Superconducting Josephson Traveling-Wave Parametric Amplifiers

<u>Gwenael Le Gal</u>, G. Butseraen, A. Ranadive, G. Cappelli, B. Fazliji, A. Martin and N. Roch

Néel Institute, QuantECA team

SSI

LENT

WAVES

SOC

An ideal amplifier adds white noise:

$$T_N \ge \frac{\hbar\omega}{2k_B} = T_{SQL}$$
 per mode amplified

C. M. Caves, Phys. Rev. D, 26, 8 (1982)

An ideal amplifier adds white noise:

 $T_N \ge \frac{\hbar\omega}{2k_B} = T_{SQL}$ per mode amplified

A dissipative amplifier at T > 0 K: $T_N > T_{SQL'}$

HEMT amplifier: $T_N \sim 10 T_{SQL}$

Superconducting amplifier

C. M. Caves, Phys. Rev. D, 26, 8 (1982)

An ideal amplifier adds white noise:

 $T_N \ge \frac{\hbar\omega}{2k_B} = T_{SQL}$ per mode amplified

A dissipative amplifier at T > 0 K: $T_N > T_{SQL}$,

HEMT amplifier: $T_N \sim 10 T_{SQL}$

Superconducting amplifier

$$T_N = T_{N,1} + \frac{T_{N,2}}{G_1}$$

C. M. Caves, Phys. Rev. D, 26, 8 (1982)

Gwenael Le Gal

gwenael.le-gal@neel.cnrs.fr

An ideal amplifier adds white noise:

 $T_N \ge \frac{\hbar\omega}{2k_B} = T_{SQL}$ per mode amplified

A dissipative amplifier at T > 0 K: $T_N > T_{SOL}$,

HEMT amplifier: $T_N \sim 10 T_{SOL}$

gwenael.le-gal@neel.cnrs.fr

 $I = I_c \sin(\phi) \approx I_c \phi + \chi^{(3)} \phi^3 + \dots \implies 4 \text{WM process} \propto \chi^{(3)} \hat{a}_i^{\dagger} \hat{a}_s^{\dagger} \hat{a}_p \hat{a}_p + h.c. \qquad \text{Energy: } 2\omega_p = \omega_s + \omega_i$

Cooper pair Tunneling Superconducting Unsulator - 30 Å

Momentum: $2k_p = k_s + k_i$

S. E. Rasmussen et al., PRX Quantum, 2021

 $I = I_c \sin(\phi) \approx I_c \phi + \chi^{(3)} \phi^3 + \cdots \implies 4 \text{WM process} \propto \chi^{(3)} \hat{a}_i^{\dagger} \hat{a}_s^{\dagger} \hat{a}_p \hat{a}_p + h.c. \quad \text{Er}$

Energy: $2\omega_p = \omega_s + \omega_i$

Momentum: $2k_p = k_s + k_i$

S. E. Rasmussen et al., PRX Quantum, 2021

 $I = I_c \sin(\phi) \approx I_c \phi + \chi^{(3)} \phi^3 + \cdots \implies 4 \text{WM process} \propto \chi^{(3)} \hat{a}_i^{\dagger} \hat{a}_s^{\dagger} \hat{a}_p \hat{a}_p + h.c. \qquad \text{Energy}$

Energy: $2\omega_p = \omega_s + \omega_i$

 $I = I_c \sin(\phi) \approx I_c \phi + \chi^{(3)} \phi^3 + \cdots \implies 4 \text{WM process} \propto \chi^{(3)} \hat{a}_i^{\dagger} \hat{a}_s^{\dagger} \hat{a}_p \hat{a}_p + h.c. \quad \text{Energy}$

Energy: $2\omega_p = \omega_s + \omega_i$

4-wave mixing: $\Delta k_{lin} = 2k_p - k_s - k_i$

4-wave mixing: $\Delta k_{lin} = 2k_p - k_s - k_i$

4-wave mixing: $\Delta k_{lin} = 2k_p - k_s - k_i$

4-wave mixing: $\Delta k_{lin} = 2k_p - k_s - k_i$

Gwenael Le Gal

gwenael.le-gal@neel.cnrs.fr

Phase matching: implementation

Dispersion engineering

C. S. Macklin et al., Science, 350, 6258 (2015) L. Planat et al., Phys. Rev. X, 10, 021021 (2020)

Gwenael Le Gal

Phase matching: implementation

Kerr non-linearity engineering

A. Ranadive et al., Nature Comm., 13, 1737 (2022)

Dispersion engineering

C. S. Macklin et al., Science, 350, 6258 (2015) L. Planat et al., Phys. Rev. X, 10, 021021 (2020)

Gwenael Le Gal

- Superconducting qubit readout
- Multiplexed readout
- A. Remm et al., Phys. Rev. Appl., 20, 034027 (2023)
- S. Krinner et al., Nature 605, 669-674 (2022)
- L. Ranzani et al., Appl. Phys. Lett. 113, 242602 (2018)

