

Overview of TCAD modeling of components Capabilities of ECORCE

Alain Michez Delphea, University of Montpellier – IES laboratory, Montpellier, France

25/06/2024 GDR IN2P3

1

ECORCE?

Etude du COmportement sous Radiation des Composants Electroniques

Similar to SENTAURUS and ATLAS Designed to **ease** TCAD implementation

Lacks

- Process modeling
- 3D

Special features

- Full graphical interface
- Control of model definition
- Dynamic mesh
- Optimizer (equivalent to DOE)
- Radiation effect modeling Single event, dose and dose rate effects
- Multiple trapping-detrapping model in insulator volume and at interfaces

 \rightarrow suitable for **teaching** (11 years effects of radiation, 13 years finite element method)

125000 lines of code, 34 years of development, university of Montpellier Commercial distribution by the SAS Delphea

ECORCE Finite volume software http://www.ecorce.eu

TCAD \rightarrow Technological Computer Aided Design

Modeling of component based on semiconductors and insulators,

by **solving differential equations**: Poisson, Transport, Heat, Trapping, ...

Mesh design

No analytical solution, solving method:

- → Discretisation of differential equations: Variation of DF linear in each element
- \rightarrow Approximate solution: mesh adjusted to control the error

Complicated task \rightarrow difficult to design an optimized mesh by hand

Should be automatically handled by the TCAD tool. ECORCE provides a dynamic mesh generator that add and remove nodes at each step of the modeling

With ECORCE, no more convergence problem induced by the mesh

Is it really so important for results precision?

ECORCE Finite volume software http://www.ecorce.eu

Analytical solution:

Electric charge : ()

Potential induced by Q(x) for a 1um wide device (Analytical solution)

Error:

70% \rightarrow 62.5 nm mesh size (17 nodes) 0.3% \rightarrow 3.9 nm mesh size (257 nodes)

 $0.16\% \rightarrow$ variable mesh size (77 nodes)

Mesh quality is critical for results reliability.

Relative error compared to the analytical solution as a function of the mesh size (markers: nodes of the mesh)

Adding complex models useless if mesh badly designed

Total lonizing dose -> electron/hole pairs generated in the whole structure

Silicon \rightarrow charges quickly recombined/collected at the contact **Oxide** \rightarrow **positive charge trapped on defects**.

Many oxides used in all components: MOSFET, Bipolar, ...

3 models available: → Fixed charge (available with all TCAD tools)
 → Srour model (available with ECORCE and ???)
 → Precursor model (available only with ECORCE))

Oxides in a PDSOI structure

TID: Srour Model

ECORCE

Finite volume software http://www.ecorce.eu

O. L. Curtis Jr and J. R. Srour, "The multiple-trapping model and hole transport in SiO2", *J. Appl. Phys.*, vol. 48, no. 9, pp. 3819–3828, 1977

Oxide \rightarrow wide band gap semiconductor \rightarrow defects inside the gap, trap charges

Traps defined by \rightarrow activation energy \rightarrow density

Semiconductor → displacement damages Oxide/semiconductor interface -> interface trap

Phenomena taken into account

- 0 electron-hole pairs generated by radiation
- ② drift-diffusion of carriers in their respective allowed band
- ③ trapping of free carriers
- ④ recombination of trapped carriers by free carriers of the opposite type
- ⑤ thermal reemission of trapped carriers to their respective allowed band
- (6) thermal reemission of a free electron or hole from an empty trap

Trapping-detrapping on defects inside the band gap during irradiation.

Srour model \rightarrow Traps are considered to be pre-existing in the oxide ECORCE also provides an improved model (traps are created during irradiation)

Wide gap semiconductors

SiC power NMOSFET → interface states Adjusting the experimental characteristic 4 seconds between Id=f(Vgs) measures			Activation Energy (eV)	Traps density (cm ⁻²)	Capture cross section (cm ²)	Recombinaison cross section (cm²)	
		Hole traps Level 0	2.77 Curve @ •	4.39 x 10 ¹¹	1.5 x 10 ⁻¹³	1.6 x 10 ⁻¹²	
	ld(Vgs) @ Vds=Vgs – logarithmic scale	Hole traps Level 1	2.88 Curve @•	6 x 10 ¹¹	1.5 x 10 ⁻¹³	1.6 x 10 ⁻¹²	
ld (A/µm)	1,E-07 0 2 4 6 8 1.E-08	Hole traps Level 2	2.94 Curve @●	3.49 x 10 ¹¹	1.5 x 10 ⁻¹³	1.6 x 10 ⁻¹²	
			1.0				
	1,E-09 1,E-10	Electron traps Level 0	I.Z High enough to remove thermal reemission	1.7 x 10 ¹¹	8 x 10 ⁻²² Shift ● → ●	4.8 x 10 ⁻¹²	
	1,E-11			Vth value			
	1 E 12	Curvature					
	Vgs (V)			Vth shift			
		Useless					

TID: Precursor Model

Experimental results

- N MOSFET, IRF130 batch, same datecode
- 70krad, 100rad/s, X-ray
- 3 biases Vgs : -5V, +5V et +12V
- 8 temperatures during irradiation: 30°C, 55°C, 70°C, 85°C, 93°C, 100°C, 130°C and 160°C

Only 2 precursors energy levels

→ 5 parameters fitted using 5 experimental results (2 energy levels and 3 spatial distribution parameters)

Threshold voltage shifts for positive and negative biases consistent with experiments

No fitting with Srour model

ECORCE

Finite volume software

http://www.ecorce.eu

SEE: Effects induced by a single particle (ions, protons, neutrons, ...)

