 2 x 10¹⁶ n/cm² (@ 2000 fb⁻¹)
- Used only in innermost ITk layer (L0)
- Technology demonstrated in ATLAS IBL
- Bias voltage up to 250 V
- **Vendors: SINTEF, FBK**

TITA Serial powering **ATLASX**

- In order to minimize material budget, a **serial powering scheme** will be utilized ITkPix chips are equipped with Shunt Low Drop Output (SLDO) power regulators
	- When powered with constant current, SLDO's dynamically adjust shunt current to have constant local voltages on chip
	- Modules will be powered in series with constant current in serial powering chain, chips on a module will be powered in parallel \rightarrow improve reliability of chain in case of chips breaking
		- \bigcirc I_{in} Module Module Module
- Ser
	- \bullet

 \bullet

26.06.2024 **Réunion GDR DI2I** 28.06.2024

Technology challenges

- Large area ASIC, 20 x 20 mm², large area sensor 40 x 40 mm²
- High density, low pitch bump bonding 50 um x 50 um
- Radiation hardness
- Large temperature range: operating at [-25 to -10°C] to limit radiation damage effects, heat to +20°C during maintenance
	- Avoid delamination of bumps: thin metal flex circuit
- Low-mass services, to reduce X_0
- Serial powering (see talk by F. Hinterkeuser, this session)
- Large Bias voltage across thin air gap (10 μ m) \rightarrow conformal coating
	- 54 quad modules (RD53a) coated with parylene N
	- Excellent reproducibility and adhesion
	- Both commercial and in-house lab coating
	- Tested after irradiation and thermal cycles

Bias

<u>9000000</u>
1000000 **HL-LHC rich physics ATLAS**

- Estimated integrated luminosity of HL-LHC: **3000-4000 fb-1**
- Highlights of HL-LHC physics programme
	- High precision on **Higgs boson properties**: couplings, mass, width, access to self coupling
	- Increase precision in **EW sector measurements**: vector boson scattering, triboson couplings, rare processes
	- **Search for BSM physics**: SUSY, dark matter, exotic resonances, long-lived particles, etc
- Huge statistics: **stringent test of our physics models**
- **Indirect search of new physics** through deviations from the theory (differential measurements, EFTs, etc)

- **Higgs boson couplings**
- Di-higgs production
	- 40% signal strength
	- 4σ significance aft
- \triangleright LHC history teaches us *(We will most likely do*

26.06.2024 **Réunion GDR DI2I** 31.1 and 2010 **Réunion GDR DI2I**

- Need to have robust trac at x5 pileup wrt to Run2-
	- Similar performance
	- Very high efficiency a