- Superconducting qubit readout
- Multiplexed readout
- A. Remm et al., Phys. Rev. Appl., 20, 034027 (2023)
- S. Krinner et al., Nature 605, 669-674 (2022)
- L. Ranzani et al., Appl. Phys. Lett. 113, 242602 (2018)
- Broadband photo-detection
- D. Fraudet et al., arXiv:2405.00411v1 (2024)

- Superconducting qubit readout
- Multiplexed readout
- A. Remm et al., Phys. Rev. Appl., 20, 034027 (2023)
- S. Krinner et al., Nature 605, 669-674 (2022)
- L. Ranzani et al., Appl. Phys. Lett. 113, 242602 (2018)
- Broadband photo-detection
- D. Fraudet et al., arXiv:2405.00411v1 (2024)

0.020

 $I(\omega) [photon/s/Hz] 0.012$

0.000

- Superconducting qubit readout
- Multiplexed readout
- A. Remm et al., Phys. Rev. Appl., 20, 034027 (2023)
- S. Krinner et al., Nature 605, 669-674 (2022)
- L. Ranzani et al., Appl. Phys. Lett. 113, 242602 (2018)
- Broadband photo-detection
- D. Fraudet et al., arXiv:2405.00411v1 (2024)

- High energy physics
- R. Di Vora et al., Phys. Rev. D, 108, 062005 (2023)
- MKID readout
- N. Zobrist et al., Appl. Phys. Lett. 115, 042601 (2019)

Gwenael Le Gal

Why studying saturation in TWPAs?

SNR saturates @ high P_{in}

Can this be mitigated?

V. Elhomsy et al., arXiv:2307.14717v2 (2023)

Why studying saturation in TWPAs?

V. Elhomsy et al., arXiv:2307.14717v2 (2023)

Intermodulation products generation

Why studying saturation in TWPAs?

Intermodulation products generation

Understanding the causes of compression:

- Never studied in superconducting TWPAs
- Mitigate quantum efficiency reduction
- Understand implications on applications (readout signals correlations...)

Experimental study of saturation

Usual setup

Experimental study of saturation

Monitoring signal & pump complex transmission

Experimental study of saturation

The device: SNAIL TWPA @ 1/2 flux quantum

A. Ranadive et al., Nature Comm., 13, 1737 (2022)

Gwenael Le Gal

gwenael.le-gal@neel.cnrs.fr

1-dB compression: Definition

Compression: what happens to the pump?

Signal frequency influence

Gwenael Le Gal

gwenael.le-gal@neel.cnrs.fr

Compression versus signal frequency

Approx:
$$G(P_{sig}) = \frac{G_{lin}}{1 + 2G_{lin}P_{sig}/P_{pump}}$$
 Assumes perfect energy exchange

K. O'Brien et al., Phys. Rev. Lett., 113, 157001 (2014)

P. Kylemark et al., J. Light. Technol., 24, 9 (2006)

K. O'Brien et al., Phys. Rev. Lett., 113, 157001 (2014)

P. Kylemark et al., J. Light. Technol., 24, 9 (2006)

Full model: CME including losses & exchange of energy with pump tone

K. O'Brien et al., Phys. Rev. Lett., 113, 157001 (2014)

O. Yaakobi et al., Phys. Rev. B, 87, 144301 (2013)

Gwenael Le Gal

P. Kylemark et al., J. Light. Technol., 24, 9 (2006)

Full model: CME including losses & exchange of energy with pump tone

K. O'Brien et al., Phys. Rev. Lett., 113, 157001 (2014)

O. Yaakobi et al., Phys. Rev. B, 87, 144301 (2013)

Gwenael Le Gal

What gives the pump depletion profile?

What gives the pump depletion profile?

Pump transmission profile results from different coherent lengths and conversion efficiencies

Not related to linear gain profile

Compressed gain vs TWPA length

Mitigating compression by increasing device length

Conclusion

• TWPAs can be useful for many applications

Conclusion

Conclusion

- Interesting physics: understanding noise limitations, reciprocity, saturation
- Saturation: caused by pump depletion

- Mitigation strategies:
 - \rightarrow Increase critical current
 - \rightarrow Length engineering

Gwenael Le Gal

Perspectives: understanding TWPA physics

Noise limitations

Reciprocity/directionality

M. Esposito et al., Phys. Rev. Lett., 128, 153603 (2022)

Courtesy of Giulio Cappelli

Courtesy of Bekim Fazliji and Arpit Ranadive

A. Ranadive, B. Fazliji,et al., To be published

Gwenael Le Gal

gwenael.le-gal@neel.cnrs.fr

SQC www.sqc.cnrs.fr

Nicolas Arpit Guilliam Gwenael Bekim Giulio Amaury Roch Ranadive Butseraen Le Gal Fazliji Cappelli Martin

TruePA

Comparison with data

Comparison with data

No fitting parameters

Other devices

Is it proper to the SNAIL TWPA operated @ 1/2 flux ?

Comparing terms in theory