- \rightarrow Generation of electron hole pairs along the track
- \rightarrow Creation of displacement damages along the track
 - O : vacancies
 - : interstitial atoms

Reported effects

...

Transient currents Latchup of parasitic thyristor PNPN structure Burnout of power devices MOSFET gate rupture Upset of one or multiple bits of memory Stuck bit of memory

Usually mesh adapted only on doping profile \rightarrow high changes of potential and carriers distribution not taken into account.

ECORCE \rightarrow mesh corrected according to all variables, for all steps including transient modeling \rightarrow Essential for Single Event Effect (Example: ion effect on a negatively biased PN junction)

Numbe

As expected: 2 peaks of current (blue curve)

Number of nodes ranging from 678 to 19549 (red curve)

SEE: Neutron effect on SiC power MOSFET

6 secondary ions tested:

- \rightarrow Si 26 and 100 MeV
- → Al 27.6 MeV
- → Mg 30.7 MeV
- → Na 32 MeV
- \rightarrow B 61.1 MeV

For each ion: \rightarrow 80 positions

 \rightarrow 8 directions

All calculations:

- \rightarrow 3600 simulations
- ightarrow 12000 calculation hours on one processor
- ightarrow 7 days with 72 processors

Burnout strongly rely on initial LET No burnout for low Z ions

Effects induced by a flux of particles (ions, protons, ...)

- \rightarrow Generation of electron hole pairs along the track
- \rightarrow Creation of displacement damages along the track

IN2P3 Grenoble

Robin Molle, Marie Laure Gallin Martel

Effect of proton flux on Diamond detectors

Wide gap semiconductors

Silicon carbide (SiC): at the state of art (developed in collaboration with JAXA)

- Specific heat and thermal conductivity function of temperature
- Gap reduction function of doping and temperature
- Band to band tunneling function of electric field and gap
- Impact ionization function of temperature
- Mobility function of doping, temperature, carrier-carrier scattering, parallel and perpendicular electric field
- Recombination SRH and Auger

Gallium nitride (GaN): ready to use, improvement on the way (collaboration with LETI)

- Specific heat and thermal conductivity function of temperature
- Gap reduction function of doping and temperature
- Impact ionization (not function of temperature)
- Recombination SRH (Auger not yet available)
- Band to band tunneling and mobility not yet available

Diamond (C): all known laws implemented

- Incomplete doping ionization
- Impact ionization function of temperature
- Mobility function of temperature and P doping only
- Recombination SRH (Auger not yet available)
- Specific heat, thermal conductivity, gap reduction and band to band tunneling not yet available

Mesh design

 \rightarrow essential for results precision and realistic modeling

 \rightarrow dynamic mesh reduces TCAD implementation time

Wide bandgap materials available

Customizable source code: mobility, impact ionization, ... (C++ programming)

Radiation effects

- \rightarrow Total Ionizing Dose: space, medical and power plant applications
- → Single Event Effect: occurs everywhere (neutron at ground level)

Live demonstration at coffee break/lunch

ECORCE Finite volume software http://www.ecorce.eu

17

Thank you for your attention.

Questions ?

 Source
 Contract
 Econce

 Trade Next-Gen
 Finite volume software

 http://www.ecorce.eu

 Source
 Control

 Control
 Control

 C

Mesh design

 \rightarrow essential for results precision and realistic modeling

 \rightarrow dynamic mesh reduces TCAD implementation time

TID

 \rightarrow 3 models available

 \rightarrow choice based on the results relevance needed and computation effort accepted

 \rightarrow fit quantitatively experimental results

 \rightarrow Model of interface state creation available (experimental)

SEE

 \rightarrow Take into account the LET distribution along the ion track

 \rightarrow All ion energies and type available for all materials

Many TCAD software are available

PISCES, Fielday, Sentaurus, Atlas, Genius, NanoTCAD, Lumerical, FLOODS, ... (see <u>www.tcad.com</u> for a more exhaustive list)

Commercial or Open Source, general or dedicated to a specific domain

- \rightarrow Dimensions: 1D, 2D, Axisymmetric, 3D
- → Materials: Si/SiO2, SiC, GaN, Graphene, ...
- → Applications: Radiation effects, Solar cells, nano devices, optoelectronic, ...

This presentation

- → Examples of the influence of mesh design and model choice for SEE and TID modeling
- → Highlight the advantages of the dynamic mesh of ECORCE

"ECORCE: A TCAD Tool for Total Ionizing Dose and Single Event Effect Modeling". IEEE Transactions on Nuclear Science, 2015, 62 (4), pp.1516 - 1527.

Example: academic MOSFET design

Live demonstration at the break

Within ECORCE modeling executed in 5 steps:

ECORCE

Finite volume software

http://www.ecorce.eu

- 1) Geometry design
- 2) Definition of physical model equations, doping, ...
- 3) Definition of stimuli bias, temperature, irradiation, ...
- 4) Calculation of solution
- 5) Analysis of results

Adjusting the device parameters

TCAD model must be adjusted to fit experimental results.

Considering the Id=f(Vgs) characteristic.

What is the effect of the P substrate density on the threshold voltage?

The optimizer automatically calculates Vth for several dopings

Live demonstration

 V_{th} = 2.23 V for Na = 10¹⁶ cm⁻³

Thick oxide: 100nm Similar to power MOSFETS

TID: Fixed Charge

Example: 10 krad Co60, Vgs = 12 V

Density generated in the gate oxide: 7.6 10¹⁶ cm⁻³

Electric field: 1.2 MV/cm

Initial separation of generated pairs: 0.92

- \rightarrow Fixed charge density applied: 7 10¹⁶ cm⁻³, full oxide volume
- \rightarrow Or 1.4 10¹⁷ cm⁻³ half oxide volume, close to the gate
- → Threshold Voltage Shift: -2.65 V

Easy to implement Low calculation time

Does not take into account

- \rightarrow change of the electric field during irradiation
- \rightarrow Real displacement of charges in the oxide
- \rightarrow Temperature
- \rightarrow Recombination of trapped holes with electrons
- \rightarrow Thermal reemission of trapped hole

Fast but weak method. Many phenomena are not taken into account

- 1. Goal of TCAD for component under radiation
- 2. Importance of the mesh quality
- 3. Single Event Effects modeling
- 4. Total lonizing Dose modeling
- 5. Conclusion

Goal: understand phenomena induced by radiation on components

- Single Event Effects (SEE)
- Total Ionizing and Non Ionizing Dose (TID) (TNID)
- ElectroStatic Discharge (ESD)
- Combined effects:TID, TNID, SEE, ESD

Advantages over experiments:

- → model in a reduce time long duration phenomena.
- \rightarrow fast and easy(?) results
- ightarrow insight of the mechanisms at play

Drawbacks:

- \rightarrow not a qualification tool
- \rightarrow reduce set of components
- \rightarrow results reliability?
- → keep in mind: « Garbage In, Garbage Out » (GIGO)

It is essential to carefully check inputs and correlate modeling with experiments

3. SEE case study

ECORCE Finite volume software http://www.ecorce.eu

TCAD model including heat equation and Impact Ionization (all models proposed) Axisymmetric modeling \rightarrow same results as 3D.

Dynamic mesh, lowest edge size: 0.02 µm

Critical temperature (reached very close to Schottky contact) exceeds SiC melting point (3100K)

What are the mechanisms at play?

3. SEE case study

Mechanism located in the low conductivity area, between 110 and 120 μ m (EPI layer) Electric field: 0.2 MV/cm because of -200V applied on Anode

Generation and separation of charges

High positive charge appears at the contact \rightarrow increase the electric field

 \rightarrow speed up the pairs separation.

ECORCE

Einite volume software

http://www.ecorce.eu

Impact Ionisation triggered

 \rightarrow Additionnal pairs generation (yellow)

→ ceiling of the electric field when the generation rate is high enough.

Critical electric field, Si : 0.3 MV/cm, SiC : 3 MV/cm \rightarrow Power heat density (W/µm³) \approx E², x 100 in SiC than in Si

3. SEE Issue on mesh design

Thermal runaway mechanism, very sensitive to parameters variation. (mobility laws, Impact ionization, ...)

What about mesh sensitivity?

New modeling, dynamic mesh \rightarrow lowest edge size from 0.02 to 0.1 µm

Highest temperature: 1700 K

Thermal runaway disappears \rightarrow unrealistic modeling, badly designed mesh Electric field for finest mesh is high (blue curve) \rightarrow Impact Ionization triggered Electric field for large mesh is low (red curve) \rightarrow Impact Ionization not triggered

Two large edges at the anode do not take into account this localized effect According to user parameters, the dynamic mesh automatically compute the right solution

ECORCE

Finite volume software

http://www.ecorce.eu

4. TID: Srour model

ECORCE

Finite volume software http://www.ecorce.eu

Experimental results

- N MOSFET, IRF130 batch, same datecode
- 70krad, 100rad/s, X-ray
- 3 biases Vgs : -5V, +5V et +12V
- 8 temperatures during irradiation: 30°C, 55°C, 70°C, 85°C, 93°C, 100°C, 130°C and 160°C

Best model

3 traps levels: density and activation energy fitted

 \rightarrow 6 parameters fitted using 6 experimental results. Traps are close to the interface

Threshold voltage shifts for others experimental points?

Srour model

- → Impossible to fit positive and negative biases with the same trap distribution
- \rightarrow Positive biases: traps close to the interface
- \rightarrow Negative biases: traps close to the gate

Interface